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Abstract

The question of conditional inference, i.e., of which condi-
tional sentences of the form “if α then, normally, β” should
follow from a set KB of such sentences, has been one of the
classic questions of AI, with several well-known solutions
proposed. Perhaps the most notable is the rational closure
construction of Lehmann and Magidor, under which the set
of inferred conditionals forms a rational consequence rela-
tion, i.e., satisfies all the rules of preferential reasoning, plus
Rational Monotonicity. However, this last named rule is not
universally accepted, and other researchers have advocated
working within the larger class of disjunctive consequence re-
lations, which satisfy the weaker requirement of Disjunctive
Rationality. While there are convincing arguments that the ra-
tional closure forms the “simplest” rational consequence re-
lation extending a given set of conditionals, the question of
what is the simplest disjunctive consequence relation has not
been explored. In this paper, we propose a solution to this
question and explore some of its properties.

Introduction
The question of conditional inference, i.e., of which condi-
tionals of the form “if α then, normally, β” should follow
from a set KB of such sentences, has been one of the clas-
sic questions of AI, with several well-known solutions pro-
posed (Goldszmidt, Morris, and Pearl 1993; Lehmann 1995;
Lehmann and Magidor 1992; Pearl 1990; Weydert 2003).
Since the work of Lehmann and colleagues in the early ’90s,
the so-called preferential approach to defeasible reasoning
has established itself as one of the most elegant frameworks
within which to answer this question. Central to the prefer-
ential approach is the notion of rational closure of a condi-
tional knowledge base, under which the set of inferred con-
ditionals forms a rational consequence relation, i.e., satisfies
all the rules of preferential reasoning, plus Rational Mono-
tonicity. One of the reasons for accepting rational closure
is the fact it delivers a venturous notion of entailment that
is conservative enough. Given that, rationality has for long
been accepted as the core baseline for any appropriate form
of non-monotonic entailment.

Very few have stood against this position, includ-
ing Makinson (1994), who considered Rational Monotonic-
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ity too strong and has briefly advocated the weaker rule
of Disjunctive Rationality instead, which says that if one
may draw a conclusion from a disjunction of premises, then
one should be able to draw this conclusion from at least
one of these premises taken alone. This rule is implied by
Rational Monotonicity and may still be desirable in cases
where the latter does not hold. Quite surprisingly, the de-
bate did not catch on, and, for lack of rivals of the same
stature, rational closure has since reigned alone as a role
model in non-monotonic inference. That used to be the case
until Rott (2014) reignited interest in Disjunctive Rational-
ity by considering interval models in connection with be-
lief contraction. Inspired by that, here we revisit disjunctive
consequence relations and introduce a suitable notion of dis-
junctive rational closure of a conditional knowledge base.

We start by giving a summary of the formal background
and of the rational closure construction. Then, in the fol-
lowing section, we make a case for weakening the rational-
ity requirement and propose a semantics with an accompa-
nying representation result for a weaker form of rationality
enforcing the rule of Disjunctive Rationality. After this we
investigate a notion of closure of (or entailment from) a con-
ditional knowledge base under Disjunctive Rationality. Our
analysis is in terms of a set of postulates, all reasonable at
first glance, that one can expect a suitable notion of closure
to satisfy. Following that we propose a specific construction
for the Disjunctive Rational Closure of a conditional knowl-
edge base and assess its suitability in the light of the postu-
lates put forward in the previous section. We conclude with
some remarks on future directions of investigation.

Formal preliminaries
Let P be a finite set of propositional atoms. We use p, q, . . .
as meta-variables for atoms. Propositional sentences are de-
noted by α, β, . . ., and are recursively defined as usual:
α ::= > | ⊥ | P | ¬α | α ∧ α | α ∨ α | α → α | α ↔ α.
We use L to denote the set of all propositional sentences.

With U def= {0, 1}P , we denote the set of all propositional
valuations, where 1 represents truth and 0 falsity. We use
v, u, . . ., possibly with primes, to denote valuations. We
shall sometimes represent valuations as sequences of atoms
(e.g., p) and barred atoms (e.g., p̄), where the presence of
an atom indicates that the atom is true (has the value 1) in
the valuation, while the presence of a barred atom indicates



that the atom is false (has the value 0) in the valuation. Thus,
for the logic generated from P = {b, f, p}, where the atoms
stand for, respectively, “being a bird”, “being a flying crea-
ture”, and “being a penguin”, the valuation in which b is
true, f is false, and p is true is represented as bf̄p.

Satisfaction of a sentence α ∈ L by a valuation v ∈ U is
defined in the usual way and is denoted by v 
 α. The set
of models of a sentence α is defined as JαK def= {v ∈ U | v 

α}. This notion is extended to a set of sentences X in the
usual way: JXK def=

⋂
α∈XJαK. We say a set of sentences X

(classically) entails α ∈ L, denoted X |= α, if JXK ⊆ JαK.

KLM-style rational defeasible consequence
Several approaches to non-monotonic reasoning have been
proposed in the literature over the past 40 years. The pref-
erential approach, initially put forward by Shoham (1988)
and subsequently developed by Kraus, Lehmann, and Magi-
dor (1990) in much depth (the reason why it became known
as the KLM-approach), has established itself as one of the
main references in the area. This stems from at least three
of its features: (i) its intuitive semantics and elegant proof-
theoretic characterisation; (ii) its generality w.r.t. alterna-
tive approaches to non-monotonic reasoning such as circum-
scription (McCarthy 1980), default logic (Reiter 1980), and
many others, and (iii) its formal links with AGM-style belief
revision (Gärdenfors and Makinson 1994). The fruitfulness
of the preferential approach is also witnessed by the great
deal of recent work extending it to languages that are more
expressive than that of propositional logic such as those of
description logics (Bonatti 2019; Britz, Meyer, and Varz-
inczak 2011; Giordano et al. 2007).

A defeasible consequence relation |∼ is a binary relation
on L. We say |∼ is preferential (Kraus, Lehmann, and Magi-
dor 1990) if it satisfies the rules:

(Ref) α |∼ α (LLE)
|= α↔ β, α |∼ γ

β |∼ γ

(And)
α |∼ β, α |∼ γ
α |∼ β ∧ γ

(Or)
α |∼ γ, β |∼ γ
α ∨ β |∼ γ

(RW)
α |∼ β, |= β → γ

α |∼ γ
(CM)

α |∼ β, α |∼ γ
α ∧ β |∼ γ

If, in addition to the preferential rules, the defeasible con-
sequence relation |∼ also satisfies the following Rational
Monotonicity rule (Lehmann and Magidor 1992), it is said
to be a rational consequence relation:

(RM)
α |∼ β, α 6|∼ ¬γ
α ∧ γ |∼ β

Rational consequence relations can be given an intuitive
semantics in terms of ranked interpretations.

Definition 1 A ranked interpretation R is a function
from U to N∪ {∞} satisfying the following convexity prop-
erty: for every i ∈ N, if R(u) = i, then, for every j s.t.
0 ≤ j < i, there is a u′ ∈ U for which R(u′) = j.

Given R, we call R(v) the rank of v w.r.t. R. The intu-
ition is that valuations with a lower rank are deemed more

normal (or typical) than those with a higher rank, while those
with an infinite rank are regarded as so atypical as to be ‘for-
bidden’. Given a ranked interpretation R, we therefore parti-
tion the set U into the set of plausible valuations (those with
finite rank), and that of implausible ones (with rank∞).

Figure 1 depicts an example of a ranked interpretation for
P = {b, f, p}. (Plausible valuations are associated with the
colour blue, whereas the implausible ones with red.)
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Figure 1: A ranked interpretation for P = {b, f, p}.

Given R and α ∈ L, with JαKR we denote the set of plau-
sible valuations satisfying α in R. With R(α)def= min{R(v) |
v ∈ JαKR} we denote the rank of α in R. By convention,
if JαKR = ∅, we let R(α) =∞. Defeasible consequence of
the form α |∼ β is then given a semantics in terms of ranked
interpretations in the following way: We say α |∼ β is sat-
isfied in R (denoted R 
 α |∼ β) if R(α) < R(α ∧ ¬β).
(Here we adopt Jaeger’s (1996) convention that ∞ < ∞
always holds.) Equivalently, α |∼ β iff β holds in all the
most normal α-valuations. If R 
 α |∼ β, we say R is a
ranked model of α |∼ β. In the example in Figure 1, we
have R 
 b |∼ f, R 
 ¬(p → b) |∼ ⊥, R 
 p |∼ ¬f,
R 6
 f |∼ b, and R 
 p ∧ ¬b |∼ b.

That this semantic characterisation of rational defeasi-
ble consequence is appropriate is a consequence of a rep-
resentation result linking the seven rationality rules above to
precisely the class of ranked interpretations (Lehmann and
Magidor 1992; Gärdenfors and Makinson 1994).

Rational closure
One can also view defeasible consequence as formalising
some form of (defeasible) conditional and bring it down
to the level of statements. Such was the stance adopted
by Lehmann and Magidor (1992). A conditional knowledge
baseKB is a finite set of statements of the form α |∼ β, with
α, β ∈ L. In knowledge bases, we shall abbreviate ¬α |∼ ⊥
with α. As an example, let KB = {b |∼ f, p→ b, p |∼ ¬f}.
Given a conditional knowledge base KB, a ranked model
of KB is a ranked interpretation satisfying all statements
in KB. The ranked interpretation in Figure 1 is a ranked
model of the above KB. An important reasoning task in this
setting is that of determining which conditionals follow from
a conditional knowledge base. Of course, even when inter-
preted as a conditional in (and under) a given knowledge
base KB, |∼ is expected to adhere to the KLM rules.

To be more precise, we can take the defeasible condition-
als in KB as the core elements of a defeasible consequence



relation |∼KB. By closing the latter under the preferential
rules (in the sense of exhaustively applying them), we get
a preferential extension of |∼KB. Since there can be more
than one such extension, the most cautious approach con-
sists in taking their intersection. The resulting set, which
also happens to be closed under the preferential rules, is
the preferential closure of |∼KB, which we denote by |∼KBPC .
When interpreted again as a conditional knowledge base,
the preferential closure of |∼KB contains all the condition-
als entailed by KB. The same process and definitions carry
over when one requires the defeasible consequence relations
also to be closed under the rule RM, in which case we talk
of rational extensions of |∼KB. Nevertheless, as pointed out
by Lehmann and Magidor (1992, Section 4.2), the intersec-
tion of all such rational extensions is not, in general, a ratio-
nal consequence relation: it coincides with preferential clo-
sure and therefore may fail RM. Among other things, this
means that the corresponding entailment relation, which is
called rank entailment and defined as KB |=R α |∼ β if ev-
ery ranked model of KB also satisfies α |∼ β, is monotonic
and therefore it falls short of being a suitable form of entail-
ment in a defeasible reasoning setting. As a result, several al-
ternative notions of entailment from conditional knowledge
bases have been explored in the literature on non-monotonic
reasoning (Booth et al. 2019; Casini, Meyer, and Varzinczak
2019; Giordano et al. 2012; Lehmann 1995; Weydert 2003),
with rational closure (Lehmann and Magidor 1992) com-
monly acknowledged as the gold standard in the matter.

Rational closure (RC) is a form of inferential closure ex-
tending the notion of rank entailment above. It formalises
the principle of presumption of typicality (Lehmann 1995,
p. 63), which, informally, specifies that a situation (in our
case, a valuation) should be assumed to be as typical as pos-
sible (w.r.t. background information in a knowledge base).

Assume a partial order �KB on all ranked models of a
knowledge base KB, defined as follows: R1 �KB R2, if,
for every v ∈ U , R1(v) ≤ R2(v). Giordano et al. (2015)
showed that there is a unique �KB-minimal element. The
rational closure of KB is defined in terms of this minimum
ranked model of KB.

Definition 2 Let KB be a conditional knowledge base, and
let RKBRC be the minimum element of �KB on ranked models
of KB. The rational closure of KB is the defeasible conse-
quence relation |∼KBRC

def= {α |∼ β | RKBRC 
 α |∼ β}.
As an example, Figure 1 shows the minimum ranked

model of KB = {b |∼ f, p→ b, p |∼ ¬f} w.r.t. �KB. Hence
we have that ¬f |∼ ¬b is in the rational closure of KB.

Rational closure is commonly viewed as the basic (al-
though not the only acceptable) form of non-monotonic en-
tailment, on which other, more venturous forms of entail-
ment can be and have been constructed (Booth et al. 2019;
Casini et al. 2014; Casini, Meyer, and Varzinczak 2019;
Kern-Isberner 2001; Lehmann 1995).

Disjunctive rationality and intervals
One may argue there are cases where Rational Monotonicity
is too strong a rule to enforce and for which a weaker de-
feasible consequence relation would suffice (Giordano et al.

2010; Makinson 1994). Nevertheless, doing away with ratio-
nality, i.e., sticking to the preferential rules only, is not par-
ticularly appropriate in a defeasible-reasoning context. In-
deed, as widely known in the literature, preferential systems
induce entailment relations that are monotonic (Lehmann
and Magidor 1992). In that respect, here we are interested
in defeasible consequence relations (or conditionals) that do
not necessarily satisfy RM while still encapsulating some
form of rationality. A case in point is that of the Disjunctive
Rationality (DR) rule (Kraus, Lehmann, and Magidor 1990):

(DR)
α ∨ β |∼ γ

α |∼ γ or β |∼ γ
Intuitively, DR says that if one may draw a conclusion from a
disjunction of premises, then one should be able to draw this
conclusion from at least one of these premises taken alone.
Kraus, Lehmann, and Magidor (1990) offered the following
example to illustrate the plausibility of DR: “If we do not
hold that if Peter comes to the party, it will be great and do
not hold that if Cathy comes to the party, it will be great, how
could we hold that if at least one of Peter or Cathy comes, the
party will be great?” A preferential consequence relation is
called disjunctive if it also satisfies DR. As it turns out, every
rational consequence relation is also disjunctive, but not the
other way round (Lehmann and Magidor 1992). Therefore,
DR is a weaker form of rationality, as its name suggests.
Given that, Disjunctive Rationality is indeed a suitable can-
didate for the type of investigation we have in mind.

A semantic characterisation of disjunctive consequence
relations was given by Freund (1993) based on a filtering
condition on the underlying ordering. Here, we provide an
alternative semantics in terms of interval-based interpreta-
tions. (We conjecture Freund’s semantic constructions and
ours can be shown to be equivalent in the finite case.)
Definition 3 An interval-based interpretation is a pair
I def= 〈L ,U 〉, where L and U are functions from U to
N ∪ {∞} s.t. for all u ∈ U , (i) L (u) ≤ U (u); (ii) if
L (u) = i or U (u) = i, then for every 0 ≤ j < i, there is u′
s.t. either L (u′) = j or U (u′) = j, and (iii) L (u) = ∞
iff U (u) = ∞. Given I = 〈L ,U 〉 and u ∈ U , L (u)
is the lower rank of u in I , and U (u) is the upper rank
of u in I . Hence, the pair (L (u),U (u)) is the interval
of u in I . We say u is more preferred than v in I , denoted
u ≺ v, if U (u) < L (v).

The order ≺ on U defined above via an interval-based in-
terpretation forms an interval order over the set of valuations
of finite lower/upper rank, i.e., it is a strict partial order that
additionally satisfies the interval condition: if u ≺ v and
u′ ≺ v′, then either u ≺ v′ or u′ ≺ v. Furthermore, ev-
ery interval order over any subset of U can be defined from
an interval-based interpretation in this way. See the work
of Fishburn (1985) for more details, and also that of Rott
(2014), who more recently explored interval orders in the
context of belief contraction.

Figure 2 illustrates an example of an interval-based inter-
pretation for P = {b, f, p}. Whenever the intervals associ-
ated to valuations u and v overlap, the intuition is that both
valuations are incomparable in I ; otherwise the leftmost
interval is seen as more preferred than the rightmost one.
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Figure 2: An interval-based interpretation for P = {b, f, p}.

The notions of plausible and implausible valuations carry
over to interval-based interpretations, only now the plau-
sible valuations are the ones with finite lower ranks (and
hence also finite upper ranks, by part (iii) of the previous
definition). With L (α) def= min{L (v) | v ∈ JαKI } and
U (α) def= min{U (v) | v ∈ JαKI } we denote, respectively,
the lower and the upper rank of α in I . By convention, if
JαKI = ∅, we let L (α) = U (α) = ∞. We say α |∼ β
is satisfied in I (denoted I 
 α |∼ β) if U (α) <
L (α ∧ ¬β). (Recall the convention that ∞ < ∞.) As an
example, in the interval-based interpretation of Figure 2, we
have I 
 b |∼ f, I 
 p |∼ ¬f, and I 6
 ¬f |∼ ¬p
(contrary to the ranked interpretation R in Figure 1, which
endorses the latter).

In the tradition of the KLM approach to defeasible reason-
ing, we define the defeasible consequence relation induced
by an interval-based interpretation: |∼I

def= {α |∼ β | I 

α |∼ β}. We can now state a KLM-style representation re-
sult establishing that our interval-based semantics is suitable
for characterising the class of disjunctive defeasible conse-
quence relations, which is a variant of Freund’s result:

Theorem 1 A defeasible consequence relation |∼ is dis-
junctive if and only if there is I such that |∼ = |∼I .

Towards disjunctive rational closure
Given a conditional knowledge base KB, the obvious def-
inition of closure under Disjunctive Rationality consists in
taking the intersection of all disjunctive extensions of |∼KB
(cf. the earlier subsection ‘Rational closure’). Let us call it
the disjunctive closure of |∼KB, with interval-based entail-
ment, defined as KB |=I α |∼ β if every interval-based
model of KB also satisfies α |∼ β, being its semantic coun-
terpart. The following result shows that the notion of dis-
junctive closure is stillborn, i.e., it does not even satisfy DR.

Proposition 1 Given KB, (i) the disjunctive closure of KB
coincides with its preferential closure |∼KBPC . (ii) There exists
KB such that |∼KBPC does not satisfy DR.

This result suggests the quest for a suitable definition of
entailment under DR should follow the footprints in the road
which led to the definition of rational closure. Such is our
contention here, and our research question is now: ‘Is there
a single best disjunctive relation extending the one induced
by a given conditional knowledge base KB?’

Let us denote by |∼KB∗ the special defeasible consequence
relation that we are looking for. Next, we consider some de-
sirable properties for the mapping from KB to |∼KB∗ , and
consider some simple examples in order to build intuitions.
In the following section, we will offer a concrete construc-
tion: the Disjunctive Rational Closure of KB.

Basic postulates
Starting with our most basic requirements, we put forward
the following two postulates:

Inclusion If α |∼ β ∈ KB, then α |∼KB∗ β.

D-Rationality |∼KB∗ is a disjunctive consequence relation.

Another reasonable property to require is for two equiva-
lent knowledge bases to yield exactly the same set of infer-
ences. This prompts the question of what it means to say that
two conditional knowledge bases are equivalent. One strong
notion of equivalence can be defined as follows.

Definition 4 For α, β, γ, δ ∈ L, α |∼ β is equivalent to
γ |∼ δ if |= (α↔ γ)∧(β ↔ δ).KB andKB′ are equivalent
(KB ≡ KB′), if there is a bijection f : KB −→ KB′ s.t.
each α |∼ β ∈ KB is equivalent to f(α |∼ β).

We can then express a weak form of syntax independence:

Equivalence If KB1 ≡ KB2, then |∼KB1
∗ =|∼KB2

∗ .

Weaker notions of equivalence between knowledge bases
are possible (see, e.g., (Beierle, Eichhorn, and Kern-Isberner
2017)), leading to stronger forms of syntax independence.

Finally, the last of our basic postulates requires rational
closure to be the upper bound on how venturous our conse-
quence relation should be.

Infra-Rationality |∼KB∗ ⊆ |∼KBRC .

Minimality postulates
Echoing a fundamental principle of reasoning in general and
of non-monotonic reasoning in particular is a property re-
quiring |∼KB∗ to contain only conditionals whose inferences
can be justified on the basis of KB. The first idea to achieve
this would be to set |∼KB∗ to be a set-theoretically minimal
disjunctive consequence relation that extends KB.

Example 1 Suppose the only knowledge we have is a sin-
gle conditional saying “birds normally fly”, i.e., KB =
{b |∼ f}. Assuming just two variables, we have a unique
⊆-minimal disjunctive consequence relation extending KB,
which is given by the interval-based interpretation I in Fig-
ure 3. Indeed, the conditional b |∼ f is saying precisely that
bf ≺ bf̄, but is telling us nothing with regard to the relative
typicality of the other two possible valuations, so any pair
of valuations other than this one is incomparable. For this
reason, we do not have ¬f |∼I ¬b here. Note the rational
closure in this example does endorse this latter conclusion,
thus providing evidence that the rational closure arguably
gives some unwarranted conclusions.

The next example shows there might be more than one⊆-
minimal extension of a KB-induced consequence relation.
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Figure 3: Interval-based model of KB = {b |∼ f}.

Example 2 Assume a COVID-19 inspired scenario with
only two propositions, m and s, standing for, respectively,
“you wear a mask” and “you observe social distancing”.
LetKB = {m |∼ s,¬m |∼ s}. There are two⊆-minimal dis-
junctive consequence relations extending |∼KB, correspond-
ing to the two interval-based interpretations I1 and I2

(from left to right) in Figure 4. The first conditional is saying
ms ≺ ms̄, while the second is saying m̄s ≺ m̄s̄. According
to the interval condition (see the paragraph following Defi-
nition 3), we must then have either ms ≺ m̄s̄ or m̄s ≺ ms̄.
The choice of which gives rise to I1 and I2, respectively.
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Figure 4: Left and center: Interval-based models of the two
⊆-minimal extensions of |∼KB, for KB = {m |∼ s,¬m |∼
s}. Right: Interval-based model of the union of the two ⊆-
minimal extensions of |∼KB.

In the light of Example 2, a question that arises is what
to do when one has more than a single ⊆-minimal extension
of |∼KB. Proposition 1 already tells us we cannot, in general,
take their intersection. However we might still expect the
following postulates as reasonable.

Vacuity If |∼KBPC is disjunctive, then |∼KB∗ = |∼KBPC .

Preferential Extension |∼KBPC⊆ |∼KB∗ .

(Note, given Proposition 1, the postulate above follows from
Inclusion and D-Rationality.)

Representation independence
What should the answer be in Example 2? Intuitively, faced
with the choice of which of the pairs ms ≺ m̄s̄ or m̄s ≺
ms̄ to include, and in the absence of any reason to prefer
either one, it seems the right thing to do is to include both,
and thereby let the interval-based interpretation depicted in
Figure 4 (right) yield the output. Notice that this will be the
same as the rational closure in this case.

We can express the desired symmetry requirement in
a syntactic form, using the notion of symbol transla-
tions (Marquis and Schwind 2014). A symbol translation
(on P) is a function σ : P −→ L. It can be extended to
a function on L by setting, for each sentence α, σ(α) to
be the sentence obtained from α by replacing each atom p

occurring in α by its image σ(p) throughout. Similarly,
given KB and σ(·), we denote by σ(KB) the knowledge
base obtained by replacing each conditional α |∼ β in KB
by σ(α) |∼ σ(β). A specific family of symbol translations
are the negation-swapping ones, i.e., when σ(p) ∈ {p,¬p},
for all p ∈ P . We propose the following postulate:

Negated Rep. Independence For any negation-swapping
symbol translation σ(·), α |∼KB∗ β iff σ(α) |∼σ(KB)∗ σ(β).

Example 3 Going back to Example 2, when modelling the
scenario, instead of using propositional atom m to denote
“you wear a mask” we could equally well have used it to
denote “you do not wear a mask”. Then the statement “if
you wear a mask then, normally, you do social distanc-
ing” would be modelled by ¬m |∼ s, etc. This boils down
to taking a negation-swapping symbol translation such that
σ(m) = ¬m and σ(s) = s. Then σ(KB) = {¬m |∼
s,¬¬m |∼ s}, and if we inferred, say, m ↔ s |∼ s from KB
then we would expect to infer ¬m↔ s |∼ s from σ(KB).

We note that Weydert (2003) and Jaeger (1996) also con-
sider representation independence in the context of condi-
tional inference, but in slightly different frameworks.

Cumulativity postulates
The idea behind a notion of Cumulativity in our setting is
that adding a conditional to the knowledge base that was
already inferred should not change anything in terms of its
consequences. We can split this into two ‘halves’.

Cautious Monotonicity If α |∼KB∗ β and KB′ = KB ∪
{α |∼ β}, then |∼KB∗ ⊆ |∼KB

′

∗ .

Cut If α |∼KB∗ β and KB′ = KB ∪ {α |∼ β}, then
|∼KB′

∗ ⊆ |∼KB∗ .

We conclude this section with an impossibility result con-
cerning a subset of the postulates we have mentioned so far.

Theorem 2 There is no method ∗ satisfying all of Inclusion,
D-Rationality, Equivalence, Vacuity, Cautious Monotonicity
and Negated Representation Independence.

Proof: Assume, for contradiction, that ∗ satisfies all the
listed properties. Suppose P = {m, s} and let KB be the
knowledge base from Example 2, i.e., {m |∼ s,¬m |∼ s}.
By Inclusion, m |∼KB∗ s and ¬m |∼KB∗ s. By D-Rationality,
we know |∼KB∗ satisfies the Or rule, so, from these two, we
get m∨¬m |∼KB∗ s which, in turn, yields (m↔ s)∨(¬m↔
s) |∼KB∗ s, by LLE. Applying DR to this means we have:

(m↔ s) |∼KB∗ s or (¬m↔ s) |∼KB∗ s (1)

Now, let σ(·) be the negation-swapping symbol transla-
tion mentioned in Example 3, i.e., σ(m) = ¬m, σ(s) = s,
so σ(KB) = {¬m |∼ s,¬¬m |∼ s}. Then, by Negated
Representation Independence, we have (m ↔ s) |∼KB∗ s

iff (¬m↔ s) |∼σ(KB)∗ s. But clearly we haveKB ≡ σ(KB),
so, by Equivalence, we obtain from this:

(m↔ s) |∼KB∗ s iff (¬m↔ s) |∼KB∗ s (2)

Putting (1) and (2) together gives us both (m↔ s) |∼KB∗ s
and (¬m↔ s) |∼KB∗ s. Now, let KB′ = KB ∪ {(m↔ s) |∼



s}. By Cautious Monotonicity, |∼KB∗ ⊆ |∼KB
′

∗ . In particular,
(¬m ↔ s) |∼KB′

∗ s. It can be checked that the preferential
closure ofKB′ is itself a disjunctive consequence relation. In
fact, it corresponds to the interval-based interpretation on the
left of Figure 4. Hence, by Vacuity, this particular interval-
based interpretation corresponds also to |∼KB′

∗ . But, we can
see from the figure (¬m↔ s) 6|∼KB′

∗ s—contradiction.
Theorem 2 is both surprising and disappointing, since all

the properties mentioned seem to be intuitive and desirable.
What can we do in the face of this result? Our strategy will
be to construct a method that can satisfy as many of these
properties as possible. We now provide our candidate for
such a method - the disjunctive rational closure.

A construction for disjunctive rational closure
In order to satisfy D-Rationality, we can focus on construct-
ing a special interval-based interpretation from KB and then
take all conditionals holding in this interpretation as the con-
sequences ofKB. In this section, we give our construction of
the interpretation I KBDC that gives us the disjunctive rational
closure of a conditional knowledge base.

To specify I KBDC , we will construct the pair 〈L KBDC ,U KBDC 〉
of functions specifying the lower and upper ranks for each
valuation. Since we aim to satisfy Infra-Rationality, our con-
struction method takes the rational closure RKBRC of KB as a
point of departure. Starting with the lower ranks, we simply
set, for all v ∈ U : L KBDC (v) def= RKBRC(v). That is, the lower
ranks are given by the rational closure.

For the upper ranks U KBDC , if we happen to have
L KBDC (v) = RKBRC(v) =∞, then, to conform with the defini-
tion of interval-based interpretation, it is clear that we must
set U KBDC (v) =∞ also. If L KBDC (v) 6=∞, then the construc-
tion of U KBDC (v) becomes a little more involved. We require
first the following definition.

Definition 5 Given a ranked interpretation R and a condi-
tional α |∼ β such that R 
 α |∼ β, we say a valuation v
verifies α |∼ β in R if v 
 α and R(v) = R(α).

Now, assuming L KBDC (v) 6= ∞, our construction of
U KBDC (v) splits into two cases, according to whether v veri-
fies any of the conditionals from KB in RKBRC or not.

Case 1: v does not verify any of the conditionals in KB
in RKBRC . In this case, we set: U KBDC (v) def= max{RKBRC(u) |
RKBRC(u) 6=∞}.

Case 2: v verifies at least one conditional from KB in RKBRC .
In this case, the idea is to extend the upper rank of v as
much as possible while still ensuring the constraints rep-
resented by KB are respected in the resulting I KBDC . If v
verifies α |∼ β in RKBRC , then this is achieved by setting
U KBDC (v) = RKBRC(α∧¬β)−1; or, if R(α∧¬β) =∞, then
again just set U KBDC (v) = max{RKBRC(u) | RKBRC(u) 6= ∞},
as in Case 1. We introduce now the following notation.
Given sentences α, β:

tKBRC(α, β)def=

{
RKBRC(α ∧ ¬β)− 1, if RKBRC(α ∧ ¬β) 6=∞
max{RKBRC(u) | RKBRC(u) 6=∞}, otherwise.

But we need to take care of the situation in which v pos-
sibly verifies more than one conditional from KB in RKBRC .
In order to ensure that all conditionals in KB will still be
satisfied, we need to take:

U KBDC (v) def= min{tKBRC(α, β) | (α |∼ β) ∈ KB and

v verifies α |∼ β in RKBRC}
So, summarising the two cases, we arrive at our final def-

inition of U KBDC :

U KBDC (v)def=



min{tKBRC(α, β) | α |∼ β ∈ KB and

v verifies α |∼ β in RKBRC},
if v verifies at least one conditional from

KB in RKBRC

max{RKBRC(u) | RKBRC(u) 6=∞}, otherwise.

Note that if v verifies α |∼ β ∈ KB in RKBRC , then
RKBRC(v) = RKBRC(α) ≤ RKBRC(α ∧ ¬β) − 1 = tKBRC(α, β).
Thus, in both cases above, we have L KBDC (v) ≤ U KBDC (v)
and so the pair L KBDC and U KBDC form a legitimate interval-
based interpretation.

We thus arrive at our final definition of the disjunctive
rational closure of a conditional knowledge base.
Definition 6 Let I KBDC

def= 〈L KBDC ,U KBDC 〉 be the interval-
based interpretation specified by L KBDC and U KBDC as above.
The disjunctive rational closure (hereafter DRC) of KB is
the defeasible consequence relation |∼KBDC

def= {α |∼ β |
I KBDC 
 α |∼ β}.

Let us revisit the examples we have seen throughout the
paper, to see what DRC gives.
Example 4 Going back to Example 1, with KB = {b |∼
f}, the rational closure yields RKBRC(bf) = RKBRC(b̄f) =
RKBRC(b̄f̄) = 0 and RKBRC(bf̄) = 1. Since L KBDC = RKBRC ,
this gives us the lower ranks for each valuation in I KBDC .
Turning to the upper ranks, the only valuation that verifies
the single conditional b |∼ f in KB is bf, thus U KBDC (bf) =
tKBRC(b, f) = RKBRC(b ∧ ¬f) − 1 = 1 − 1 = 0, meaning that
the interval assigned to bf is (0, 0). The other three valua-
tions all get assigned the same upper rank, which is just the
maximum finite rank occurring in RKBRC , which is 1. Thus
the interval assigned to bf̄ is (1, 1), while both the valua-
tions in J¬bK are assigned (0, 1). So I KBDC outputs exactly
the same interval-based interpretation depicted in Figure 3
which, recall, gives the unique ⊆-minimal disjunctive con-
sequence relation extending KB in this case.
Example 5 Returning to Example 2, with KB = {m |∼
s,¬m |∼ s}, the rational closure yields RKBRC(ms) =
RKBRC(m̄s) = 0 and RKBRC(ms̄) = RKBRC(m̄s̄) = 1, which
gives us the lower ranks. The valuation ms verifies only m |∼
s, and so U KBDC (ms) = tKBRC(m, s) = RKBRC(m∧¬s)−1 = 1−
1 = 0. Similarly, the valuation m̄s verifies only ¬m |∼ s and
so, by analogous reasoning, U KBDC (m̄s) = tKBRC(¬m, s) = 0.
So both valuations are assigned the interval (0, 0) by I KBDC .
The other two valuations, which verify neither conditional
in KB, are assigned (1, 1). In this case, I KBDC returns just
the rational closure of KB, as pictured in Figure 4 (right).



In both examples above, DRC returns the right answers.

Example 6 Consider KB = {b |∼ f, p → b, p |∼ ¬f}.
As previously mentioned, the rational closure RKBRC for this
KB is depicted in Figure 1. Since both of the valuations in
Jp ∧ ¬bK (in red at the top of the picture) are deemed im-
plausible (i.e., have rank∞), they are both assigned interval
(∞,∞). Focusing then on just the plausible valuations, the
only valuation verifying b |∼ f in RKBRC is bfp̄ (which veri-
fies no other conditional inKB), so U KBDC (bfp̄) = RKBRC(b∧
¬f) − 1 = 1 − 1 = 0. The only valuation verifying p |∼ ¬f
is bf̄p, so U KBDC (bf̄p) = RKBRC(p ∧ f) − 1 = 2 − 1 = 1. All
other plausible valuations get assigned as their upper rank
the maximum finite rank, which is 2. The resulting I KBDC is
the interval-based interpretation depicted in Figure 2.

Properties of the Disjunctive Rational Closure
We now turn to the question of which of the postulates from
the preceding section are satisfied by DRC. To begin with,
we obtain all of the basic postulates proposed there.

Proposition 2 DRC satisfies Inclusion, D-Rationality,
Equivalence and Infra-Rationality.

We remind the reader that, since Inclusion and D-
Rationality hold, DRC also satisfies Preferential Extension.
We can also confirm that DRC conforms with our Represen-
tation Independence requirement.

Proposition 3 DRC satisfies Negated Representation Inde-
pendence.

DRC essentially inherits this property from rational clo-
sure, which can also be shown to satisfy it. Although Jaeger
(1996) showed that rational closure conforms with his ver-
sion of Representation Independence, the relationship be-
tween his version and ours remains to be explored.

Now we look at the Cumulativity properties. It is known
from the work by Lehmann and Magidor (1992) that rational
closure satisfies both Cautious Monotonicity and Cut, and,
in fact, if α |∼KBRC β and KB′ = KB ∪ {α |∼ β}, then
RKBRC = RKB

′

RC . We can show the following for DRC.

Proposition 4 DRC satisfies Cautious Monotonicity, but
does not satisfy Cut.

The reason for the failure of Cut is that by adding a new
conditional α |∼ β to KB, even when that conditional is
already inferred by DRC, we give certain valuations (i.e.,
those in JαK) opportunity to verify one more conditional
from the knowledge base in RKB

′

RC . This leads, potentially,
to a corresponding decrease in their upper ranks U KBDC , lead-
ing in turn to more inferences being made available. This
behaviour reveals that DRC can be termed a base-driven ap-
proach, since the conditionals that are included explicitly in
the knowledge base have more influence compared to those
that are merely derived. However, adding an inferred con-
ditional will never lead to an increase in the upper ranks,
which means DRC does satisfy Cautious Monotonicity.

As we have seen in our impossibility result (Theorem 2),
satisfaction of Cautious Monotonicity, plus that of the other
properties proved earlier in this section, comes at the cost of

Vacuity, i.e., even if the preferential closure is a disjunctive
relation, the output may sanction extra conclusions.

Proposition 5 DRC does not satisfy Vacuity.

Concluding remarks
In this paper, we have set ourselves the task to revive in-
terest in weaker alternatives to Rational Monotonicity when
reasoning with conditional knowledge bases. We have stud-
ied the case of Disjunctive Rationality, a property already
known by the community from the work of Kraus et al. and
Freund in the early ’90s, which we have then coupled with a
semantics in terms of interval orders borrowed from a more
recent work by Rott in belief revision.

In our quest for a suitable form of entailment ensuring
Disjunctive Rationality, we started by putting forward a set
of postulates, all reasonable at first glance, characterising
its expected behaviour. As it turns out, not all of them can
be satisfied simultaneously, which suggests there might be
more than one answer to our research question. We have then
provided a construction of the disjunctive rational closure of
a conditional knowledge base, which infers a set of condi-
tionals intermediate between the preferential closure and the
rational closure. Regarding the computational complexity of
our construction, space considerations prevent us from pro-
viding the details. Nevertheless, we have checked that our
construction method runs in time that grows (singly) expo-
nentially with the size of the input, with rational closure of
the knowledge base computed offline.

Regarding the properties of DRC, the news is somewhat
mixed, with several basic postulates satisfied, as well as Cau-
tious Monotonicity, but with neither Cut nor Vacuity holding
in general. Regarding Cut, the reason for its failure seems
tied to the fact that DRC places special importance on the
conditionals that are explicitly written as part of the knowl-
edge base. In this regard it shares commonalities with other
base-driven approaches to defeasible inference such as the
lexicographic closure (Lehmann 1995). We conjecture that
a weaker version of Cut will still hold for us, according to
which the new conditional added α |∼ β is such that α ap-
pears as an antecedent of another conditional already inKB.

Regarding Vacuity, our impossibility result tells us that its
failure is unavoidable given the other, reasonable, behaviour
that we have shown DRC to exhibit. Essentially, when trying
to devise a method for conditional inference under Disjunc-
tive Rationality, we are faced with a choice between Vacuity
and Cautious Monotonicity, with DRC favouring the latter at
the expense of the former. It is possible, of course, to tweak
the current approach by treating the case when |∼KBPC hap-
pens to be a disjunctive relation separately, outputting the
preferential closure in this case, while returning DRC other-
wise. However the full ripple effects on the other properties
of |∼KBDC of making this manoeuvre remain to be worked out.

As for future work, we plan to investigate suitable defi-
nitions of a preference relation on the set of interval-based
interpretations. We hope our construction can be shown to
be the most preferred extension of the knowledge base ac-
cording to some intuitively defined preference relation, as
has been done in the rational case.
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