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1 INTRODUCTION
Description Logics (DLs) are widely accepted as an appropriate class
of knowledge representation languages to represent and reason about
ontologies [2]. Tools for performing standard reasoning tasks such
as satisfiability and consequence checking have grown increasingly
powerful and sophisticated in the last decade [3, 7]. In section 2 we
review the standard approach for the resolution of modelling errors
encountered in ontologies and propose the first steps in a new method
for resolving such errors in section 3. The method is based on the no-
tion of root justifications which we define and discuss. The approach
we describe is applicable to a wide class of DLs. We don’t provide
a comprehensive formal introduction to DLs, but rather point the
reader to the book by Baader et al. [2]. For our purposes a DL TBox
consists of a finite set of axioms specifying the terminological part
of an ontology. The Tbox includes (but need not be limited to) sub-
sumption statements of the form E v F where E and F are (possi-
bly complex) concept descriptions, built up from basic concepts. The
semantics of DLs is based on the classical model theory for first-
order logic. A DL interpretation I contains a non-empty domain ∆I

of elements and a mapping which interprets a basic concept A as a
subset AI of ∆I . For purposes of illustration we shall assume that
complex concepts can be constructed using negation (¬E) and con-
junction (E uF ), where ¬E is interpreted as ∆I \EI , and E uF is
interpreted as EI ∩F I . However, the inclusion of negation and con-
junction is not a requirement. In addition, there may be other ways
of constructing complex concepts.

An interpretation I is a model of a Tbox axiom E v F if and
only if EI ⊆ F I . Given a Tbox Γ, a subsumption statement E v F ,
and a basic concept A, (i) Γ is A-unsatisfiable if and only if for all
models I of Γ, AI = ∅, and (ii) E v F is a consequence of Γ if and
only if every model of all axioms in Γ is also a model of E v F .

2 ONTOLOGY DEBUGGING AND REPAIR
The A-unsatisfiability of Γ may be an indication that Γ contains a
modelling error. Concept unsatisfiability is a special case of identi-
fying unwanted axioms to eliminate modelling errors in ontologies.
In general, ontology construction is an iterative process. During each
iteration a potential ontology is constructed, a domain expert iden-
tifies unwanted consequences of the ontology, and (minimal) mod-
ifications are made to the ontology to ensure that unwanted conse-
quences are eliminated. Formally, we are provided with a Tbox Γ
and an unwanted axiom U with the requirement that Γ 2 U .

In order to eliminate an unwanted axiom it is useful to determine
the possible causes of the axiom being a consequence of Γ. A sub-
set J of Γ is a U -justification for Γ if and only if J � U and for
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every J ′ ⊂ J , J ′ 2 U [1]. The notion of a U -justification is a gener-
alisation of a minimal unsatisfiability preserving sub-Tbox (MUPS)
[6], where the latter applies to unsatisfiable concepts. We denote by
JΓ(U) the set of all U -justifications for Γ. As a running example in
this paper, consider the following four Tbox axioms:

1. C v A 2. C v ¬A 3. F v C u ¬A 4. F v C

Let Γ be the set containing the four axioms above. We represent Γ as
the set {1, 2, 3, 4} with the understanding that the natural numbers
contained in the set are indices, representing the four axioms. Using
the same notation, and taking the axiom F v ⊥ to be an unwanted
axiom, it can be verified that JΓ(F v ⊥) = {{1, 3}, {1, 2, 4}}.

Justifications are useful for a number of reasons. They allow for
the pinpointing of the causes of modelling errors. In our example
they show that axioms 1 and 3 may not both occur in the ontology
without having F v ⊥ as a consequence. Similarly axioms 1, 2,
and 4 may not all occur in the ontology without having F v ⊥ as
a consequence. In practice it is frequently the case that justifications
are significantly smaller than the Tbox as a whole.

Justifications can also be used to perform ontology repair. A sub-
set R of a Tbox Γ is a U -repair for Γ if and only if R 2 U , and for
every R′ such that R ⊂ R′ ⊆ Γ, R′ � U . We denote by RΓ(U)
the set of U -repairs for Γ. For our example it can be verified that
RΓ(F v ⊥) = {{2, 3, 4}, {1, 4}, {1, 2}}.

A subset D of Γ is a U -diagnosis for Γ if and only if D ∩ J 6= ∅
for every J ∈ JΓ(U). D is a minimal U -diagnosis for Γ if and
only if there is no U -diagnosis D′ for Γ such that D′ ⊂ D. The set
of minimal U -diagnoses for Γ, denoted by DΓ(U), can be used to
generate all the U -repairs for Γ as follows [5, 1, 6]:

Theorem 1 RΓ(U) = {Γ \D | D ∈ DΓ(U)}.

For our example DΓ(F v ⊥) = {{1}, {2, 3}, {3, 4}} from
which it can be verified, as we have seen, that RΓ(F v ⊥) =
{{2, 3, 4}, {1, 4}, {1, 2}}. There are efficient methods for generat-
ing U -repairs from the U -justifications, with Reiter’s hitting set al-
gorithm [5], and variants of it, probably being the best known.

So far we have dealt with a single unwanted axiom, but as the
discussion above indicates, it may well be that a domain expert iden-
tifies a set U of unwanted consequences. We are interested in (i) find-
ing the causes of the unwanted axioms, and (ii) repairing the Tbox Γ
by replacing it with a Tbox Γ′ with the requirement that Γ′ 2 U for
every U ∈ U . This is a generalisation of the idea of finding minimal
incoherence-preserving sub-TBoxes (MIPS) as a way of eliminating
all unsatisfiable concepts in a Tbox [6]. Finding the causes of the un-
wanted axioms is a matter of generating all U -justifications for every
U ∈ U . We denote the set of all such U -justifications byJΓ(U). That
is, JΓ(U) =

⋃
U∈U JΓ(U).

For our example, let U = {F v ⊥, C v ⊥}. We have al-
ready seen that JΓ(F v ⊥) = {{1, 3}, {1, 2, 4}}. It is easily
seen that JΓ(C v ⊥) = {{1, 2}} and therefore that JΓ(U) =
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{{1, 3}, {1, 2, 4}, {1, 2}}.
For Tbox repair our goal is to find the U-repairs for Γ. A subset R

of Γ is a U-repair for Γ if and only if R 2 U for every U ∈ U , and
for every R′ for which R ⊂ R′ ⊆ Γ, R′ � U for some U ∈ U . We
denote the set of U-repairs for Γ by RΓ(U). For our example it can
be verified thatRΓ(U) = {{2, 3, 4}, {1, 4}}.

An obvious method for computing Tbox repair is to eliminate un-
wanted axioms sequentially using existing methods for repair appro-
priate for dealing with a single unwanted axiom. However, the naı̈ve
approach to do so is not guaranteed to generate only U -repairs (i.e.,
elements of RΓ(U)): Suppose, in our example, that we decide to
eliminate F v ⊥ first (followed by the elimination of C v ⊥). As
we have seen on the previous page, the (F v ⊥)-repairs for Γ are
Γ1 = {2, 3, 4}, Γ2 = {1, 4}, and Γ3 = {1, 2}. Having eliminated
F v ⊥, we then move on to eliminating C v ⊥ from each Γi, for
i = 1, 2, 3. It is easy to see that Γ1 2 C v ⊥ and Γ2 2 C v ⊥,
but that Γ3 � C v ⊥. We therefore leave Γ1 and Γ2 unchanged,
but we need to obtain the (C v ⊥)-repairs for Γ3. It can be veri-
fied that the (C v ⊥)-repairs for Γ3 are {{2}} and {{1}}. We thus
have, as candidates for the U-repairs of Γ, the sets Γ1 = {2, 3, 4}
and Γ2 = {1, 4}, as well as the two (C v ⊥)-repairs of Γ3: {2}
and {1}. But observe that the two (C v ⊥)-repairs of Γ3 are not
U-repairs for Γ (we will refer to such sets as false repairs).

It can be shown that the process described above (i) will gener-
ate subsets of U-repairs for Γ only, and (ii) will generate at least all
U-repairs for Γ. From this it follows that false U-repairs can be iden-
tified and removed: they will all be strict subsets of the U-repairs
for Γ. Nevertheless, it would be useful, for the sake of efficiency, to
eliminate the generation of such false U-repairs altogether.

It is possible to do better than the naı̈ve approach described above
by making an informed choice about which unwanted axioms to
eliminate first. Suppose that, in our example, and in contrast to
what we did above, we choose to eliminate C v ⊥ first (followed
by the elimination of F v ⊥). It can be verified that one of the
(C v ⊥)-repairs for Γ is the set {2, 3, 4}, which also turns out to be
a (F v ⊥)-repair for Γ. The reason for it being a (F v ⊥)-repair for
Γ as well, is that one of the (C v ⊥)-justifications for Γ ({1, 2}) is
a strict subset of one of the (F v ⊥)-justifications for Γ ({1, 2, 4}).
In this case it will thus be more efficient to choose C v ⊥ as the
unwanted axiom to be eliminated first, since we get the elimination
of F v ⊥ for free.

This heuristic can be formalised by drawing a distinction between
root and derived unwanted axioms [4]. Formally, an unwanted ax-
iom U is a derived unwanted axiom for Γ if and only if there exists
a U -justification J for Γ and a U ′-justification J ′ for Γ such that
J ′ ⊂ J . U is a root unwanted axiom for Γ if and only if it is not
a derived unwanted axiom for Γ. The goal is to eliminate root un-
wanted axioms first with the expectation that in the process of doing
so, other unwanted axioms may be eliminated as well. In our ex-
ample F v ⊥ is a derived unwanted axiom for Γ since there is a
(F v ⊥)-justification for Γ ({1, 2, 4}) which is a strict superset of
a (C v ⊥)-justification for Γ ({1, 2}, while C v ⊥ is a root un-
wanted axiom for Γ. According to this heuristic we should therefore
choose to eliminate the unwanted axiom C v ⊥ first.

Unfortunately the use of root unwanted axioms does not elimi-
nate the possibility of generating false U -repairs. Suppose that, in
our example, we decide to eliminate C v ⊥ first because it is a root
unwanted axiom. It is easily verified that the (C v ⊥)-repairs for Γ
are Γ3 = {2, 3, 4} and Γ4 = {1, 3, 4}. Having eliminated C v ⊥,
we then proceed to eliminate the remaining unwanted axiom F v ⊥
from both Γ3 and Γ4. It is easily verified that Γ3 2 F v ⊥, but that

Γ4 � F v ⊥. So we leave Γ3 unchanged, but we need to generate
the (F v ⊥)-repairs of Γ4. They are {3, 4} and {1, 4}. The can-
didate U-repairs for Γ are therefore Γ3, {3, 4}, and {1, 4}. And as
can be verified, Γ3 and {1, 4} are both U-repairs for Γ, but {3, 4}
is not. As we have noted, it is possible to recognise {3, 4} as a false
U-repair since it is a subset of one of the U-repairs.

3 ROOT JUSTIFICATIONS
We now briefly discuss some preliminary work on an alternative ap-
proach to ontology repair. The key difference is to deal with un-
wanted axioms simultaneously, rather than sequentially. The basic
notion we need is that of a root justification. Given a Tbox Γ and
a set of unwanted axioms U , a set RJ is a U-root justification for
Γ if and only if it is a U -justification for Γ for some U ∈ U (i.e.
RJ ∈ J (U)), and there is no J ∈ J (U) such that J ⊂ RJ .
We denote the set of U-root justifications for Γ by RJ Γ(U). As
we have seen, for our example the set of all U-justifications is
JΓ(U) = {{1, 3}, {1, 2, 4}, {1, 2}}, and therefore the set of U-root
justifications for Γ is RJΓ(U) = {{1, 2}, {1, 3}}.

The significance of root justifications is that they can be used to
generate precisely the U-repairs for Γ, in the same way in which U -
repairs are generated from justifications for a single unwanted axiom.
A subset D of Γ is a U-diagnosis for Γ if and only if D∩RJ 6= ∅ for
every RJ ∈ RJ (U). D is a minimal U-diagnosis for Γ if and only
if there is no U-diagnosis D′ (for Γ) such that D′ ⊂ D. The set of
minimal U-diagnoses for Γ is denoted by DΓ(U). We then have the
following theorem showing that the U-repairs for Γ can be obtained
from the U-diagnoses for Γ:

Theorem 2 RΓ(U) = {Γ \D | D ∈ DΓ(U)}.

For our example we have already seen that RJΓ(U) =
{{1, 2}, {1, 3}}. From this it follows that DΓ(U) = {{1}, {2, 3}}
and therefore, as indicated by the theorem, that RΓ(U) =
{{2, 3, 4}, {1, 4}}.

We have implemented a Protégé 4 plugin3 for computing root jus-
tifications for sets of unwanted axioms (http://ksg.meraka.
org.za/˜kmoodley/protege). We are extending the plugin to
compute the U-repairs. The next step will be to compare this ap-
proach to ontology repair with both the naı̈ve sequential approach
described above, as well as the improved sequential method which
uses root unwanted axioms to determine the sequence in which un-
wanted axioms are eliminated.
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