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Abstract

We extend the expressivity of classical conditional reason-
ing by introducing context as a new parameter. The enriched
conditional logic generalises the defeasible conditional set-
ting in the style of Kraus, Lehmann, and Magidor, and allows
for a refined semantics that is able to distinguish, for exam-
ple, between expectations and counterfactuals. In this paper
we introduce the language for the enriched logic and define
an appropriate semantic framework for it. We analyse which
properties generally associated with conditional reasoning are
still satisfied by the new semantic framework, provide a suit-
able representation result, and define an entailment relation
based on Lehmann and Magidor’s generally-accepted notion
of Rational Closure.

1 Introduction
Conditionals are at the heart of human everyday reasoning
and play an important role in the logical formalisation of
reasoning. They can usually be interpreted in many ways:
necessity, presumption, deontic, causal, probabilistic, coun-
terfactual, and many others. Two very common interpreta-
tions, that are also strongly interconnected, are condition-
als representing expectations (‘If it is a bird, then presum-
ably it flies’), and conditionals representing counterfactuals
(‘If Napoleon had won at Waterloo, all Europe would be
speaking French’). Although they are connected by virtue
of being conditionals, the types of reasoning they aim to
model differ somewhat. E.g., the first example above as-
sumes that the premises of conditionals are consistent with
what is believed, while the second example assumes that
those premises are inconsistent with an agent’s beliefs. That
this is problematic can be made concrete with an extended
version of the (admittedly over-used) penguin example.

Example 1. Suppose we know that birds usually fly, that
penguins are birds that usually do not fly, that dodos were
birds that usually did not fly, and that dodos do not exist any-
more. As outlined in more detail in Example 2, the standard
preferential semantic approach to representing conditionals
(Lehmann and Magidor 1992) is limited in that it allows for
two forms of representation of an agent’s beliefs. In the one,
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it would be impossible to distinguish between atypical (ex-
ceptional) entities such as penguins, and non-existing enti-
ties such as dodos. In the other, it would be possible to draw
this type of distinction, but at the expense of being unable to
reason coherently about counterfactuals—the agent would
be forced to conclude anything and everything from the ex-
istence of dodos.

In this work we introduce a logic of contextual condi-
tionals to overcome this problem. The central insight is that
adding an explicit notion of context to standard condition-
als allows for a refined semantics of this enriched language
in which the problems described in Example 1 can be dealt
with adequately. It also allows us to reason coherently with
counterfactual conditionals such as ‘Had Mauritius not been
colonised, the dodo would not fly’. Moreover, it is possi-
ble to reason coherently with contextual conditionals with-
out needing to know whether their premises are plausible or
counterfactual. In the case of penguins and dodos, for exam-
ple, it allows us to state that penguins usually fly in the con-
text of penguins existing, and that dodos usually fly in the
context of dodos existing, while being unaware of whether
or not penguins and dodos actually exist. At the same time, it
remains possible to make statements about what necessarily
holds, regardless of any plausible or counterfactual premise.

The paper is structured as follows. Section 2 outlines the
formal preliminaries of propositional logic and the preferen-
tial semantic approach to conditionals on which our work
is based. Section 3 is the heart of the paper. It describes
the language of contextual conditionals, furnishes it with an
appropriate and intuitive semantics, and motivates the cor-
responding logic by way of examples, formal properties,
and a formal representation result. With the basics of the
logic in place, Section 4 defines a form of entailment for
it that is based on the well-known notion of Rational Clo-
sure (Lehmann and Magidor 1992), and shows that it is re-
ducible to classical propositional reasoning. Section 5 re-
views related work, while Section 6 concludes and considers
future avenues to explore.

2 Formal background
In this paper, we assume a finite set of propositional atomsP
and use p, q, . . . to denote its elements. Sentences of the
underlying propositional language are denoted by α, β, . . .,
and are built up from the atomic propositions and the



Boolean connectives in the usual way. The set of all propo-
sitional sentences is denoted by L.

A valuation (alias world) is a function from P into {0, 1}.
The set of all valuations is denoted U , and we use u, v, . . . to
denote its elements. Whenever it eases presentation, we rep-
resent valuations as sequences of atoms (e.g., p) and barred
atoms (e.g., p), with the usual understanding. As an exam-
ple, if P = {b, f, p}, with the atoms standing for, respec-
tively, ‘being a bird’, ‘being a flying creature’, and ‘being a
penguin’, the valuation bfp conveys the idea that b is true, f
is false, and p is true.

With v  α we denote the fact that v satisfies α.
Given α ∈ L, with JαK def= {v ∈ U | v  α} we denote its
models. ForX ⊆ L, JXKdef=

⋂
α∈XJαK. We sayX ⊆ L (clas-

sically) entails α ∈ L, denotedX |= α, if JXK ⊆ JαK. Given
a set of valuations V , fml(V ) indicates a formula character-
ising the set V . That is, fml(V ) is a propositional formula
satisfied by all and only the valuations in V .

A defeasible conditional |∼ is a binary relation on L
which is said to be rational (Kraus, Lehmann, and Magidor
1990) if it satisfies the well-known KLM properties below:

(Ref) α |∼ α (LLE)
|= α↔ β, α |∼ γ

β |∼ γ

(And)
α |∼ β, α |∼ γ
α |∼ β ∧ γ

(Or)
α |∼ γ, β |∼ γ
α ∨ β |∼ γ

(RW)
α |∼ β, |= β → γ

α |∼ γ
(RM)

α |∼ β, α 6|∼ ¬γ
α ∧ γ |∼ β

The merits of these properties have extensively been ad-
dressed in the literature (Gabbay 1984; Kraus, Lehmann,
and Magidor 1990) and we shall not repeat them here.

A suitable semantics for rational conditionals is provided
by ordered structures called ranked interpretations.

Definition 1. A ranked interpretation R is a function
from U to N∪{∞}, satisfying the following convexity prop-
erty: for every i ∈ N, if R(u) = i, then, for every j
0 ≤ j < i, there is a u′ ∈ U for which R(u′) = j.

For a given ranked interpretation R and valuation v, we
denote with R(v) the rank of v. The number R(v) indicates
the degree of atypicality of v. So the valuations judged most
typical are those with rank 0, while those with an infinite
rank are judged so atypical as to be implausible. We can
therefore partition the set U w.r.t. R into the set of plausible
valuations UfR

def= {u ∈ U | R(u) ∈ N}, and implausible
valuations U∞

R
def= U \ UfR. With JiKR, for i ∈ N ∪ {∞}, we

indicate all the valuations with rank i in R (we shall omit
the subscript whenever it is clear from the context).

AssumingP = {b, f, p}, with the intuitions as above, Fig-
ure 1 below shows an example of a ranked interpretation.

Let R be a ranked interpretation and let α ∈ L. Then
JαKfR

def= UfR ∩ JαK, and minJαKfR
def= {u ∈ JαKfR | R(u) ≤

R(v) for all v ∈ JαKfR}. A defeasible conditional α |∼ β
can be given an intuitive semantics in terms of ranked in-
terpretations as follows: α |∼ β is satisfied in R (denoted
R  α |∼ β) if minJαKfR ⊆ JβK, with R referred to as

∞ bfp, bfp

2 bfp

1 bfp, bfp

0 bfp, bfp, bfp

Figure 1: A ranked interpretation for P = {b, f, p}.

a ranked model of α |∼ β. In the example in Figure 1, we
have R  b |∼ f, R  ¬(p → b) |∼ ⊥, R  p |∼ ¬f,
R 6 f |∼ b, and R  p ∧ ¬b |∼ b. It is easily verified
that R  ¬α |∼ ⊥ iff UfR ⊆ JαK. Hence we frequently
abbreviate ¬α |∼ ⊥ as α.

The correspondence between rational conditionals and
ranked interpretations is formalised by the following repre-
sentation result.

Theorem 1 (Lehmann & Magidor, 1992; Gärdenfors &
Makinson, 1994). A defeasible conditional |∼ is rational iff
there is an R such that α |∼ β iff R  α |∼ β.

With the semantics of the language of defeasible condi-
tionals specified, the next important question is what en-
tailment looks like for this logic. Consider a conditional
knowledge base K as a finite set of statements α |∼ β, with
α, β ∈ L. As an example, let K = {b |∼ f, p→ b, p |∼ ¬f}.
A ranked model of K is a ranked interpretation satisfying all
statements in K. The ranked interpretation in Figure 1 is a
ranked model of the above K.

While several notions of entailment for conditional
knowledge bases have been explored in the literature on non-
monotonic reasoning (Booth et al. 2019; Casini et al. 2014;
Casini, Meyer, and Varzinczak 2019; Giordano et al. 2012;
Lehmann 1995; Weydert 2003), rational closure (Lehmann
and Magidor 1992) is commonly seen as the baseline for
an appropriate form of entailment in this context. Basi-
cally, it formalises the principle of presumption of typical-
ity (Lehmann 1995, p. 63), which informally specifies that
a situation (valuation) should be assumed to be as typical as
possible w.r.t. background information in a given K.

Several equivalent definitions of rational closure can be
found in the literature. We give the following one, due
to Giordano et al. (2015). Given a knowledge base K, we
first define a weak ordering over the set of ranked mod-
els of K by setting R1 �K R2, if, for every v ∈ U ,
R1(v) ≤ R2(v). The intuition behind the ordering �K is
that R1 is lower than R2 if it is more typical against the
background of K. The rational closure of K is then defined
via the unique minimal ranked model of K.

Definition 2. Let K be a conditional knowledge base, and
let RK

RC be the minimum element of �K on ranked models
of K. The rational closure (RC) of K is the defeasible con-
sequence relation |∼K

RC
def= {α |∼ β | RK

RC  α |∼ β}.

Figure 1 shows the minimum ranked model of K = {b |∼
f, p → b, p |∼ ¬f} w.r.t. �K. Hence we have that ¬f |∼ ¬b
is in the RC of K.



3 Contextual conditionals
We now turn to the heart of the paper, the presentation of a
logic for contextual conditionals. For a more detailed mo-
tivation, let us return to a more technical version of the
penguin-dodo example in Section 1.
Example 2. We know that birds usually fly (b |∼ f), that
penguins are birds (p→ b) that usually do not fly (p |∼ ¬f).
Also, we know that dodos were birds (d → b) that usually
did not fly (d |∼ ¬f), and that dodos do not exist anymore.
Using the standard ranked semantics (Definition 1) we have
two ways of modelling this information.

The first option is to formalise what an agent believes by
referring to valuations with rank 0 in a ranked interpreta-
tion. That is, the agent believes α is true iff > |∼ α holds.
In such a case, > |∼ ¬d means that the agent believes that
dodos do not exist. The minimal model for this conditional
knowledge base is shown in Figure 2 (left). The main lim-
itation of this representation is that all exceptional entities
have the same status as dodos, since they cannot be satisfied
at rank 0. Hence we have> |∼ ¬p, just as we have> |∼ ¬d,
and we are not able to distinguish between the status of the
dodos (they do not exist anymore) and the status of the pen-
guins (they are simply exceptional birds).

The second option is to represent what an agent believes
in terms of all valuations with finite ranks. That is, an agent
believes α to hold iff ¬α |∼ ⊥ holds. If dodos do not ex-
ist, we add the statement d |∼ ⊥. The minimal model for
this case is depicted in Figure 2 (right). Here we can dis-
tinguish between what is considered false (dodos exist) and
what is exceptional (penguins), but we are unable to reason
coherently about counterfactuals, since from d |∼ ⊥ we can
conclude anything about dodos.

∞ U \ (J0K ∪ J1K ∪ J2K)

2 pdbf, pdbf, pdbf

1 pdbf, pdbf, pdbf, pdbf

0 pdbf, pdbf, pdbf

∞ U \ (J0K ∪ J1K ∪ J2K)

2 pdbf

1 pdbf, pdbf,

0 pdbf, pdbf, pdbf

Figure 2: Left: minimal ranked interpretation of the KB in
Example 2 satisfying > |∼ ¬d. Right: minimal ranked inter-
pretation of the KB expanded with d |∼ ⊥.

A contextual conditional (CC for short) is a statement of
the form α |∼γ β, with α, β, γ ∈ L, which is read as ‘in the
context of γ, β holds on condition that α holds’. Formally, a
contextual conditional |∼ is a ternary relation on L. We shall
write α |∼γ β as an abbreviation for 〈α, β, γ〉 ∈|∼.

To provide a suitable semantics for CCs we define a re-
fined version of the ranked interpretations of Section 2 that
we refer to as epistemic interpretations. A ranked interpre-
tation can differentiate between plausible valuations (those
in UfR) but not between implausible ones (those in U∞

R ).
In contrast, an epistemic interpretation can also differenti-
ate between implausible valuations. We thus distinguish be-
tween two classes of valuations: plausible valuations with a
finite rank, and implausible valuations with an infinite rank.
Within implausible valuations we further distinguish be-
tween those that would be considered as possible, and those

that would be impossible. This is formalised by assigning to
each valuation u a tuple of the form 〈f, i〉 where i ∈ N, or
〈∞, i〉 where i ∈ N ∪ {∞}. The f in 〈f, i〉 is intended to
indicate that u has a finite rank, while the∞ in 〈∞, i〉 is in-
tended to indicated that u has an infinite rank, where finite
ranks are viewed as more typical than infinite ranks. Implau-
sible valuations that are considered possible have an infinite
rank 〈∞, i〉 where i ∈ N, while those considered impossible
have the infinite rank 〈∞,∞〉, where 〈∞,∞〉 is taken to be
less typical than any of the other infinite ranks.

To capture this formally, let Rdef={〈f, i〉 | i ∈ N}∪{〈∞, i〉 |
i ∈ N ∪ {∞}}. We define the total ordering � over R as
follows: 〈x1, y1〉 � 〈x2, y2〉 if and only if x1 = x2 and
y1 ≤ y2, or x1 = f and x2 = ∞, where i < ∞ for all
i ∈ N}. Before we can define epistemic interpretations, we
need to extend the notion of convexity of ranked interpreta-
tions (Definition 1) to epistemic interpretations. Let e be a
function from U to R. e is said to be convex (w.r.t.�) if and
only the following holds: i) If e(u) = 〈f, i〉, then, for all j
s.t. 0 ≤ j < i, there is a uj ∈ U s.t. e(uj) = 〈f, j〉; and ii) if
e(u) = 〈∞, i〉 for i ∈ N, then, for all j s.t. 0 ≤ j < i, there
is a uj ∈ U s.t. e(uj) = 〈∞, j〉.
Definition 3. An epistemic interpretation E is a total func-
tion from U to R that is convex.

Casini et al. (2020) have a similar definition of epistemic
interpretations, but they do not allow for the rank 〈∞,∞〉.

We let UfE
def= {u ∈ U | E(u) = 〈f, i〉 for some i ∈ N} and

U∞
E

def= {u ∈ U | E(u) = 〈∞, i〉 for some i ∈ N}. Note that
U∞

E does not contain valuations with a rank of 〈∞,∞〉. We
let minJαKE

def= {u ∈ JαK | E(u) � E(v) for all v ∈ JαK},
minJαKfE

def= {u ∈ JαK ∩ UfE | E(u) � E(v) for all v ∈
JαK∩ UfE }, and minJαK∞E

def= {u ∈ JαK∩ U∞
E | E(u) � E(v)

for all v ∈ JαK ∩ U∞
E }.

Observe that epistemic interpretations are allowed to have
no plausible valuations (UfE = ∅), as well as no implausible
valuations that are possible (U∞

E = ∅). This means it is pos-
sible that E(u) = 〈∞,∞〉 for all u ∈ U , in which case
E  α |∼γ β for all α, β, γ.

This allows us to provide a semantic definition of contex-
tual conditionals in terms of epistemic interpretations.
Definition 4. E  α |∼γ β (abbreviated as α |∼E

γ β) if{
minJα ∧ γKfE ⊆ JβK if JγK ∩ UfE 6= ∅;
minJα ∧ γK∞E ⊆ JβK otherwise.

Intuitively, this definition evaluates α |∼γ β as follows.
If the context γ is compatible with the plausible part of E
(the valuations in UfE ) then α |∼γ β holds if the most typical
plausible models of α∧γ are also models of β. On the other
hand if the context γ is not compatible with the plausible
part of E (that is, all models of γ have an infinite rank) then
α |∼γ β holds if the most typical implausible (but possible)
models of α ∧ γ are also models of β.

An immediate corollary of this is that the rational con-
ditionals defined in terms of ranked interpretations can be
simulated with CCs by setting the context to >.
Definition 5. For an epistemic interpretation E we define
the ranked interpretation RE extracted from E as follows:



for u ∈ UfE , R(u) = i where E(u) = 〈f, i〉 and R(u) =∞
for u ∈ U \ UfE .

Corollary 1. Let E be an epistemic interpretation. Then
RE  α |∼ β iff E  α |∼> β.

The principal advantage of contextual conditionals and
their associated enriched semantics in terms of epistemic in-
terpretations is that it allows us to represent different degrees
of epistemic involvement, with the finite ranks (the plausi-
ble valuations) representing the expectations of an agent. So
> |∼> α being true in E indicates that α is expected. What
an agent believes to be true is what is true in all the valua-
tions with finite ranks. That is, the agent believes α to be true
iff E  ¬α |∼> ⊥. It is also possible to reason counterfactu-
ally. We can express that dodos would not fly, if they existed,
in a coherent way. We can talk about dodos in a counterfac-
tual context, for example assuming that Mauritius had never
been colonised (mc): the conditional d |∼¬mc ¬f is read as
‘In the context of Mauritius not having been colonised, the
dodo would not fly’. Moreover, we can reason coherently
with a contextual conditional, not even knowing whether its
premises are plausible or counterfactual. To do so, it is suf-
ficient to introduce statements of the form α |∼α β. If α
is plausible, this conditional is evaluated in the context of
the finite ranks, exactly as if α |∼> β were being evalu-
ated. On the other hand, if α |∼> ⊥ holds, α |∼α β will
be evaluated referring to the infinite ranks. So, in the case
of penguins and dodos, p |∼p ¬f and d |∼d ¬f, express
the information that penguins usually fly in the context of
penguins existing, and that dodos usually fly in the context
of dodos existing, regardless of whether the agent is aware
of penguins or dodos existing or not. In contrast, a state-
ment such as d |∼> ¬f cannot be used to reason counter-
factually about dodos. Note that it is still possible to impose
that something necessarily holds. The conditional α |∼α ⊥
holds only in epistemic interpretations in which all models
of α have 〈∞,∞〉 as their rank. The following example de-
momonstrates this more concretely.

Example 3. Consider the following rephrasing of the state-
ments in Example 2. ‘Birds usually fly’ becomes b |∼> f.
Defeasible information about penguins and dodos are mod-
elled using p |∼p ¬f and d |∼d ¬f. Given that dodos don’t
exist anymore, the statement d |∼> ⊥ leaves open the exis-
tence of dodos in the infinite rank, which allows for coherent
reasoning under the assumption that dodos exist (the con-
text d). Moreover, information such as dodos and penguins
necessarily being birds can be modelled by the conditionals
p∧¬b |∼p∧¬b ⊥ and d∧¬b |∼d∧¬b ⊥, relegating the valu-
ations in Jp ∧ ¬bK ∪ Jd ∧ ¬bK to the rank 〈∞,∞〉. Figure 3
shows a model of these statements.

Next we consider the class of contextual conditionals
from the perspective of a list of contextual rationality prop-
erties in the KLM style. We start with the following ones:

〈∞,∞〉 Jp ∧ ¬bK ∪ Jd ∧ ¬bK

〈∞, 1〉 pdbf, pdbf

〈∞, 0〉 pdbf, pdbf

〈f, 2〉 pdbf

〈f, 1〉 pdbf, pdbf

〈f, 0〉 pdbf, pdbf, pdbf

Figure 3: Model of the statements in Example 3.

(Ref) α |∼γ α (LLE)
|= α↔ β, α |∼γ δ

β |∼γ δ

(And)
α |∼γ β, α |∼γ δ
α |∼γ β ∧ δ

(Or)
α |∼γ δ, β |∼γ δ
α ∨ β |∼γ δ

(RW)
α |∼γ β, |= β → δ

α |∼γ δ
(RM)

α |∼γ β, α 6|∼γ ¬δ
α ∧ δ |∼γ β

Observe that they correspond exactly to the original KLM
properties, except that context has been added.

Definition 6. A CC |∼ is basic (a BCC) if it satisfies the
contextual KLM properties.

An immediate corollary of this definition is that for a BCC
with the context γ fixed, |∼γ is a rational conditional. We
then get the following result.

Theorem 2. Every epistemic interpretation generates a
BCC, but the converse does not hold.

The reason why the converse of Theorem 2 does not
hold is that the structure of a BCC is completely inde-
pendent of the context γ referred to in the contextual
KLM properties. As a very simple instance of this prob-
lem, observe that BCCs are not even syntax-dependent
w.r.t. the context. That is, we may have α |∼γ β but
α 6|∼δ β where γ ≡ δ. To remedy this, we re-
quire BCCs to satisfy the following additional properties:

(Inc)
α |∼γ β

α ∧ γ |∼> β
(Vac)

> 6|∼> ¬γ, α ∧ γ |∼> β

α |∼γ β

(Ext)
γ ≡ δ

α |∼γ β iff α |∼δ β
(SupExp)

α |∼γ∧δ β
α ∧ γ |∼δ β

(SubExp)
δ |∼> ⊥, α ∧ γ |∼δ β

α |∼γ∧δ β
We refer to these as the contextual AGM properties for

reasons to be outlined below.

Definition 7. A BCC is a full CC (FCC) if it satisfies the
contextual AGM properties.

One way in which to interpret the addition of a context to
conditionals from a technical perspective, is to think of it as
similar to belief revision. That is, α |∼γ β can be thought of
stating that if a revision with γ has taken place, then β will
hold on condition that α holds. With this view of contextual
conditionals, the contextual AGM properties above are seen
as versions of the AGM properties for belief revision (Al-
chourrón, Gärdenfors, and Makinson 1985). The names of
these properties were chosen with the names of their AGM
analogues in mind. The contextual AGM properties can be
motivated intuitively as follows.



Together, Inc and Vac require that when the context (or
revision with) γ is compatible with what is currently plau-
sible, then a conditional w.r.t. the context γ (a ‘revison
by’ γ) is the same as a conditional where the context is
> (where there isn’t a ‘revision’ at all), but with γ added
to the premise of the conditional. Ext ensures that context
is syntax-independent. Finally, (SupExp) and (SubExp) to-
gether require that if the context δ is implausible (that is, the
‘revision’ with δ is incompatible with what is plausible) then
a conditional w.r.t. the context γ ∧ δ (a ‘revision by’ γ ∧ δ)
is the same as a conditional where the context (or ‘revision’)
is δ, but with γ added to the premise of the conditional.

It turns out that FCCs are characterised by epistemic inter-
pretations, resulting in the following representation result.
Theorem 3. Every epistemic interpretation generates an
FCC. Every FCC can be generated by an epistemic inter-
pretation.

The AGM-savvy reader may have noticed that the follow-
ing two obvious analogues of the suite of contextual AGM
properties are missing from our list above.
(Succ) α |∼γ γ
(Cons) > |∼γ ⊥ iff γ ≡ ⊥
Succ requires context to matter: a ‘revision’ by γ will always
be successful. Cons states that we will obtain an inconsis-
tency only when the context is inconsistent.

It turns out that Succ holds for epistemic interpretations,
but follows from the combination of the contextual KLM
and AGM properties, while Cons does not.
Corollary 2. Every FCC satisfies Succ, but there are FCCs
for which Cons does not hold.

The fact that Cons does not hold can be explained by con-
sidering the epistemic interpretation where all valuations are
taken to be impossible (that is, to have the rank 〈∞,∞〉) in
which case all statements of the form α |∼γ β are true.

We conclude this section by considering the following
two properties.
(Incons) α |∼⊥ β

(Cond) If γ 6|∼> ⊥ then α ∧ γ |∼> β iff α |∼γ β
Incons requires that all conditionals hold when the context
is inconsistent, while Cond requires that conditionals w.r.t.
the context γ be equivalent to the same conditional with γ
added to the premise whenever there is no context (when the
context is >).
Proposition 1. Every FCC satisfies Incons and Cond.

4 Entailment
Up to this point we have investigated the properties char-
acterising the class of epistemic interpretations. Here we
move to investigating how we can reason in this framework.
That is, given a knowledge base (a finite set) of contex-
tual conditionals (CCKB), what new contextual condition-
als are we justified in inferring? As widely discussed in the
KLM and other analogous conditional approaches, in the
non-monotonic framework it is generally not useful to de-
fine an entailment relation with a Tarskian approach, that

is, taking under consideration what holds in all the models
of a KB, since the resulting entailment relation is too weak
inferentially (Lehmann and Magidor 1992). More interest-
ing entailment relations can be defined by picking a single
model of the KB. It is generally accepted that there are many
appropriate entailment relations that can be defined for de-
feasible reasoning, depending on the kind of reasoning we
want to model (Lehmann 1995; Casini, Meyer, and Varz-
inczak 2019), but in the framework of preferential seman-
tics the RC, recalled in Section 2, is generally recognised as
a basic construction, from the refinement of which we can
obtain other interesting entailment relation.

We now present a reformulation of the same kind of con-
struction in our framework, that we call Minimal Closure
(MC). We adapt to our framework the notion of a minimal
model (Giordano et al. 2015), recalled in Section 2, and we
show that for any CCKB the minimal model is unique.

The construction of the minimal model will be obtained
creating a bridge between contextual conditionals and epis-
temic interpretations on one hand and defeasible condition-
als and ranked interpretations on the other. Some notions can
be naturally extended from the latter framework to the for-
mer one. First of all, we can extend the notion of consistency.
A set C of defeasible conditionals is consistent iff it has a
ranked model R s.t. J0KR 6= ∅. This is the case since such
a model does not satisfy the conditional > |∼ ⊥, that repre-
sents absurdity in the conditional framework. This condition
can be easily translated into our framework.
Definition 8. A CCKB K is consistent iff it has an epistemic
model E s.t. J〈f, 0〉KE 6= ∅.

That is, A CCKB K is consistent iff it has an epistemic
model E that does not satisfy > |∼> ⊥. J〈f, 0〉KE is a no-
tation for epistemic interpretations that mirrors the notation
J0KR for ranked interpretations, that is, J〈x, y〉KE represents
the set of worlds that have rank 〈x, y〉 in E.

Given Corollary 1, we can define the satisfaction of de-
feasible conditionals also for epistemic interpretations:

E  α |∼ β iff E  α |∼> β

Note that an epistemic interpretation E satisfies exactly
the same defeasible conditionals of its extracted ranked in-
terpretation RE (see Definition 5). That is, the ranks spec-
ified inside U∞

E ∪ J〈∞,∞〉K are totally irrelevant w.r.t. the
satisfaction of the defeasible conditionals α |∼ β. We can
also intuitively define the converse operation of the extrac-
tion of a ranked interpretation from an epistemic interpre-
tation: we can generate an epistemic interpretation from a
ranked interpretation.
Definition 9. For a ranked interpretation R we define the
epistemic interpretation ER extracted from E as follows: for
u ∈ UfR, ER(u) = 〈f, i〉 where R(u) = i and ER(u) =

〈∞,∞〉 for u ∈ U \ UfR.

It is easy to see that R and ER are equivalent w.r.t. the
satisfaction of defeasible conditionals.

The following corollary of Proposition 1,that is simply a
semantic reformulation of the property (Cond), will be cen-
tral in connecting the satisfaction of contextual conditionals
to the satisfaction of the defeasible ones.



Corollary 3. For any epistemic interpretation E, if UfE ∩
JγK 6= ∅ then E  α |∼γ β iff E  α ∧ γ |∼ β.

Given Corollary 3, we define a simple transformation:
given a CCKB K, let K∧ be its conjunctive classical form:

K∧ = {α ∧ γ |∼ β | α |∼γ β ∈ K}.
We can use the conjunctive classical form to define two

relevant models for a CCKB K: the classical epistemic
model and the minimal epistemic model. The former is the
epistemic interpretation generated by the minimal ranked
model of K∧.

Definition 10 (classical epistemic model). Let K be a
CCKB, K∧ its conjunctive classical form, and R the min-
imal ranked model of K∧. The classical epistemic model of
K is the epistemic interpretation ER generated from R.

Since R is a ranked model of K∧, also ER is. We need to
check that it is also a ranked model of K.

Proposition 2. Let K be a conditional base, and let ER be
defined as in Definition 10. ER is a model of K.

The proof is immediate, given Corollary 3. From Propo-
sition 2 and Corollary 3 we can also easily prove the follow-
ing.

Proposition 3. Let K be a conditional base. K has an epis-
temic model iff K∧ has a ranked model.

By linking the satisfaction of a CCKB K to the satisfac-
tion of its conjunctive formK∧ we are able to define a simple
method to check the consistency of a CCKB, based on the
materialisation K∧ of K∧. The materialisation C of a set of
defeasible conditionals C is the set of material implications
corresponding to the conditionals in C: C def= {α → β | α |∼
β ∈ C}.
Corollary 4. A CCKB K is consistent iff K∧ 6|= ⊥.

This corollary is immediate from Proposition 3 and the
well-known property that a finite set of defeasible condi-
tionals is consistent iff its materialisation is a consistent
propositional knowledge base (Lehmann and Magidor 1992,
Lemma 5.21).

A classical epistemic model is a direct translation of a
ranked interpretation into an equivalent epistemic interpre-
tation, and it is useful to prove how a consistency check
can be reduced to a simple propositional check. However,
since it does not go beyond the modelling possibilities of
ranked interpretations, this model is not appropriate to de-
fine an interesting form of entailment. Hence we now move
to the definition of the minimal epistemic model, referring to
the minimality order introduced for ranked interpretations in
Section 2.

We need to adapt, in an intuitive way, the notion of mini-
mality defined for the ranked interpretations (Giordano et al.
2015) to the present framework. In Section 3 we defined
a total ordering � over the tuples 〈x, y〉 representing the
ranks in epistemic interpretations. Let the ordering ≺K on
all the epistemic models of a CCKB K be defined as fol-
lows: E1 ≺K E2, if, for every v ∈ U , E1(v) � E2(v), and
there is a w ∈ U s.t. E2(w) 6� E1(w).

Definition 11. Let K be a consistent CCKB, and EK be the
set of its epistemic models. E ∈ EK is a minimal epistemic
model of K iff there is no E′ ∈ EK s.t. E′ ≺K E.

We first define a construction of a model, given a consis-
tent CCKB K. Then we prove that it is actually the unique
minimal epistemic model of K.
Definition 12 (minimal epistemic model). Let K be a con-
sistent CCKB, K∧ its conjunctive classical form, and R be
the minimal ranked model of K∧. We identify the condition-
als in K with a context that has infinite rank in R.

• K∞
def= {α |∼γ β ∈ K | R(γ) =∞};

• K∧
∞↓

def={α∧γ |∼ β | α |∼γ β ∈ K∞}∪{fml(UfR) |∼ ⊥}.
We construct the interpretation EK in the following way:

1. For every u ∈ UfR, if R(u) = i, then EK(u) = 〈f, i〉;
2. Let R′ be the the minimal ranked model of K∧

∞↓. For ev-
ery u ∈ U∞

R , if R′(u) = i, then EK(u) = 〈∞, i〉.
More informally, Definition 12 proceeds as follows. First

we want to partition the contexts that can be satisfied in some
plausible worlds from those with infinite rank. γ is not sat-
isfiable in a plausible valuation iff γ |∼> ⊥ is satisfied in
every model of K, that, by Corollary 3 and Corollary 1, jus-
tifies the use of the minimal ranked model R of the conjunc-
tive form K∧ for the identification of K∞. We then identify
the minimal configuration satisfying K, considering first the
finite ranks, and then the infinite ones. Corollary 3 tells us
that, w.r.t. the plausible contexts, the minimal configuration
is associated with the conjunctive normal form. Hence we
refer again to the minimal ranked model R of K∧ to decide
the configuration of the plausible valuations (Point 1). In or-
der to configure the infinite ranks, the knowledge base K∧

∞↓
considers all the counterfactual conditionals in K∞, and re-
quires all plausible valuations in R to have an infinite rank.
R′ defines the minimal configuration that satisfies the con-
ditionals in K∧

∞↓, and at Point 2 we put such a configuration
“on top” of the finite ranks to define EK.

We need to prove that EK is an epistemic model ofK, and
that it is the unique minimal epistemic model of K.

Let E be an epistemic interpretation. We can build an in-
terpretation E∞, the counterfactual shifting of E, as follows:

E∞
↓ (u) def=

{
〈f, i〉 if E(u) = 〈∞, i〉 with i <∞;
〈∞,∞〉 otherwise.

Intuitively, E∞
↓ simply shifts the infinite ranks in E to the

finite ranks. For E∞
↓ we can prove a lemma corresponding

to Corollary 3.

Lemma 1. For any epistemic interpretation E, if UfE ∩JγK =
∅ then E  α |∼γ β iff E∞

↓  α ∧ γ |∼ β.
Using Corollary 3 and Lemma 1, it is quite easy to prove

that EK is an epistemic model of K.
Proposition 4. Let K be a consistent CCKB, and let EK be
an epistemic interpretation built as in Definition 12. EK is
an epistemic model of K.

We proceed by showing that EK is actually the only min-
imal epistemic model of K.



Proposition 5. Let K be a consistent CCKB, and let EK be
an epistemic interpretation built as in Definition 12. EK is
the only minimal epistemic model of K.

Also in this case, the proof rests on Definition 12, Corol-
lary 3, and Lemma 1.

Example 4. The model of the CCKB K = {b |∼> f, p |∼p

¬f, d |∼d ¬f, d |∼> ⊥, (p ∧ ¬b) |∼(p∧¬b) ⊥, (d ∧
¬b) |∼(d∧¬b) ⊥} in Example 3, that is described in Figure 3,
is the minimal epistemic model of the KB, obtained follow-
ing Definition 12, whereK∞ = {d |∼d ¬f, (p∧¬b) |∼(p∧¬b)

⊥, (d ∧ ¬b) |∼(d∧¬b) ⊥}.
The minimal closure of K is defined in terms of this min-

imum epistemic model of K.

Definition 13 (Minimal Closure). α |∼γ β is minimally
entailed by a CCKB K, indicated as K |=m α |∼γ β, iff
EK  α |∼γ β, where EK is the minimal model of K. The
correspondent closure operation

Cm(K) def= {α |∼γ β | K |=m α |∼γ β}
is the minimal closure of K.

Example 5. We proceed from Example 4. Looking at the
model in Figure 3, we are able to check what is minimally
entailed. For every α |∼γ β ∈ K, K |=m α |∼γ β. In
particular, while K |=m d |∼> ⊥, we do not have K |=m
d |∼d ⊥, that is, it is possible to reason counterfactually
about dodos. From the point of view of the actual situation
(that is, in the context >) we can derive everything about
dodos, since they do not exist: we have both K |=m d |∼>
¬f and K |=m d |∼> f. However, we are able to reason
coherently about dodos once we assume a point of view in
which they would exist: we have in fact K |=m d |∼d ¬f, but
K 6|=m d |∼d f.

Definition 11 shows that the minimal epistemic model can
be defined using the minimal ranked models for two sets
of defeasible conditionals, K∧ and K∧

∞↓. That is, we do so
using the RC of each one. Now, there are decision proce-
dures for RC that fully rely on a series of propositional deci-
sion steps (Freund 1998; Casini and Straccia 2010). In short,
which contextual conditionals hold in the minimal epistemic
model can be decided by checking what holds in two min-
imal ranked models, and what holds in a minimal ranked
model can be decided using a procedure that relies on propo-
sitional steps. Starting from this, it is also possible to define
a decision procedure for |=m that fully relies on a series of
propositional decision steps, that we omit here due to space
limitations.

5 Related work
About the distinction between plausible and implausible
state of affairs, a similar distinction has been used by Booth
et al. (2014), where some pieces of information are consid-
ered credible while others are not.

The literature on the notion of context is vast, and sev-
eral formalisations and applications of it have been studied
across many areas within AI (Bikakis and Antoniou 2010;
Ghidini and Giunchiglia 2001; Homola and Serafini 2012;

Klarman and Gutiérrez-Basulto 2013; Pérez and Uzcátegui
1999).

The role of context in conditional-like statements has
been explored recently, in particular in defeasible reason-
ing over description logic ontologies and within semantic
frameworks that are closely related to ours. Britz and Varz-
inczak (2018; 2019), for example, have put forward a notion
of defeasible class inclusion parameterised by atomic roles.
Their semantics allows for multiple preference relations on
objects, which is more general than our single-preference
approach, and allows for objects to be compared in more
than one way. This makes normality (or typicality) context
dependent and gives more flexibility from a modelling per-
spective. Giordano and Gliozzi (2018) consider reasoning
about multiple aspects in defeasible description logics where
the notion of aspect (or context) is linked to concept names
(alias, atoms) also in a multi-preference semantics.

When compared with our framework, neither of the above
mentioned approaches allow for reasoning about objects that
are ‘forbidden’ by the background knowledge. In that re-
spect, our proposal is complementary to theirs and a contex-
tual form of class inclusion along the lines of the ternary |∼
here studied, with potential applications going beyond that
of defeasible reasoning in ontologies, is worth exploring as
future work.

6 Concluding remarks
The main contributions of the present paper can be sum-
marised as follows: (i) the motivation for and the provision
of a simple context-based form of conditional which is gen-
eral enough to be used in several application domains, as our
examples illustrate; (ii) an intuitive semantics which is based
on a semantic construction that has proven useful in the area
of belief change and that is more general and also more fine-
grained than the standard preferential semantics; (iii) an in-
vestigation of the properties that contextual conditionals sat-
isfy and of their appropriateness for knowledge representa-
tion and reasoning, in particular when reasoning about in-
formation that is incompatible with background knowledge,
and (iv) the definition of a form of entailment for contextual
conditional knowledge bases based on the widely-accepted
notion of RC, which is reducible to classical propositional
reasoning. Space considerations prevent us from presenting
an algorithm for deciding entailment within our framework.

Next steps are the extension of this approach to other log-
ics. Description Logics, for which RC has already been re-
formulated (Bonatti 2019; Casini and Straccia 2010; Gior-
dano et al. 2015), are the first candidates. We also plan to
investigate refinements of RC such as lexicographic clo-
sure (Lehmann 1995) and their variants (Casini et al. 2014;
Casini, Meyer, and Varzinczak 2019; Casini and Straccia
2013).
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