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Conditionals are useful for modelling many forms of everyday human reasoning but 
are not always sufficiently expressive to represent the information we want to reason 
about. In this paper, we make a case for a form of situated conditional. By ‘situated’, we 
mean that there is a context, based on an agent’s beliefs and expectations, that works 
as background information in evaluating a conditional, and we allow such a context to 
vary. These conditionals are able to distinguish, for example, between expectations and 
counterfactuals. Formally, they are shown to generalise the conditional setting in the style 
of Kraus, Lehmann, and Magidor. We show that situated conditionals can be described 
in terms of a set of rationality postulates. We then propose an intuitive semantics for 
these conditionals and present a representation result which shows that our semantic 
construction corresponds exactly to the description in terms of postulates. With the 
semantics in place, we define a form of entailment for situated conditional knowledge 
bases, which we refer to as minimal closure. Finally, we proceed to show that it is possible 
to reduce the computation of minimal closure to a series of propositional entailment 
and satisfiability checks. While this is also the case for rational closure, it is somewhat 
surprising that the result carries over to minimal closure.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

Conditionals are at the heart of human everyday reasoning and play an important role in the logical formalisation 
of reasoning. They can usually be interpreted in many ways: as necessity [2,3], as presumption [4–6], normative [7,8], 
causal [9,10], probabilistic [11–13], counterfactual [14,15], and many others. Two very common interpretations that are also 
strongly interconnected are conditionals representing expectations (‘If it is a bird, then presumably it flies’) and conditionals 
representing counterfactuals (‘If Napoleon had won at Waterloo, the whole of Europe would be speaking French’). Although 
they are connected by virtue of being conditionals, the types of reasoning they aim to model differ somewhat. For instance, 
in the first example above, the premise of the conditional is consistent with what is believed, while in the second example, 
the premise is inconsistent with an agent’s beliefs. That this point is problematic can be made concrete with an extended 
version of the (admittedly overused) penguin example.

✩ This article is an extended and elaborated version of a paper presented at the 35th AAAI Conference on Artificial Intelligence (AAAI 2021) [1].
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Example 1.1. Suppose we know that birds usually fly, that penguins are birds that usually do not fly, that dodos were birds 
that usually did not fly, and that dodos do not exist anymore. As outlined in more detail in Example 3.1 later on, the standard 
preferential semantic approach to representing conditionals [5] is limited in that it allows for two forms of representation 
of an agent’s beliefs. On the one, it would be impossible to distinguish between atypical (exceptional) entities, such as 
penguins, and non-existing entities, such as dodos (they are equally exceptional). On the other, it would be possible to draw 
this type of distinction, but at the expense of being unable to reason coherently about counterfactuals—the agent would be 
forced to conclude anything from the (nowadays absurd) existence of dodos.

By ‘reasoning coherently’ about counterfactuals, we mean being able to derive new information in a non-trivial way, 
formalising reasoning patterns that can be recognised as ‘rational’. As mentioned in the above example and formally ex-
emplified in Example 3.1 later on, using the classical semantic solutions to reason simultaneously about what is actually 
plausible and what is counterfactually plausible has some strong limitations. For example, the formalism we use could force 
us to reason about counterfactuals in a trivial way, relying on the ex falso quodlibet principle. In this work, we introduce a 
logic of situated conditionals to overcome precisely this problem. By ‘situated’, we mean that there is a context, based on 
an agent’s beliefs and expectations, which works as background information in evaluating a conditional. This is particularly 
important when we consider counterfactual conditionals. The central insight is that adding an explicit notion of situation 
to standard conditionals allows for a refined semantics of this enriched language in which the problems described in Ex-
ample 1.1 can be dealt with adequately. It also allows us to reason coherently with counterfactual conditionals such as ‘Had 
Mauritius not been colonised, the dodo would not fly’.1 That is, the premise of a counterfactual can be inconsistent with 
the agent’s beliefs without lapsing into the triviality of the ex falso quodlibet principle. Moreover, it is possible to reason co-
herently with situated conditionals without knowing whether their premises are plausible or counterfactual. In the case of 
penguins and dodos, for example, it allows us to state that penguins usually do not fly in a situation where penguins exist 
and that dodos usually do not fly in a situation where dodos also exist while being unaware of whether or not penguins 
and dodos actually exist. At the same time, it remains possible to make classical statements specifying what necessarily 
holds (e.g., stating that penguins and dodos are birds as a necessary fact).

Counterfactual and defeasible reasoning have been important topics of research in knowledge representation and reason-
ing since the beginning of the AI endeavour [16,17]. Still, they have usually been formalised as the same form of conditional 
reasoning. While research on defeasible reasoning has always been quite active, the importance of counterfactuals in AI has 
become more apparent only recently, especially considering the role that counterfactuals play in causal reasoning [18] and in 
eXplainable AI (XAI) [19–21]. The increasing attention in the area of XAI to this topic means that a detailed formal analysis 
of counterfactuals and their associated reasoning systems is not just a timely research endeavour but a necessary one. In this 
context, we put forward a framework for managing both counterfactual reasoning and reasoning based on expectations—one 
that avoids some of the limitations associated with previous conditional approaches based on a preferential semantics.

The remainder of the paper is organised as follows. Section 2 outlines the formal background on propositional logic and 
on the preferential approach to conditionals on which our work is based. Section 3 is the heart of the paper. It describes the 
language of situated conditionals, furnishes it with an appropriate and intuitive semantics, and motivates the corresponding 
logic through examples, formal postulates, and a formal representation result. With the basics of the logic in place, Section 4
defines a form of entailment for it that is based on the well-known notion of rational closure [5]. As such, it plays a role 
similar to the one that rational closure plays for reasoning with conditionals—it is a basic form of entailment on which 
other forms of logical consequence can be constructed. Section 5 shows that, from a computational perspective, the version 
of entailment we propose in the previous section is reducible to classical propositional reasoning. Section 6 reviews related 
work, while Section 7 concludes and considers future avenues to explore. Long proofs are in the appendix.

2. Formal background

In this paper, we assume a finite set of propositional atoms P and use p, q, . . . as metavariables to denote its elements. 
Sentences of the underlying propositional language are denoted by α, β, . . ., and are built up from the atomic propositions 
and the standard Boolean connectives in the usual way. The set of all propositional sentences is denoted by L.

A valuation (alias world) is a function from P into {0, 1}. The set of all valuations is denoted U , and we use u, v, . . .
to denote its elements. Whenever it eases presentation, we represent valuations as sequences of atoms (e.g., p) and barred 
atoms (e.g., p), with the usual understanding. As an example, if P = {b, f, p}, with the atoms standing for, respectively, ‘being 
a bird’, ‘being a flying creature’, and ‘being a penguin’, then the valuation bfp conveys the idea that b is true, f is false, and p
is true.

With v � α we denote the fact that the valuation v satisfies the sentence α. Given α ∈ L, with �α� def= {v ∈ U | v � α} we 
denote its models. For X ⊆L, �X� def= ⋂

α∈X�α�. We say X ⊆L (classically) entails α ∈L, denoted X |= α, if �X� ⊆ �α�. Given 
a set of valuations V , sent(V ) indicates a sentence characterising the set V . That is, sent(V ) is a propositional sentence 
satisfied by all, and only, the valuations in V .

1 The extinction of dodos in the 17th century is considered to be a consequence of the colonisation of Mauritius.
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∞ pbf pbf

2 pbf

1 pbf pbf

0 pbf pbf pbf

Fig. 1. A ranked interpretation for P = {b, f,p} with both Uf
R and U∞

R nonempty.

2.1. KLM-style rational defeasible consequence

A defeasible consequence relation |∼ is a binary relation on L. Intuitively, the fact that (α, β) ∈|∼, which is usually repre-
sented as the statement α |∼ β , captures the idea that “β is a defeasible consequence of α”, or, in other words, that “if α, 
then usually (alias normally, or typically) β”. The relation |∼ is said to be preferential [4] if it satisfies the well-known KLM 
preferential postulates below:

(Ref) α |∼ α (LLE)
|= α ↔ β, α |∼ γ

β |∼ γ

(And)
α |∼ β, α |∼ γ

α |∼ β ∧ γ
(Or)

α |∼ γ , β |∼ γ

α ∨ β |∼ γ

(RW)
α |∼ β, |= β → γ

α |∼ γ
(CM)

α |∼ β, α |∼ γ

α ∧ γ |∼ β

If on top of the preferential postulates the relation |∼ also satisfies the following rational monotonicity postulate, then |∼
is said to be rational:

(RM)
α |∼ β, α �|∼¬γ

α ∧ γ |∼ β

The merits of these postulates have been addressed extensively in the literature [4,22], and we shall not repeat them 
here.

A suitable semantics for rational consequence relations is provided by ordered structures called ranked interpretations
(alternative semantics have also been proposed in the literature, in particular, Spohn’s ordinal conditional functions [23]).

Definition 2.1 (Ranked Interpretation). A ranked interpretation R is a total function from U to N ∪ {∞}, satisfying the 
following convexity property: for every u ∈ U and every i ∈N , if R(u) = i, then, for every j s.t. 0 ≤ j < i, there is a u′ ∈ U
for which R(u′) = j.

For a given ranked interpretation R and valuation v , we denote with R(v) the rank of v . The number R(v) indicates 
the degree of atypicality of v . So the valuations judged most typical are those with rank 0, while those with an infinite 
rank are deemed so atypical as to be seen as implausible. We can therefore partition the set U w.r.t. R into the set of 
plausible valuations Uf

R
def= {u ∈ U | R(u) ∈ N}, and implausible valuations U∞

R
def= U \ Uf

R . It goes without saying that Uf
R or 

U∞
R (but not both) can be empty. (Throughout the paper, we shall use the symbol f to refer to finiteness.) With �i�R , for 

i ∈N ∪ {∞}, we indicate all the valuations with rank i in R (we omit the subscript whenever it is clear from the context).
Assuming P = {b, f, p}, with the intuitions as above, Fig. 1 shows an example of a ranked interpretation.
Let R be a ranked interpretation and let α ∈L. Then �α�fR

def=Uf
R ∩ �α�, and min�α�fR

def={u ∈ �α�fR | R(u) ≤ R(v), for all 
v ∈ �α�fR}. A defeasible consequence relation α |∼ β can be given an intuitive semantics in terms of ranked interpretations 
as follows: α |∼ β is satisfied in R (denoted R � α |∼ β) if min�α�fR ⊆ �β�, with R referred to as a ranked model of α |∼ β . 
In the example in Fig. 1, we have R � b |∼ f, R � ¬(p → b) |∼ ⊥, R � p |∼ ¬f, R � f |∼ b, and R � p ∧ ¬b |∼ b. It is 
easily verified that R � ¬α |∼ ⊥ if and only if Uf

R ⊆ �α�. Hence we frequently abbreviate ¬α |∼ ⊥ as α. Two defeasible 
statements α |∼ β and γ |∼ δ are said to be rank equivalent if they have the same ranked models, i.e., if for every ranked 
interpretation R , R � α |∼ β if and only if R � γ |∼ δ.

The correspondence between rational consequence relations and ranked interpretations is formalised by the following 
representation result.

Theorem 2.1 (Lehmann & Magidor [5]; Gärdenfors & Makinson [24]). A defeasible consequence relation |∼ is rational iff there is a 
ranked interpretation R such that, for every pair of formulae α and β , α |∼ β iff R � α |∼ β .

2.2. Rational closure

It is possible to represent knowledge as a set of defeasible statements and to use such a set to infer other defeasible 
statements from it. This is the stance adopted by Lehmann and Magidor [5]. A conditional knowledge base C is a finite set of 
3
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defeasible statements of the form α |∼ β , with α, β ∈ L. As before, in knowledge bases, we shall also abbreviate ¬α |∼ ⊥
with α. As an example, let C = {b |∼ f, p → b, p |∼ ¬f}.

Given a conditional knowledge base C , a ranked model of C is a ranked interpretation satisfying all statements in C . As it 
turns out, the ranked interpretation in Fig. 1 is a ranked model of the above C . It is not hard to see that, in every ranked 
model of C , the valuations bfp and bfp are deemed implausible—note, however, that they are still possible from a logical 
point of view, which is the reason why they feature in all ranked interpretations.

A conditional knowledge base C is consistent if it has a ranked model R s.t. �0�R �= ∅. That is, C is consistent if it has a 
ranked model R that does not satisfy � |∼ ⊥. Two conditional knowledge bases are rank equivalent if they have exactly the 
same ranked models.

An important reasoning task in this setting is determining which conditionals follow from a conditional knowledge base. 
Of course, even when interpreted as a conditional in (and under) a given knowledge base C , |∼ is expected to adhere to 
the postulates of Section 2.1. Intuitively, that means whenever appropriate instantiations of the premises in a postulate are 
sanctioned by C , so should the suitable instantiation of its conclusion.

To be more precise, we can take the defeasible conditionals in C as the core elements of a defeasible consequence 
relation |∼C . By closing the latter under the preferential postulates (in the sense of exhaustively applying them as rules), 
we get a preferential extension of |∼C . Since there can be more than one such extension, the most cautious approach consists 
in taking their intersection. The resulting set, which also happens to be closed under the preferential postulates, is the 
preferential closure of |∼C , which we denote by |∼C

P C . It turns out that the preferential closure of |∼C contains exactly the 
conditionals entailed by C . (Hence, the notions of closure of and entailment from a conditional knowledge base are two 
sides of the same coin.)

The same process and definitions from above carry over when one requires the defeasible consequence relations also 
to be closed under the rule RM, in which case we talk of rational extensions of |∼C . Nevertheless, as pointed out by 
Lehmann and Magidor [5, Section 4.2], the intersection of all such rational extensions does not generally yield a rational 
consequence relation: it coincides with preferential closure and, therefore, may fail RM. Among other things, this means 
that the corresponding entailment relation, which is called rank entailment and defined as C |=R α |∼ β if every ranked 
model of C also satisfies α |∼ β , is monotonic (in that it is defined as a standard Tarskian entailment relation). Therefore 
rank entailment falls short of being a suitable form of entailment in a defeasible reasoning setting. As a result, several 
alternative notions of entailment from conditional knowledge bases have been explored in the literature on non-monotonic 
reasoning [25–31], with rational closure [5] commonly acknowledged as the ‘gold standard’ in the matter.

Rational closure (RC) is a form of inferential closure extending the notion of rank entailment above. It formalises the 
principle of presumption of typicality [25, p. 63], which, informally, specifies that a situation (in our case, a valuation) should 
be assumed to be as typical as possible (w.r.t. background information in a knowledge base).

Multiple equivalent characterisations of RC have been proposed [5,32,26,33,34], and here we rely on the one by Giordano 
and others [29]. Assume an ordering �C on all ranked models of a knowledge base C , which is defined as follows: R1 �C
R2, if, for every v ∈ U , R1(v) ≤ R2(v). Intuitively, ranked models lower down in the ordering correspond to descriptions 
of the world in which the typicality of each situation (valuation) is maximised. It is easy to see that �C is a weak partial 
order. Giordano et al. [29] showed that there is a unique �C -minimal element. The rational closure of C is defined in terms 
of this minimum ranked model of C .

Definition 2.2 (Rational closure). Let C be a conditional knowledge base, and let RC
RC be the minimum element of �C on 

ranked models of C . The rational closure of C is the defeasible consequence relation |∼C
RC

def= {α |∼ β | RC
RC � α |∼ β}.

As an example, Fig. 1 shows the minimum ranked model of C = {b |∼ f, p → b, p |∼ ¬f} w.r.t. �C . Hence we have that 
¬f |∼ ¬b is in the rational closure of C (but note it is not in the preferential closure of C).

Observe that there are two levels of typicality at work for rational closure, namely within ranked models of C , where 
valuations lower down are viewed as more typical, but also between ranked models of C , where ranked models lower down 
in the ordering are viewed as more typical. The most typical ranked model RC

RC is the one in which valuations are as typical 
as C allows them to be (the principle of presumption of typicality we alluded to above).

Rational closure is commonly viewed as the basic (although certainly not the only acceptable) form of non-monotonic 
entailment, on which other, more venturous forms can be and have been constructed [25,35,36,30,31].

3. Situated conditionals

We now turn to the heart of the paper, the introduction of a logic-based formalism for the specification of and reasoning 
with situated conditionals. For a more detailed motivation, let us consider a more technical version of the penguin-dodo 
example introduced in Section 1.

Example 3.1. We know that birds usually fly (b |∼ f), and that penguins are birds (p → b) that usually do not fly (p |∼ ¬f). 
Also, we know that dodos were birds (d → b) that usually did not fly (d |∼ ¬f), and that dodos do not exist anymore. Using 
the standard ranked semantics (Definition 2.1), we have two ways of modelling the information above.
4
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∞ U \ (�0� ∪ �1� ∪ �2�)

2 pdbf pdbf pdbf

1 pdbf pdbf pdbf pdbf

0 pdbf pdbf pdbf

∞ U \ (�0� ∪ �1� ∪ �2�)

2 pdbf

1 pdbf pdbf

0 pdbf pdbf pdbf

Fig. 2. Left: minimal ranked model of the KB in Example 3.1 satisfying � |∼ ¬d. Right: minimal ranked model of the KB expanded with d |∼ ⊥.

〈∞,∞〉 �p ∧ ¬b� ∪ �d ∧ ¬b�

〈∞,1〉 pdbf pdbf

〈∞,0〉 pdbf pdbf

〈f,2〉 pdbf

〈f,1〉 pdbf pdbf

〈f,0〉 pdbf pdbf pdbf

Fig. 3. Epistemic interpretation for P = {b,d, f,p}.

The first option is to formalise what an agent believes by referring to the valuations with rank 0 in a ranked inter-
pretation. That is, the agent believes α is true if and only if � |∼ α holds. In such a case, � |∼ ¬d means that the agent 
believes that dodos do not exist. The minimal model for this conditional knowledge base is shown in Fig. 2 (left). The main 
limitation of this representation is that all exceptional entities have the same status as dodos since they cannot be satisfied 
at rank 0. Hence, one of the consequences of the agent’s beliefs is the statement � |∼ ¬p, just as we have � |∼ ¬d, and, as 
a result, we are not able to distinguish between the status of the dodos (they do not exist anymore) and the status of the 
penguins (they do exist and are simply exceptional birds).

The second option is to represent what an agent believes in terms of all valuations with finite ranks. That is, an agent 
believes α to hold if and only if ¬α |∼ ⊥ holds. If dodos do not exist, we add the statement d |∼ ⊥. The minimal model 
for this case is depicted in Fig. 2 (right). Here we can distinguish between what is considered false (dodos exist) and what 
is exceptional (penguins), but we are unable to reason coherently about counterfactuals since from d |∼ ⊥ we can conclude 
anything about dodos (via |= ⊥ → α and RW, for any α ∈L).

A situated conditional (SC for short) is a statement of the form α |∼γ β , with α, β, γ ∈ L, which is read as ‘given the 
situation γ , β usually holds on condition that α holds’. Formally, a situated conditional |∼ is a ternary relation on L. 
We shall write α |∼γ β as an abbreviation for 〈α, β, γ 〉 ∈ |∼. To provide a suitable semantics for SCs, we define a refined 
version of the ranked interpretations of Section 2 that we refer to as epistemic interpretations. Following the provision of the 
semantics, we illustrate it with a representative example in Example 3.2.

A ranked interpretation can differentiate between plausible valuations (those in Uf
R ) but not between implausible ones 

(those in U∞
R ). In contrast, an epistemic interpretation can also tell implausible valuations apart. We thus distinguish be-

tween two classes of valuations: plausible valuations with a finite rank, and implausible valuations with an infinite rank. 
Within implausible valuations, we further distinguish between those considered as possible and those that would be impos-
sible. This is formalised by assigning to each valuation u a tuple of the form 〈f, i〉, where i ∈N , or 〈∞, i〉, where i ∈N∪{∞}. 
The f in 〈f, i〉 is meant to indicate that u has a finite rank, while the ∞ in 〈∞, i〉 is intended to denote that u has an infinite 
rank, where finite ranks are viewed as more typical than infinite ranks. Implausible valuations that are considered possible 
have an infinite rank 〈∞, i〉, where i ∈N , while those considered impossible have the infinite rank 〈∞, ∞〉, where 〈∞, ∞〉
is taken to be less expected than any of the other infinite ranks.

To capture this formally, let Rk def= {〈f, i〉 | i ∈ N} ∪ {〈∞, i〉 | i ∈ N ∪ {∞}} denote henceforth the set of all possible ranks. 
We define the total ordering � over Rk as follows: 〈x1, y1〉 � 〈x2, y2〉 if x1 = x2 and y1 ≤ y2, or x1 = f and x2 = ∞, where 
i < ∞ for all i ∈N .

Definition 3.1 (Epistemic Interpretation). An epistemic interpretation E is a total function from U to Rk for which the fol-
lowing convexity property holds: (i) for every u ∈ U and every i ∈N , if E (u) = 〈f, i〉, then, for all j s.t. 0 ≤ j < i, there is a 
u j ∈ U s.t. E (u j) = 〈f, j〉, and (ii) for every u ∈ U and every i ∈ N , if E (u) = 〈∞, i〉, then, for all j s.t. 0 ≤ j < i, there is a 
u j ∈ U s.t. E (u j) = 〈∞, j〉.

Observe that the version of convexity satisfied by epistemic interpretations is a straightforward extension of the convexity 
of ranked interpretations (Definition 2.1). Fig. 3 depicts an epistemic interpretation in our running example.

Casini et al. [37] have a similar definition of epistemic interpretations, but they do not allow for the rank 〈∞, ∞〉.
We let Uf

E
def= {u ∈ U | E (u) = 〈f, i〉, for some i ∈ N} and U∞

E
def= {u ∈ U | E (u) = 〈∞, i〉, for some i ∈ N}. Note that U∞

E
does not contain valuations with rank 〈∞, ∞〉. We let min�α�E

def= {u ∈ �α� | E (u) � E (v), for all v ∈ �α�}, min�α�fE
def= {u ∈

�α� ∩Uf
E | E (u) � E (v), for all v ∈ �α� ∩Uf

E }, and min�α�∞
E

def= {u ∈ �α� ∩U∞
E | E (u) � E (v), for all v ∈ �α� ∩U∞

E }.
Observe that epistemic interpretations are allowed to have no plausible valuations (Uf

E = ∅), as well as no implausible 
valuations that are possible (U∞ = ∅). This means it is possible that E (u) = 〈∞, ∞〉 for all u ∈ U , in which case E � α |∼γ β , 
E

5
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for all α, β, γ (cf. Definition 3.2 below). Epistemic interpretations also allow for cases where all valuations are possible (that 
is, either plausible or implausible but possible). This corresponds to the case where an epistemic interpretation does not 
have any valuation with rank 〈∞, ∞〉.

Armed with the notion of epistemic interpretation, we can provide an intuitive semantics to situated conditionals.

Definition 3.2 (Satisfaction and generation of situated conditionals). Let E be an epistemic interpretation and let α, β, γ ∈ L. 
We say E satisfies α |∼γ β , denoted as E � α |∼γ β and often abbreviated as α |∼E

γ β , if
{

min�α ∧ γ �fE ⊆ �β�, if �γ � ∩ Uf
E �= ∅;

min�α ∧ γ �∞E ⊆ �β�, otherwise.

We say that E generates the situated conditional |∼ if, for every α, β, γ ∈L, 〈α, β, γ 〉 ∈|∼ iff α |∼E
γ β .

Intuitively, the satisfaction of situated conditionals works as follows. If the situation γ is compatible with the plausible 
part of E (the valuations in Uf

E ), then α |∼γ β holds if the most typical plausible models of α ∧ γ are also models of β . On 
the other hand, if the situation γ is not compatible with the plausible part of E , i.e., all models of γ have an infinite rank, 
then α |∼γ β holds if the most typical implausible (but possible) models of α ∧ γ are also models of β .

An immediate corollary of Definition 3.2 is that the rational conditionals defined in terms of ranked interpretations can 
be simulated with SCs by setting the situation to �.

Definition 3.3 (Extracted ranked interpretation). For an epistemic interpretation E , we define the ranked interpretation RE

extracted from E as follows: for u ∈ Uf
E , RE (u) = i, where E (u) = 〈f, i〉, and RE (u) = ∞ for u ∈ U \Uf

E .

Corollary 3.1. Let E be an epistemic interpretation. Then RE � α |∼ β iff E � α |∼� β .

Proof. Assume E � α |∼� β . Then, by definition, we have min�α∧��fE ⊆ �β� if Uf
E �= ∅, and min�α∧��∞

E ⊆ �β� otherwise. 
If the former is the case, then, by the construction of RE , we have min�α�f

RE ⊆ �β�, and therefore RE � α |∼ β . If, 
instead, the latter holds, then �α�fE = ∅, from which it follows that �α�f

RE = ∅, and therefore RE � α |∼ β . For the other 
direction, assume RE � α |∼ β . If �α�f

RE = ∅, then, from the construction of RE , we have �α�fE = ∅, from which we get 
E � α |∼� β . If �α�f

RE �= ∅, then, since min�α�f
RE ⊆ �β�, we must have min�α�fE ⊆ �β�, too. From the latter it follows that 

min�α ∧ ��fE ⊆ �β�, and therefore E � α |∼� β . �
The principal advantage of situated conditionals and their associated enriched semantics in terms of epistemic interpre-

tations is that they allow us to represent different degrees of epistemic involvement, with the finite ranks (the plausible 
valuations) representing the expectations of an agent. So � |∼� α being satisfied in E indicates that α is expected. What 
an agent believes to be true corresponds to what is true in all the valuations with finite ranks. That is, the agent believes 
α to be true if and only if E � ¬α |∼� ⊥, and we will abbreviate ¬α |∼� ⊥ with α, extending to epistemic interpretations 
the convention introduced above for ranked interpretations (see Section 2.2).

Another advantage of our framework is that it also allows for reasoning counterfactual: we can express that dodos would 
not fly if they existed in a coherent way. We can talk about dodos in a counterfactual situation or context, for example, 
assuming that Mauritius had never been colonised (¬mc): the conditional d |∼¬mc ¬f is read as ‘In the situation of Mauritius 
not having been colonised, the dodo would not fly’. Importantly, we can reason coherently with a situated conditional, even 
when not knowing whether its premises are plausible or counterfactual. To do so, it is sufficient to introduce statements 
of the form α |∼α β . If α is plausible, this conditional is evaluated in the context of the finite ranks, exactly as if α |∼� β

were being evaluated. On the other hand, if α |∼� ⊥ holds, α |∼α β will be evaluated referring to the infinite ranks. So, 
in the case of penguins and dodos, p |∼p ¬f and d |∼d ¬f express the information that penguins usually do not fly in the 
situation of penguins existing, and that dodos usually do not fly in the situation of dodos existing, regardless of whether 
the agent is aware of penguins or dodos existing or not. In contrast, a statement such as d |∼� ¬f cannot be used to reason 
counterfactually about dodos, once we are aware that they do not exist (that is, d |∼� ⊥): given the latter, once we consider 
all the valuations satisfying � (that is, all the valuations), we have to evaluate every defeasible conditional d |∼ α (for any α) 
looking at the valuations with finite ranks. In all such valuations, the sentence d is not satisfied; hence any SC d |∼� α, for 
any α, would be satisfied. Also, note that it is still possible to impose that something necessarily holds, both in plausible and 
counterfactual situations. The conditional α |∼α ⊥ holds only in epistemic interpretations in which all valuations satisfying 
α have 〈∞, ∞〉 as their rank. The following example illustrates these claims more concretely.

Example 3.2. Consider the following rephrasing of the statements in Example 3.1. ‘Birds usually fly’ becomes b |∼� f. Defea-
sible information about penguins and dodos is modelled using p |∼p ¬f and d |∼d ¬f. Given that dodos don’t exist anymore, 
the statement d |∼� ⊥ leaves open the existence of dodos in the infinite ranks, which allow for coherent reasoning under 
the assumption that dodos exist (the situation d). Moreover, information such as dodos and penguins necessarily being birds 
6
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can be modelled by the conditionals p ∧ ¬b |∼p∧¬b ⊥ and d ∧ ¬b |∼d∧¬b ⊥, relegating the valuations in �p ∧ ¬b� ∪ �d ∧ ¬b�
to the rank 〈∞, ∞〉. Fig. 3 (below Definition 3.1) shows a model of these statements. (We shall address how certain models 
of given conditionals are excluded from the picture in Section 4, where we define a suitable form of entailment from a set 
of situated conditionals.)

Next, we consider the class of situated conditionals from the perspective of a list of situated rationality postulates in the 
KLM style. We start with the following ones:

(Ref) α |∼γ α (LLE)
|= α ↔ β, α |∼γ δ

β |∼γ δ

(And)
α |∼γ β, α |∼γ δ

α |∼γ β ∧ δ
(Or)

α |∼γ δ, β |∼γ δ

α ∨ β |∼γ δ

(RW)
α |∼γ β, |= β → δ

α |∼γ δ
(RM)

α |∼γ β, α �|∼γ ¬δ

α ∧ δ |∼γ β

Observe that they correspond exactly to the original KLM postulates, except that the notion of situation has been added. 
As for α and β , the γ occurring in the postulates should be viewed as a meta-variable ranging over L.

Definition 3.4 (Basic situated conditional). An SC |∼ is a basic situated conditional (BSC, for short) if it satisfies the situated 
rationality postulates.

An immediate corollary of this definition is that for a BSC with the situation γ fixed, |∼γ is a rational conditional. We 
then get the following result.

Theorem 3.1. Every epistemic interpretation generates a BSC (see Definition 3.2). Nevertheless, the converse does not hold, i.e., some 
BSCs cannot be generated by any epistemic state.

The reason why the converse of Theorem 3.1 does not hold is that the structure of a BSC is completely independent of 
the situation γ referred to in the situated KLM postulates. As a very simple instance of this problem, observe that BSCs are 
not even syntax-independent w.r.t. the situation. That is, we may have α |∼γ β but α �|∼δβ , where γ ≡ δ. To put it another 
way, a BSC is simply a rational defeasible consequence relation with the situation playing no role in determining the BSC’s 
structure. To remedy this, we require BSCs to satisfy the following additional postulates:

(Inc)
α |∼γ β

α ∧ γ |∼� β
(Vac)

��|∼�¬γ , α ∧ γ |∼� β

α |∼γ β

(Ext)
γ ≡ δ

α |∼γ β iff α |∼δ β
(SupExp)

α |∼γ ∧δ β

α ∧ γ |∼δ β

(SubExp)
δ |∼� ⊥, α ∧ γ |∼δ β

α |∼γ ∧δ β

We shall refer to these as the situated AGM postulates for reasons to be outlined below.

Definition 3.5 (Full situated conditional). A BSC is a full SC (FSC) if it satisfies the situated AGM postulates.

One way to interpret the addition of a situation to conditionals, from a technical perspective, is to think of it as similar 
to belief revision. That is, α |∼γ β can be thought of as stating that if a revision with γ has taken place, then β will hold 
on condition that α holds. With this view of situated conditionals, the situated AGM postulates above are seen as versions 
of the AGM postulates for belief revision [38]. The names of these postulates were chosen with the names of their AGM 
analogues in mind. The situated AGM postulates can be motivated intuitively as follows.

Together, Inc and Vac require that when the situation (or revision with) γ is compatible with what is currently plausible, 
then a conditional w.r.t. the situation γ (a ‘revison by’ γ ) is the same as a conditional where the situation is � (where there 
is no ‘revision’ at all), but with γ added to the premise of the conditional. Ext ensures that BSCs are syntax-independent of 
the situation. Finally, SupExp and SubExp together require that if the situation δ is implausible (that is, the ‘revision’ with δ

is incompatible with what is plausible), then a conditional w.r.t. the situation γ ∧ δ (a ‘revision by’ γ ∧ δ) is the same as a 
conditional where the situation (or ‘revision’) is δ, but with γ added to the premise of the conditional.

It turns out that FSCs are characterised by epistemic interpretations, resulting in the following representation result.

Theorem 3.2. Every epistemic interpretation generates an FSC. Every FSC can be generated by an epistemic interpretation.
7
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The AGM-savvy reader may have noticed that the following two obvious analogues of the suite of situated AGM postu-
lates are missing from our list above.

(Succ) α |∼γ γ (Cons) � |∼γ ⊥ iff γ ≡ ⊥
Succ requires situations to matter: a ‘revision’ by γ will always be successful. Cons states that we obtain an inconsistency 

only when the situation is inconsistent.
It turns out that Succ holds for epistemic interpretations: it follows from the combination of the situated KLM and AGM 

postulates. On the other hand, just one direction of Cons holds.

Corollary 3.2. Every FSC satisfies Succ, but there are FSCs for which Cons does not hold. However, the right-to-left direction of Cons 
holds: If γ ≡ ⊥, then � |∼γ ⊥.

Proof. To prove that Succ holds, it suffices, by Theorem 3.1, to show that E � α |∼γ γ for all epistemic interpretations E
and all α, γ . To see that this holds, observe that �α ∧ γ �E ⊆ �γ �E .

To prove that Cons does not hold, it suffices, by Theorem 3.1, to show that there is an epistemic interpretation E such 
that E � � |∼γ ⊥ but γ �≡ ⊥. To construct such an E , let Uf

E = U∞
E = ∅ (and so E (u) = 〈∞, ∞〉 for all u ∈ U). It is easy to 

see that by picking any γ s.t. γ �≡ ⊥ the result follows.
To prove that if γ ≡ ⊥ then � |∼γ ⊥, note that, by Definition 3.2 and Theorem 3.2, � |∼γ ⊥ iff min�� ∧ γ �∞

E ⊆ �⊥�
whenever γ ≡ ⊥, which holds since min�� ∧ γ �∞

E = �⊥� = ∅. �
We conclude this section by considering the following two properties.

(Incons) α |∼⊥ β (Cond) If γ �|∼�⊥, then α ∧ γ |∼� β iff α |∼γ β

Incons requires that all conditionals hold when the situation is inconsistent, while Cond requires that conditionals w.r.t.
the situation γ be equivalent to the same conditional with γ added to the premise and with a tautologous situation (i.e., 
the situation is �), provided that γ is not inconsistent w.r.t. the tautologous situation.

Proposition 3.1. Every FSC satisfies Incons and Cond.

Proof. To prove that Incons holds, it suffices, by Theorem 3.1, to show that E � α |∼⊥ β for all epistemic interpretations E , 
and all α, β . To see that this holds, observe that �α ∧ ⊥�E = ∅.

To prove that Cond holds, it suffices, by Theorem 3.1, to show that if E � γ |∼� ⊥, then E � α ∧ γ |∼� β iff E �
α |∼γ β for all epistemic interpretations E , and all α, β, γ . So, suppose that E � γ |∼� ⊥. By Definition 3.2, this means 
that Uf

E ∩ �γ � �= ∅ and also that Uf
E ∩ ��� �= ∅. From this, by Definition 3.2, we need to show that �α ∧ γ ∧ ��fE ⊆ �β� iff 

�α ∧ γ �fE ⊆ �β� for the result to hold, which follows immediately. �
4. Reasoning with situated conditionals

The previous section provides a framework for characterising the class of full situated conditionals in terms of epistemic 
interpretations. In this section, we move to an investigation of how we can reason within this framework. More precisely, 
the question of interest is the following: given a finite set of situated conditionals, or a situated conditional knowledge base
(SCKB) KB, which situated conditionals can be said to be entailed from it? That is, for example, given an SCKB consisting 
of the conditionals ‘birds typically fly’ (b |∼� f), ‘penguins are birds’ (p ∧ ¬b |∼p∧¬b ⊥), ‘emperor penguins are penguins’ 
(ep ∧ ¬p |∼ep∧¬p ⊥), and ‘penguins typically do not fly’ (p |∼p ¬f), should or should we not derive that emperor penguins 
typically do not fly (ep |∼ep ¬f)? In a non-monotonic framework, it is generally not appropriate to consider entailment 
relations that are Tarskian in nature, i.e., that determine the consequences of a knowledge base by looking at what holds 
in all the models of the knowledge base. This is because such entailment relations are, by definition, monotonic: let KB
and KB′ be two SCKB’s s.t. KB ⊆ KB′ , and let α |∼γ β be a consequence of KB. That is, it is satisfied by every model of 
KB. Since every model of KB′ is also a model of KB, α |∼γ β is satisfied by every model of KB′ too. That is, α |∼γ β

is also a consequence of KB′ . Because of monotonicity, if we reason with a Tarskian approach in a conditional setting, 
we are relegated to very weak inferences. For example, if we only know that ‘birds typically fly’ (b |∼� f) and ‘robins are 
birds’ (r ∧¬b |∼r∧¬b ⊥), we could not even draw a simple conclusion based on property inheritance such as ‘robins typically 
fly’ (r |∼r f), since the initial information can also be satisfied by interpretations in which robins are atypical non-flying 
birds. Hence in a monotonic framework, we cannot, for example, reason under the principle of presumption of typicality [25], 
assuming that everything behaves according to our expectations unless we are explicitly informed that this is not the case.

Since Tarskian inference relations tend to be too weak, inferentially speaking [5], in the framework of non-monotonic 
reasoning, more suitable entailment relations can be defined by choosing a single model of the knowledge base that satisfies 
some desirable postulates. It is generally accepted that there is not a unique entailment relation for defeasible reasoning, 
with different forms of entailment being dependent on the kind of reasoning one wants to model [25,31]. In the framework 
8
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of preferential semantics, rational closure, recalled in Section 2, is generally recognised as a core form of entailment, with 
other suitable forms of entailment being refinements of rational closure.

We now define a form of entailment for situated conditionals, which we call minimal closure (MC). It is based on a 
semantic construction that reformulates in the framework of situated conditionals the semantic construction characterising 
rational closure for defeasible conditionals: we adapt the notion of a minimal model [29], recalled in Section 2, for our 
framework, and show that for any SCKB the minimal model is unique.

In the rest of the section, we proceed as follows: we first define the notion of consistency in the present setting. Then, we 
connect the notions of satisfaction in epistemic states for situated and classic conditionals, respectively. Such a connection, 
expressed in particular by the content of Corollary 4.1 below, allows us to use known results, regarding entailment relations 
for defeasible conditionals in ranked interpretations, for the definition of an entailment relation for situated conditionals 
and epistemic interpretations. In particular, using known results about minimal ranked models [29], we can define our 
minimal closure on top of the well-known rational closure. Moving from that, in Section 5, we define a decision procedure 
for entailment that is based on a series of decision steps for classical propositional logic.

Starting from rational closure, which is defined for defeasible conditionals and ranked interpretations, we define minimal 
closure, defined for situated conditionals and epistemic interpretations, using the connections between the former frame-
work and the latter one. First, we can extend the notion of consistency for defeasible conditionals to situated conditionals. 
We have seen (Section 2.2) that a set C of defeasible conditionals is consistent if and only if it has a ranked model R s.t.
�0�R �= ∅. Such a condition indicates that the agent has a consistent set of expectations since such a model does not satisfy 
the conditional � |∼ ⊥, which captures absurdity in the conditional framework. This condition can easily be translated into 
our framework.

Definition 4.1 (SCKB consistency). An SCKB is consistent if it has an epistemic model E s.t. �〈f, 0〉�E �= ∅.

In other words, an SCKB is consistent if it has an epistemic model E that does not satisfy � |∼� ⊥. �〈f, 0〉�E is a notation 
for epistemic interpretations that mirrors the notation �0�R for ranked interpretations, that is, �〈x, y〉�E represents the set 
of worlds that have rank 〈x, y〉 in E . On the other hand, given Corollary 3.1, � |∼� ⊥ is a situated conditional that has the 
same meaning as the defeasible conditional � |∼ ⊥, that is, an agent believing � |∼� ⊥ believes to be in an inconsistent 
situation since it expects ⊥ to hold.

Given Corollary 3.1, we can intuitively introduce a notion of satisfaction of defeasible conditionals also for epistemic 
interpretations:

E � α |∼ β iff E � α |∼� β

Note that an epistemic interpretation E satisfies exactly the same defeasible conditionals of its extracted ranked inter-
pretation RE (see Definition 3.3). That is, the ranks specified in the interval U∞

E ∪ �〈∞, ∞〉� are totally irrelevant w.r.t. the 
satisfaction of the defeasible conditionals of the form α |∼ β . We can also intuitively define the converse operation w.r.t. the 
extraction of a ranked interpretation from an epistemic one (Definition 3.3): we can extract an epistemic interpretation from 
a given ranked interpretation. Such an extraction is simply a direct translation of the ranks of the ranked interpretations 
into the formalism of the epistemic interpretations, simply associating the value 〈∞, ∞〉 to all the worlds that have the 
rank ∞ in the ranked interpretation.

Definition 4.2 (Extracted epistemic interpretation). For a ranked interpretation R , we define the epistemic interpretation E R

extracted from R as follows: for u ∈ Uf
R , E R(u) = 〈f, i〉, where R(u) = i, and E R(u) = 〈∞, ∞〉, for u ∈ U \Uf

R .

It is easy to see that R and E R are equivalent w.r.t. the satisfaction of defeasible conditionals.
The following corollary of Proposition 3.1, which is simply a semantic reformulation of the postulate Cond, will be central 

in connecting the satisfaction of situated conditionals to that of defeasible ones.

Corollary 4.1. For every epistemic interpretation E , if Uf
E ∩ �γ � �= ∅, then E � α |∼γ β iff E � α ∧ γ |∼ β .

Proof. Since it is just a semantic reformulation of the postulate Cond, it follows directly from the proof that Cond holds 
(Proposition 3.1). �

Given Corollary 4.1, we define a simple transformation of situated conditional knowledge bases.

Definition 4.3. Let KB be an SCKB; with KB∧ we denote its conjunctive classical form, defined as follows: KB∧ def= {α ∧ γ |∼
β | α |∼γ β ∈KB}.

We can use the conjunctive classical form to define two models for an SCKB: the classical epistemic model and the minimal 
epistemic model. The former will allow us to prove that checking the logical consistency of an SCKB can be reduced to a 
9
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consistency check in propositional logic (see Corollary 4.2 below). The latter is the epistemic model, which characterises 
the MC of an SCKB. Given an SCKB KB, both its classical epistemic model and its minimal epistemic model are defined 
starting from the minimal ranked model of its conjunctive classical form KB∧ (see Definitions 4.4 and 4.6 below).

Definition 4.4 (Classical epistemic model). Let KB be an SCKB, KB∧ its conjunctive classical form, and R the minimal ranked 
model of KB∧ . The classical epistemic model of KB is the epistemic interpretation E R extracted from R (see Defini-
tion 4.2).

Since R is a ranked model of KB∧ , so is E R . We need to check whether E R is also a model of KB.

Proposition 4.1. Let KB be an SCKB, and let E R be defined as in Definition 4.4. Then, we have that E R is a model of KB.

Proof. Let α |∼γ β ∈ KB. Since E R is an epistemic model of KB∧ and we have Corollary 4.1, if �γ � ∩ Uf
E R �= ∅, then we 

conclude E R � α |∼γ β . Otherwise, suppose �γ � ∩ Uf
E R = ∅. Since E R is an extracted epistemic interpretation (Defini-

tion 4.2), its only infinite rank is 〈∞, ∞〉, and we have �γ � ⊆ �〈∞, ∞〉�, which implies �α ∧ γ � ⊆ �〈∞, ∞〉�, which in turn 
implies E R � α |∼γ β . �

From Proposition 4.1 and Corollary 4.1, we can prove the following result.

Proposition 4.2. Let KB be an SCKB. KB has an epistemic model with �〈f, 0〉� �= ∅ iff KB∧ has a ranked model with �0� �= ∅.

Proof. Proposition 4.1 and Definitions 4.2 and 4.4 show that if KB∧ has a ranked model with �0� �= ∅, then KB has an 
epistemic model with �〈f, 0〉� �= ∅. For the opposite direction, assume that KB has an epistemic model E s.t. �〈f, 0〉�E �= ∅. 
From E , we define an epistemic model Erk in the following way:

Erk(u) =
{

E (u), if E (u) = 〈f, i〉 for some i;
〈∞,∞〉, otherwise.

Clearly �〈f, 0〉�Erk
�= ∅. It is easy to check that Erk is an epistemic model of KB. Moreover, thanks to Corollary 4.1, we 

can prove that it is also an epistemic model of KB∧: for every α |∼γ β ∈ KB, if �γ � ∩ Uf
Erk

�= ∅, then Erk � α ∧ γ |∼ β by 
Corollary 4.1; if �γ � ∩ Uf

Erk
= ∅, then �α ∧ γ � ⊆ �〈∞, ∞〉�, and we can conclude Erk � α ∧ γ |∼ β .

Let R be the ranked model corresponding to Erk , that is,

R(u) =
{

i, if Erk(u) = 〈f, i〉 for some i;
∞, otherwise.

We have that �〈f, 0〉�Erk
�= ∅ implies �0� �= ∅. Since for every pair of valuations u, v in U , u is preferred to v in Erk iff u

is preferred to v in R , it is easy to see that if Erk is an epistemic model of KB∧ , then R is a ranked model of KB∧ . �
Proposition 4.2 tells us that the consistency of an SCKB KB corresponds to the consistency of the conditional knowledge 

base KB∧ , the conjunctive form of KB. By linking the satisfaction of an SCKB KB to the satisfaction of its conjunctive 
form KB∧ , we can define a simple method for checking the consistency of an SCKB, based on the materialisation KB∧
of KB∧ . The materialisation C of a set of defeasible conditionals C is the set of material implications corresponding to the 
conditionals in C , defined in the following way:

C def= {α → β | α |∼ β ∈ C}

Corollary 4.2. An SCKB KB is consistent iff KB∧ �|= ⊥.

This corollary is an immediate consequence of Proposition 4.2 and the well-known property that a finite set of defeasible 
conditionals is consistent if and only if its materialisation is a consistent propositional knowledge base [5, Lemma 5.21].

Example 4.1. Consider an SCKB KB = {α |∼α ⊥, � |∼� α ∧ β}. The meaning of α |∼α ⊥ is that α is necessarily false, while 
� |∼� α ∧ β indicates that the agent presumes that α ∧ β holds (see Example 3.2). Clearly, this is a simple inconsistent 
knowledge base since it is not rational to consider α as presumably true and necessarily false at the same time. In fact, its 
only epistemic model is the epistemic model in which all the worlds have rank 〈∞, ∞〉.

We can actually check the inconsistency of KB easily: according to Proposition 4.2, KB has an epistemic model with 
�〈f, 0〉� �= ∅ iff KB∧ has a ranked model with �0� �= ∅, and, in turn, KB∧ has a ranked model with �0� �= ∅ iff KB∧ �|= ⊥
(Corollary 4.2). KB∧ = {α∧α |∼ ⊥, � ∧� |∼ α∧β}, and KB∧ = {(α∧α) → ⊥, (� ∧�) → α∧β}, which is logically equivalent 
to the set {¬α, α ∧ β}, which is clearly inconsistent (that is, KB∧ |= ⊥).
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Hence, the classical epistemic model allows reducing SCKB consistency checking to a simple propositional satisfiability 
checking. This is because it is a direct translation of a ranked interpretation into an equivalent epistemic interpretation. At 
the same time, since classical epistemic models do not cater for an immediate definition of appropriate forms of entail-
ment (at least in a non-monotonic setting), we now move to the definition of the minimal epistemic model, referring to the 
minimality order introduced for ranked interpretations in Section 2. We need to adapt, in an intuitive way, the notion of 
minimality defined for ranked interpretations to the present framework. In Section 3, we defined a total ordering � over 
the tuples 〈x, y〉 representing the ranks in epistemic interpretations. Let the ordering �KB on all the epistemic models of 
an SCKB KB be defined as follows: E1 �KB E2, if, for every v ∈ U , E1(v) � E2(v). We use E1 ≺KB E2 to denote its strict 
counterpart (E1 �KB E2 and E2 �KB E1).

Definition 4.5 (Minimal epistemic model). Let KB be a consistent SCKB, and EKB be the set of its epistemic models. E ∈ EKB
is a minimal epistemic model of KB if there is no E ′ ∈ EKB s.t. E ′ ≺KB E .

We first define the construction of a model, given a consistent SCKB KB. Then we prove that it is actually the unique 
minimal epistemic model of KB w.r.t. the ordering ≺KB .

Definition 4.6 (Construction of a minimal epistemic model). Let KB be a consistent SCKB, KB∧ its conjunctive classical form, 
and let R be the minimal ranked model of KB∧ . We pick out in a set KB∞ the conditionals in KB associated with a 
situation that has infinite rank in R , that is,

• KB∞ def= {α |∼γ β ∈KB | R(γ ) = ∞}.

And from KB∞ we define the set KB∧∞↓:

• KB∧∞↓
def= {α ∧ γ |∼ β | α |∼γ β ∈KB∞} ∪ {sent(Uf

R) |∼ ⊥}.

We construct the interpretation EKB in the following way:

1. For every u ∈ Uf
R , if R(u) = i, then EKB(u) = 〈f, i〉;

2. Let R ′ be the minimal ranked model of KB∧∞↓ . For every u ∈ U∞
R , if R ′(u) = i, with i ∈N∪{∞}, then EKB(u) = 〈∞, i〉.

Definition 4.6 proceeds as follows. First, we want to partition the conditionals that can be considered plausible (that is, 
the associated situation can be satisfied by valuations with a finite rank) from those that must be considered implausible 
(that is, the associated situation can be satisfied only by valuations with infinite ranks). This is the set KB∞ . According 
to Definition 3.2, given an epistemic interpretation, a conditional α |∼γ β is evaluated w.r.t. plausible valuations if and 
only if γ is satisfied by some plausible valuation. It is evaluated w.r.t. implausible valuations otherwise. Given an SCKB 
KB, γ is not satisfied by any plausible valuation in any model of KB if and only if γ |∼� ⊥ is satisfied by every model 
of KB, which, by Corollaries 4.1 and 3.1, justifies the use of the minimal ranked model R of the conjunctive form KB∧
for identifying KB∞ . We then specify the minimal configuration satisfying KB, considering first the finite ranks, and then 
the infinite ones. Corollary 4.1 tells us that, w.r.t. the plausible situations (i.e., finite ranks), the minimal configuration is 
associated with the conjunctive classical form. Hence, we refer again to the minimal ranked model R of KB∧ to decide 
the configuration of the plausible valuations (Point 1 in Definition 4.6). We move to configure the infinite ranks, which 
need to have the minimal configuration satisfying KB∞ , the counterfactual conditionals in our knowledge base. In order 
to decide such a configuration, we consider KB∧∞↓: all the conditionals in KB∞ , plus the conditional negating the formula 
characterising all the plausible valuations (sent(Uf

R) |∼ ⊥). The idea behind the use of KB∧∞↓ is as follows. We want to 
construct a minimal ranking of the counterfactual situations. In order to do that, we need to consider matters from the 
perspective of being in the counterfactual situations. To do that, we introduce sent(Uf

R) |∼ ⊥. In this way, all the situations 
that are plausible w.r.t. KB are now considered impossible, and the plausible situations w.r.t. KB∧∞↓ are the ones that 
were counterfactual w.r.t. KB. The rank of the implausible valuations in EKB is then determined by the rank of the same 
valuations in the minimal model of KB∧∞↓: R ′ defines the minimal configuration satisfying the conditionals in KB∧∞↓ , 
and, at Point 2 in Definition 4.6, we put such a configuration ‘on top’ of the finite ranks to define EKB . There is the 
possibility that the conditional knowledge base KB∧∞↓ is not consistent (see Section 2.2). In such a case, Definition 4.6 still 
holds: the only model of KB∧∞↓ is the one associating to every valuation the rank ∞, and consequently for every u ∈ U∞

R , 
EKB(u) = 〈∞, ∞〉.

We need to prove that EKB is an epistemic model of KB, and that, moreover, it is the unique minimal epistemic model 
of KB.

Let E be an epistemic interpretation. We build an interpretation E ∞↓ , the counterfactual shifting of E , in the following 
way. For every valuation u,

E ∞↓ (u)
def=

{ 〈f, i〉, if E (u) = 〈∞, i〉, with i < ∞;
〈∞,∞〉, otherwise.
11
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∞ U \ (�0� ∪ �1� ∪ �2�)

2 pdbf

1 pdbf, pdbf,

0 pdbf, pdbf, pdbf

Fig. 4. Minimal ranked model of KB∧ in Example 4.2.

〈∞,∞〉 �p ∧ ¬b� ∪ �d ∧ ¬b�

〈∞,1〉 pdbf, pdbf

〈∞,0〉 pdbf, pdbf

〈f,2〉 pdbf

〈f,1〉 pdbf, pdbf

〈f,0〉 pdbf, pdbf, pdbf

Fig. 5. Minimal epistemic model of the knowledge base in Example 4.2.

Intuitively, E ∞↓ simply shifts the infinite ranks in E to the finite ranks. For E ∞↓ , we can prove a lemma corresponding to 
Corollary 4.1.

Lemma 4.1. For every epistemic interpretation E , if Uf
E ∩ �γ � = ∅, then E � α |∼γ β iff E ∞↓ � α ∧ γ |∼ β .

Using Corollary 4.1 and Lemma 4.1, it becomes easy to prove that EKB is indeed an epistemic model of KB.

Proposition 4.3. Let KB be a consistent SCKB, and let EKB be the epistemic interpretation built as in Definition 4.6. Then, EKB is an 
epistemic model of KB.

Proof. Let KB∞ be defined as in Definition 4.6. We distinguish two possible cases.

• α |∼γ β ∈ KB \ KB∞ , that is, EKB(γ ) = 〈f, i〉, for some i. By the construction of EKB (Definition 4.6), EKB is an 
epistemic model of KB∧ , that is, it is an epistemic model of α ∧γ |∼ β . From Corollary 4.1, it follows that EKB � α |∼γ

β .
• α |∼γ β ∈ KB∞ , that is, EKB(γ ) = 〈∞, i〉, for some i. By the construction of EKB (Definition 4.6), EKB is an epistemic 

model of KB∧ , that is, it is an epistemic model of α ∧ γ |∼ β . Let E ∞
KB↓ be the counterfactual shifting of EKB . From 

Lemma 4.1, we know that, since E ∞
KB↓ � α ∧ γ |∼ β , E ∞

KB↓ � α |∼γ β holds. Since �α ∧ γ �EKB = �α ∧ γ �∞
EKB

= �α ∧
γ �E ∞

KB↓ , for every u ∈ U , we have u ∈ �α ∧ γ �E ∞
KB↓ iff u ∈ �α ∧ γ �EKB , that is, EKB � α |∼γ β .

Therefore, for every α |∼γ β ∈KB, we have EKB � α |∼γ β , and the result follows. �
We proceed by showing that EKB above is actually the only minimal epistemic model of KB.

Proposition 4.4. Let KB be a consistent SCKB, and let EKB be the epistemic interpretation built as in Definition 4.6. Then EKB is the 
only minimal epistemic model of KB.

Example 4.2. Assume the SCKB KB = {b |∼� f, p |∼p ¬f, d |∼d ¬f, d |∼� ⊥, p ∧¬b |∼p∧¬b ⊥, d ∧¬b |∼d∧¬b ⊥} from Example 3.2. 
Then we have KB∧ = {b ∧ � |∼ f, p ∧ p |∼ ¬f, d ∧ d |∼ ¬f, d ∧ � |∼ ⊥, p ∧ ¬b ∧ p ∧ ¬b |∼ ⊥, d ∧ ¬b ∧ d ∧ ¬b |∼ ⊥}, which 
is rank equivalent to {b |∼ f, p |∼ ¬f, d |∼ ¬f, d |∼ ⊥, p ∧ ¬b |∼ ⊥, d ∧ ¬b |∼ ⊥}. Fig. 4 depicts the minimal ranked model 
of KB∧ . Following Definition 4.6, we have KB∞ = {d |∼d ¬f, p ∧¬b |∼p∧¬b ⊥, d ∧¬b |∼d∧¬b ⊥}. From KB∞ , we get KB∧∞↓ =
{d ∧ d |∼ ¬f, p ∧ ¬b ∧ p ∧ ¬b |∼ ⊥, d ∧ ¬b ∧ d ∧ ¬b |∼ ⊥, (p → b) ∧ ¬d |∼ ⊥}, which is rank equivalent to {d |∼ ¬f, p ∧ ¬b |∼
⊥, d ∧ ¬b |∼ ⊥, (p → b) ∧ ¬d |∼ ⊥} (note that (p → b) ∧ ¬d |∼ ⊥ ∈ KB∧∞↓ since (p → b) ∧ ¬d |∼ ⊥ corresponds to the 
conditional sent(Uf

R) |∼ ⊥, as indicated in Definition 4.6). Following Steps 1 and 2 in Definition 4.6, we construct the 
minimal epistemic model of the original knowledge base, which is shown in Fig. 5.

The minimal closure of KB is defined in terms of the minimum epistemic model of KB constructed in this way.

Definition 4.7 (Minimal entailment and closure). α |∼γ β is minimally entailed by an SCKB KB, denoted as KB |=m α |∼γ β , 
if EKB � α |∼γ β , where EKB is the minimal model of KB. The corresponding closure operation

Cm(KB)
def= {α |∼γ β | KB |=m α |∼γ β}

is the minimal closure of KB.
12
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∞ bfp, bfp

2 bfp

1 bfp, bfp

0 bfp, bfp, bfp

Fig. 6. Minimal ranked model of the knowledge base C = {b |∼ f,p |∼ ¬f,p ∧ ¬b |∼ ⊥}.

Example 4.3. We proceed from Example 4.2. Looking at the model in Fig. 5, we are able to check what is minimally entailed. 
For every α |∼γ β ∈ KB, KB |=m α |∼γ β . In particular, while KB |=m d |∼� ⊥, we do not have KB |=m d |∼d ⊥, that is, it is 
possible to reason counterfactually about dodos. From the point of view of the actual situation (that is, in the situation �), 
we can conclude anything about dodos, since they do not exist. Indeed, we have both KB |=m d |∼� ¬f and KB |=m d |∼� f. 
Nevertheless, we are able to reason coherently about dodos once we assume a point of view in which they would exist. To 
witness, we have KB |=m d |∼d ¬f, but KB �|=m d |∼d f.

Definition 4.6 shows that the minimal epistemic model can be defined using the minimal ranked models for two sets of 
defeasible conditionals, KB∧ and KB∧∞↓ . If a valuation is associated with a finite rank i in the minimal ranked model of 
KB∧ , then we associate to it the corresponding rank 〈f, i〉 in the minimal epistemic model. All the other valuations, those 
that have rank ∞ in the minimal model of KB∧ , will have a rank determined by the minimal ranked model of KB∧∞↓: for 
each one of such valuations, if its rank in the minimal model of KB∧∞↓ is i (i ∈ N ∪ {∞}), it will have the rank 〈∞, i〉 in 
the minimal epistemic model.

As we are going to see in the next section, since the construction of the minimal epistemic model relies on the construc-
tion of two minimal ranked models, it is possible to decide whether an SC is in the minimal entailment of an SCKB fully 
relying on a series of propositional decision steps.

5. Computing entailment from situated conditional knowledge bases

In this section, we define a procedure to decide whether a conditional is in the minimal closure of an SCKB. The proce-
dure is described by Algorithm 6, MinimalClosure, and it relies on a series of propositional entailment checks. Hence, it 
can be implemented on top of any propositional reasoner.

We will start by looking at Algorithms Exceptional (1), ComputeRanking (2), Rank (3), and RationalClosure
(4), which formalise known procedures (see the work of Freund [39] and of Casini and Straccia [40, Section 2]) that together 
define a decision procedure for rational closure (RC). As indicated in Section 2, on the semantic side, the RC of a knowledge 
base C containing defeasible conditionals can be characterised using the minimal ranked model RC

RC [29], that is, α |∼ β is in 
the RC of a set of defeasible conditionals C if and only if RC

RC � α |∼ β (Definition 2.2).
It has been proved [39,40] that α |∼ β is in the RC of C , that is, RC

RC � α |∼ β , if and only if RationalClosure(C, α |∼
β) returns true. In what follows, we provide an explanation of all the algorithms involved in the process. We shall often 
refer to Fig. 1 (repeated in Fig. 6 for the reader’s convenience), which is the minimal ranked model of the knowledge base 
C = {b |∼ f, p |∼ ¬f, p ∧ ¬b |∼ ⊥}.

• Exceptional(C) (Algorithm 1) takes as input a finite set C of defeasible conditionals and gives back the exceptional 
elements, that is, the conditionals α |∼ β s.t. � |∼ ¬α holds in the minimal ranked model of C . For example, from Fig. 6, 
one can check that the conditionals p |∼ ¬f and p ∧ ¬b |∼ ⊥ are exceptional, since none of the valuations in layer 0
satisfies p, and in fact Exceptional(C) = {p |∼ ¬f, p ∧ ¬b |∼ ⊥}. The procedure fully relies on a series of decision 
steps in classical propositional logic, since it uses the materialisation of the KB C (see Section 4).

• ComputeRanking(C) (Algorithm 2) ranks each conditional in the KB C w.r.t. its exceptionality level. E0 contains all the 
conditionals, E1 the exceptional ones w.r.t. E0, and so on. E∞ contains the fixed point of the exceptionality procedure, 
that is, the conditionals having antecedents that cannot be satisfied in any valuation that is ranked as finite in any 
ranked model of C . ComputeRanking(C) returns E0 = C = {b |∼ f, p |∼ ¬f, p ∧ ¬b |∼ ⊥}, E1 = {p |∼ ¬f, p ∧ ¬b |∼ ⊥}, 
E∞ = {p ∧ ¬b |∼ ⊥}.

• Rank(C, α) (Algorithm 3) decides the rank of a proposition, that is, the lowest rank in the minimal ranked model con-
taining a valuation that satisfies the proposition. For example, the reader can check that Rank(C, ¬p) = 0, Rank(C, p) =
1, Rank(C, p ∧ f) = 2, Rank(C, p ∧ ¬b) = ∞, values that, for each of the propositions, correspond exactly to the lowest 
layer in the minimal ranked model in which there is a valuation satisfying the proposition (see Fig. 6).

• RationalClosure(C, α |∼ β) (Algorithm 4) tells us whether α |∼ β is in the RC of C , that is, whether RC
RC � α |∼ β . 

For example, RationalClosure(C, p |∼ ¬f) is true, since: Rank(C, p) = 1, E1 = {p |∼ ¬f, p ∧¬b |∼ ⊥}, and E1 ∪{p} |=
¬f.

Note that all the procedures fully rely on a series of decision steps in classical propositional logic.
13
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Algorithm 1: Exceptional(C).
input : a set of defeasible conditionals C
output : E ⊆ C s.t. E is exceptional w.r.t. C

1 E :=∅
2 C :={α → β | α |∼ β ∈ C}
3 foreach α |∼ β ∈ C do
4 if C |= ¬α then
5 E :=E ∪ {α |∼ β}
6 end
7 end
8 return E

Algorithm 2: ComputeRanking(C).
input : a set of defeasible conditionals C
output : an exceptionality ranking rC

1 i :=0
2 E0 :=C
3 E1 :=Exceptional(E0)
4 while Ei+1 �= Ei do
5 i := i + 1
6 Ei+1 :=Exceptional(Ei )
7 end
8 E∞ :=Ei

9 rC :=(E0, . . . , Ei−1, E∞)

10 return rC

Algorithm 3: Rank(C, α).
input : a set of defeasible conditionals C, a proposition α
output : the rank rkC(α) of α

1 rC = (E0, . . . , En, E∞) :=ComputeRanking(C)

2 foreach 0 ≤ i ≤ n do
3 Ei :={α → β | α |∼ β ∈ Ei}
4 end

5 E∞ :={α → β | α |∼ β ∈ E∞}
6 i :=0

7 while Ei |= ¬α and i ≤ n do
8 i := i + 1
9 end

10 if i ≤ n then
11 rkC(α) := i
12 end
13 else
14 if E∞ �|= ¬α then
15 rkC(α) := i + 1
16 end
17 else
18 rkC(α) :=∞
19 end
20 end
21 return rkC(α)

Algorithm 4: RationalClosure(C, α |∼ β).
input : a set of defeasible conditionals C, a query α |∼ β

output : true, if C |=RC α |∼ β , false otherwise

1 rKB = (E0, . . . , En, E∞) :=ComputeRanking(C)

2 r :=Rank(C, α)

3 return Er ∪ {α} |= β

Algorithms Partition (5) and MinimalClosure (6) are novel. They define a procedure to decide minimal entailment 
|=m , given an SCKB, and they are built on top of ComputeRanking, Rank, and RationalClosure. Let us go through 
them:
14
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Algorithm 5: Partition(KB).
input : an SCKB KB
output : the conjunctive forms KB∧ and KB∧∞↓

1 KB∧ :={α ∧ γ |∼ β | α |∼γ β ∈ KB}
2 rKB∧ = (E0, . . . , En, E∞) :=ComputeRanking(KB∧)

3 KB∞ :=∅
4 foreach α |∼γ β ∈ KB do
5 if Rank(KB∧, γ ) = ∞ then
6 KB∞ :=KB∞ ∪ {α |∼γ β}
7 end
8 end
9 μ :=∧{¬α | α |∼ β ∈ E∞}

10 KB∧∞↓ :={α ∧ γ |∼ β | α |∼γ β ∈ KB∞} ∪ {μ |∼ ⊥}
11 return KB∧, KB∧∞↓

Algorithm 6: MinimalClosure(KB, α |∼γ β).

input : an SCKB KB, a query α |∼γ β

output : true, if KB |=m α |∼γ β , false otherwise

1 KB∧, KB∧∞↓ :=Partition(KB) KB∧ = {(α ∧ γ ) → β | α ∧ γ |∼ β ∈ KB∧}
2 if KB∧ |= ⊥ then
3 return true
4 end
5 else
6 if Rank(KB∧, γ ) < ∞ then
7 return RationalClosure(KB∧, α ∧ γ |∼ β)

8 end
9 else

10 return RationalClosure(KB∧∞↓, α ∧ γ |∼ β)

11 end
12 end

• Partition(KB) (Algorithm 5) takes as input an SCKB KB and identifies the set KB∞ and the set of defeasible con-
ditionals KB∧∞↓ , in a way that, as we shall prove, corresponds to Definition 4.6. That is, KB∞ is the set of conditionals 
of which the situations are ranked as infinite w.r.t. KB∧ .

• MinimalClosure(KB, α |∼γ β) (Algorithm 6) tells us whether α |∼γ β is in the minimal closure of KB. First, the 
algorithm checks if KB is a consistent SCKB (see Definition 4.1): by Corollary 4.2, it is sufficient to check whether 
KB∧ |= ⊥. Then, in case it is consistent, it checks the rank of the situation γ . If the situation’s rank is finite, then it 
checks whether the conjunctive form α ∧ γ |∼ β is in the RC of KB∧ . Otherwise, it checks whether the conjunctive 
form α ∧ γ |∼ β is in the RC of KB∧∞↓ .

We need to prove that Algorithm 6 is complete and correct w.r.t. minimal entailment |=m . Before the main theorem, we 
need to prove the following lemma.

Lemma 5.1. Let KB be a consistent SCKB, let KB∧ be its conjunctive classical form, and let R be the minimal ranked model of KB∧ . 
Moreover, let μ be defined as in Algorithm 5, and let sent(Uf

R) be as in Definition 4.6. Then we have that μ is logically equivalent to 
sent(Uf

R).

Proof. First, we prove that sent(Uf
R) |= μ. Let α |∼ β ∈ E∞ . This implies that rkKB∧ (α) = ∞, that is, all the valuations 

satisfying α have rank ∞. That is, Uf
R ⊆ �¬α� for every α s.t. α |∼ β ∈ E∞ . That implies

Uf
R ⊆

⋂
{�¬α�R | α |∼ β ∈ E∞},

and, consequently, sent(Uf
R) |= μ.

Now we prove that μ |= sent(Uf
R). Assume this is not the case. That is, there is a valuation w ∈ U∞

R s.t. w � μ. Let n be 
the highest finite rank in R , and consider the ranked model R ′ obtained from R just by re-assigning the valuation w from 
the rank ∞ to the rank n + 1 (note that if the valuation w is the only valuation in U∞

R and, consequently, U∞
R′ = ∅, then R ′

is still a ranked interpretation since it is compatible with Definition 2.1). R ′ is preferred to R , and it is easy to see that R ′
is a ranked model of KB: for every α |∼ β ∈ Ei , for some i < ∞, there is a valuation in a lower rank satisfying α ∧ β , while 
for every α |∼ β ∈ E∞ , w � ¬α, and consequently w is irrelevant w.r.t. the satisfaction of α |∼ β by R ′ , since it is not in 
min�α�fR′ . Hence, we have that R ′ ≺KB R , against the hypothesis that R is the minimal element in ≺KB , which leads to 
a contradiction. Therefore, μ |= sent(Uf ). �
R
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Now we can state the main result of the present section.

Theorem 5.1. Let KB be an SCKB. MinimalClosure(KB, α |∼γ β) returns true iff KB |=m α |∼γ β .

Example 5.1. Let us model a more practically-oriented scenario. The agent knows that the Kitchen has been cleaned (¬ck |∼�
⊥), and has a series of (defeasible) expectations: the pan is clean (cl) and positioned in Cupboard1 (cb1) (� |∼� cl and 
� |∼� cb1), but in case the pan is in Cupboard2 (cb2), the agent will need a stool (st) to reach the pan (cb2 |∼� st). We 
can also model the agent’s expectations about counterfactual situations, that is, situations that are not compatible with the 
information the agent has about the actual situation: if the kitchen has not been cleaned, the pan will presumably be in the 
sink (� |∼¬ck si), and it will be dirty (� |∼¬ck ¬cl). Also, we have some constraints that must necessarily hold, simply stating 
that the pan must be in exactly one place: ¬cb1 ∧ ¬cb2 ∧ ¬si |∼¬cb1∧¬cb2∧¬si ⊥, cb1 ∧ cb2 |∼cb1∧cb2 ⊥, cb1 ∧ si |∼cb1∧si ⊥, 
cb2 ∧ si |∼cb2∧si ⊥. Note that the conditionals α |∼α ⊥ impose that the valuations satisfying α can be placed only in rank 
〈∞, ∞〉, that is, ¬α cannot be falsified, even in the counterfactual situations (see Example 3.2).

Let KB = {¬cb1 ∧ ¬cb2 ∧ ¬si |∼¬cb1∧¬cb2∧¬si ⊥, cb1 ∧ cb2 |∼cb1∧cb2 ⊥, cb1 ∧ si |∼cb1∧si ⊥, cb2 ∧ si |∼cb2∧si ⊥, ¬ck |∼�
⊥, � |∼� cl, � |∼� cb1, cb2 |∼� st, � |∼¬ck si, � |∼¬ck ¬cl} be an SCKB formalising the scenario in Example 5.1. We apply 
Algorithm 5, Partition, to KB:

• The algorithm creates the conjunctive form KB∧ = {¬cb1 ∧ ¬cb2 ∧ ¬si |∼ ⊥, cb1 ∧ cb2 |∼ ⊥, cb1 ∧ si |∼ ⊥, cb2 ∧ si |∼
⊥, ¬ck |∼ ⊥, � |∼ cl, � |∼ cb1, cb2 |∼ st, ¬ck |∼ si, ¬ck |∼ ¬cl} (we have simplified the formulas in the conditionals w.r.t.
the definition of KB∧ in Section 4, for example substituting formulas α ∧ α or α ∧ � with α).

• Calling algorithm ComputeRanking, we rank KB∧ in E0 = {� |∼ cl, � |∼ cb1} ∪E1, E1 = {cb2 |∼ st} ∪E∞ , E∞ = {¬cb1∧
¬cb2 ∧ ¬si |∼ ⊥, cb1 ∧ cb2 |∼ ⊥, cb1 ∧ si |∼ ⊥, cb2 ∧ si |∼ ⊥, ¬ck |∼ ⊥, ¬ck |∼ si, ¬ck |∼ ¬cl}.

• We then call the procedure Rank(KB∧, γ ) for every formula γ appearing in some conditional α |∼ β in KB. It turns 
out that Rank(KB∧, γ ) = ∞ for γ ∈ {¬cb1∧¬cb2∧¬si, cb1∧cb2, cb1∧si, cb2∧si, ¬ck}. Consequently, KB∞ = {¬cb1∧
¬cb2 ∧ ¬si |∼¬cb1∧¬cb2∧¬si ⊥, cb1 ∧ cb2 |∼cb1∧cb2 ⊥, cb1 ∧ si |∼cb1∧si ⊥, cb2 ∧ si |∼cb2∧si ⊥, � |∼¬ck si, � |∼¬ck ¬cl}.

• Eventually, the algorithm constructs the set KB∧∞↓: first, from E∞ , we define μ as 
∧{cb1∨cb2∨si, ¬cb1∨¬cb2, ¬cb1∨

¬si, ¬cb2 ∨ ¬si, ck}; then we set KB∧∞↓ as {¬cb1 ∧ ¬cb2 ∧ ¬si |∼ ⊥, cb1 ∧ cb2 |∼ ⊥, cb1 ∧ si |∼ ⊥, cb2 ∧ si |∼ ⊥, ¬ck |∼
si, ¬ck |∼ ¬cl, μ |∼ ⊥}.

Once we have KB∧ and KB∧∞↓ , we can give queries to Algorithm 6 (MinimalClosure). For example, we can check 
whether the agent should expect the pan to be in the sink (� |∼� si).

• Given KB∧ , we define its materialisation KB∧ , which contains the implications (α ∧ γ ) → β corresponding to the 
conditionals α ∧ γ |∼ β in KB∧ . Using KB∧ , the algorithm checks whether the knowledge base KB is inconsistent by 
checking whether KB∧ |= ⊥ (the reader can check that it is not the case.)

• We then have to check the rank of the situation � in � |∼� si, which, being �, must be 0. Hence, semantically, since 
� cannot be an exceptional proposition, � |∼� si is a conditional whose satisfaction needs to be checked w.r.t. the 
valuations in the finite ranks of the minimal epistemic model of KB, in particular, w.r.t. the valuations in the rank 
〈f, 0〉. This corresponds to checking in Algorithm MinimalClosure whether � |∼ si is in the rational closure of KB∧ . 
That is, whether RationalClosure(KB∧, � |∼ si) returns true.
In the procedure RationalClosure(KB∧, � |∼ si), the rank 0 is associated to �, and E0 = KB∧ . Consequently, 
� |∼ si is in the rational closure of KB∧ if and only if E0 |= si, which is not the case. Actually, we have that � |∼� ¬si
is in the minimal closure of KB, since, due to the presence of � → cb1 and (cb1 ∧ si) → ⊥ in E0, we have E0 |= ¬si.

We now consider a counterfactual situation, checking whether the agent believes that, in case the kitchen has not been 
cleaned, the pan is not in Cupboard2 (� |∼¬ck ¬cb2).

• As for the previous query, the algorithm starts by checking whether KB is consistent.
• We then have to check the rank of the situation ¬ck in � |∼¬ck ¬cb2. Since in KB we have the conditional ¬ck |∼� ⊥, 

that is, the agent knows that the kitchen has been cleaned, the immediate conclusion is that Rank(KB∧) = ∞.
• Hence, semantically, � |∼¬ck ¬cb2 is a conditional that needs to be checked w.r.t. the valuations in the infinite ranks 

of the minimal epistemic model of KB. This corresponds to checking whether ¬ck |∼ ¬cb2 follows from KB∧∞↓ , that 
is, whether RationalClosure(KB∧∞↓, ¬ck |∼ ¬cb2) returns true. RationalClosure(KB∧∞↓, ¬ck |∼ ¬cb2) asso-
ciates the rank 0 to ¬ck, and E0 = KB∧∞↓ . Consequently, ¬ck |∼ ¬cb2 is in the rational closure of KB∧∞↓ if and only if 
KB∧∞↓ ∪ {¬ck} |= ¬cb2, which is the case, since KB∧∞↓ contains ¬ck → si and cb2 ∧ si → ⊥.
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5.1. Computational complexity of minimal entailment

We now turn our attention to the computational complexity of deciding minimal entailment. We have seen that the 
entire procedure can be reduced to a sequence of classical propositional entailment tests, with propositional entailment 
known to be co-NP-complete. Therefore, we have to check, given an SCKB as input, how many classical entailment tests are 
required in the worst case. We examine each algorithm in turn.

• Given a set of defeasible conditionals C , Algorithm Exceptional performs |C| propositional entailment tests.
• Given a set of defeasible conditionals C , Algorithm ComputeRanking runs the algorithm Exceptional at most 

|C| times in the case where each conditional from C has a distinct antecedent, and each rank contains exactly one 
conditional. In such a case, we have that the first iteration of the algorithm Exceptional performs |C| entailment 
checks, the second one |C| − 1 entailment checks, the third one |C| − 2 entailment checks, and so on. That is, the 
i-th iteration of Exceptional performs |C| − i + 1 propositional entailment checks. So there are fewer than |C|2
entailment checks and hence Algorithm ComputeRanking performs a polynomial number of propositional entailment 
checks. Note that, given a conditional knowledge base C , we need to run ComputeRanking only once.

• Given a set of defeasible conditionals C and a formula α, Algorithm Rank calls ComputeRanking (which performs at 
most |C|2 entailment checks), and then performs at most a number of entailment checks that corresponds to the num-
ber of ranks, which is |C| at most. Hence Algorithm Rank performs a polynomial number of propositional entailment 
checks.

• Given a set of defeasible conditionals C and a conditional α |∼ β , Algorithm RationalClosure calls Algorithm 
ComputeRanking once and Algorithm Rank once, plus it makes a final entailment check. Hence, the algorithm per-
forms a polynomial number of propositional entailment checks.

• Given an SCKB KB, Algorithm Partition runs Algorithm ComputeRanking once and Algorithm Rank at most |KB|
times. Since |KB∧| = |KB|, running ComputeRanking consists of |KB|2 entailment checks at most. The same holds 
for each run of Rank. Hence running Partition consists of at most |KB|2 · (|KB| + 1) = |KB|3 + |KB|2 entailment 
checks.

• Given an SCKB KB and a situated conditional α |∼γ β , Algorithm MinimalClosure runs Algorithm Partition once, 
followed by one entailment check (line 2), one call to Algorithm Rank and one call to algorithm RationalClosure
(with either KB∧ or KB∧∞,↓ as argument):

– Partition performs at most |KB|3 + |KB|2 entailment checks.
– Rank performs at most |KB|2 entailment checks.
– RationalClosure performs at most |KB|2 entailment checks.
Hence Algorithm MinimalClosure performs a polynomial number of propositional entailments checks.

In summary then, deciding minimal entailment using Algorithm MinimalClosure involves a polynomial number of 
propositional entailment checks, and is therefore in PcoNP = �P

2. Whether this decision problem is �P

2-complete is currently 
an open question.

6. Related work

With regard to the distinction between a plausible and an implausible state of affairs, a similar distinction has been 
used by Booth et al. [41], where some pieces of information are considered credible while others are not, and a new piece 
of information is accepted only if it is credible. Nonetheless, in case it is not credible, its plausibility increases every time 
such a piece of information is iterated. The distinction between plausible and implausible valuations links such an approach 
with our proposal, but the reasoning problems they model are different. Booth et al. deal with the credibility of a new 
piece of information, also considering whether the agent is repeatedly exposed to such a piece of information. Here we deal 
with the distinction between expectations and counterfactuals: given an SC α |∼γ β , we could say that if γ is credible, then 
the defeasible conditional α |∼ β is evaluated w.r.t. one ranked interpretation (represented by the finite ranks), while it is 
evaluated w.r.t. another ranked interpretation (represented by the infinite ranks) otherwise.

The connection between our conditional system and belief change is already made quite clear by the situated AGM 
postulates (See Section 3), but it still needs to be properly investigated. Such an investigation should proceed not only from 
the point of view of the possible definition of interesting revision operators corresponding to our situated conditionals (for 
example, via some modified version of the Ramsey test) but also from the point of view of the definition of appropriate 
revision operators modelling the dynamics of SCKB’s, in line with what has been done for conditional knowledge bases 
[42,43]. With respect to this latter problem, the work of Booth et al. [41] offers an interesting perspective on modelling the 
dynamics of a semantics with plausible and implausible state of affairs.

The literature on the notion of context, which is akin to our use of situation, is vast, and several formalisations and 
applications of it have been studied across many areas within AI [44–48]. The role of context in conditional-like statements 
has been explored recently, in particular in defeasible reasoning over description logic ontologies and within semantic 
frameworks that are closely related to ours. Britz and Varzinczak [49,50], for example, have put forward a notion of de-
feasible class inclusion parameterised by atomic roles. Their semantics allows for multiple preference relations on objects, 
17
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〈∞,∞〉 �p ∧ ¬b� ∪ �d ∧ ¬b�

〈∞2,0〉 �u� \ (�p ∧ ¬b� ∪ �d ∧ ¬b�)

〈∞1,1〉 pdbfu, pdbfu

〈∞1,0〉 pdbfu, pdbfu

〈f,2〉 pdbfu

〈f,1〉 pdbfu, pdbfu

〈f,0〉 pdbfu, pdbfu, pdbfu

Fig. 7. An example of an interpretation extending the epistemic interpretation with further infinite levels for more complex counterfactual reasoning.

which is more general than our single-preference approach, and allows for objects to be compared in more than one way. 
This makes normality (or typicality) context-dependent and gives more flexibility from a modelling perspective. Giordano 
and Gliozzi [51] consider reasoning about multiple aspects in defeasible description logics where the notion of aspect (or 
context) is linked to concept names (alias, atoms) also in a multi-preference semantics.

When compared with our framework, neither of the above-mentioned approaches allows for reasoning about objects that 
are ‘forbidden’ by the background knowledge. In that respect, our proposal is complementary to theirs, and a contextual 
form of class inclusion along the lines of the ternary |∼ here studied, with potential applications going beyond that of 
defeasible reasoning in ontologies, is worth exploring as future work.

7. Concluding remarks

In this paper, we have made the case for the provision of a simple situated form of conditional. We have shown, using 
a number of representative examples, that it is sufficiently general to be used in several application domains. The proposed 
situated conditionals have an intuitive semantics which is based on a semantic construction that has proved to be quite 
useful in the area of belief change, and is more general and also more fine-grained than the standard preferential semantics. 
We also showed that the proposed conditionals can be described in terms of a set of postulates. We provided a representa-
tion result, showing that the postulates capture exactly the constructions obtained from the proposed semantics. An analysis 
in terms of the postulates shows that these situated conditionals are suitable for knowledge representation and reasoning, 
in particular when reasoning about information that is incompatible with background knowledge.

With the basic semantic structures in place, we then proceeded to define a form of entailment for situated conditional 
knowledge bases that is based on the widely-accepted notion of rational closure for KLM-style reasoning. Moreover, we 
showed that, like rational closure, entailment for situated conditional knowledge bases is reducible to classical propositional 
reasoning.

Note that the semantics we have proposed in the present work can easily be refined further. Our framework allows only 
for the distinction between the plausible situations (the valuations with a finite rank that, with different degrees of expecta-
tion, define the agent’s beliefs), and the implausible ones (the valuations with an infinite rank that are not compatible with 
the agent’s beliefs but are still conceivable with different levels of expectation). All other valuations have the inconceivable
rank 〈∞, ∞〉.

There is a fairly straightforward way of refining the framework by allowing for different ranks of the kind 〈∞1, i〉, 
〈∞2, i〉, etc., (i ∈N). To illustrate the point, assume we add unicorns (u) to our vocabulary, and consider the interpretation 
in Fig. 7. In such a model, we would be able to represent the fact that we believe that unicorns would not exist even if we 
move to situations in which dodos exist (u |∼d ⊥), represented by the ranks 〈∞1, 0〉 and 〈∞1, 1〉. We would also be able to 
move to a further level of implausibility (∞2) in which the existence of unicorns is considered, making it possible to reason 
coherently about them. For now, we shall leave such a refinement of our semantic framework for future work.

The work described in this paper assumes classical propositional logic as the underlying logical formalism, but it is 
worthwhile to consider extending this to other, more expressive logics. In this regard, an extension to Description Logics is 
perhaps an obvious starting point, particularly since rational closure has already been reformulated for this case [29,52,40,
50]. A different kind of extension of the work presented here is one in which other forms of entailment are investigated. 
For this, the obvious initial candidate is lexicographic closure [25] and its variants [36,31,53]. More generally, we intend to 
investigate an extension to the class of entailment relations studied by Casini et al. [31].
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Appendix A. Proofs

Theorem 3.1. Every epistemic interpretation generates a BSC (see Definition 3.2). Nevertheless, the converse does not hold, i.e., some 
BSCs cannot be generated by any epistemic state.

Proof. Consider any epistemic interpretation E and pick any γ ∈L. We consider three disjoint and covering cases.
Case 1: If Uf

E ∩ �γ � �= ∅, then define R from E as follows: (i) for all u ∈ Uf
E ∩ �γ �, R(u) def= i, where E (u) = 〈f, i〉; (ii) for 

all u ∈ U \ Uf
E ∩ �γ �, R(u) def= ∞. It follows from Definition 3.2 and the definition of satisfaction of |∼-statements in ranked 

interpretations that E � α |∼γ β iff R � α ∧ γ |∼ β . From Theorem 2.1, it follows that the |∼ generated by R satisfies the 
original KLM postulates. Hence, it follows that |∼γ satisfies the situated rationality postulates.

Case 2: If Uf
E ∩ �γ � = ∅ but U∞

E ∩ �γ � �= ∅, then define R from E as follows: (i) for all u ∈ U∞
E ∩ �γ �, R(u) def= i, where 

E (u) = 〈∞, i〉; (ii) for all u ∈ U \ (U∞
E ∩ �γ �), R(u) def= ∞. It follows from Definition 3.2 and the definition of satisfaction 

for |∼-statements in ranked interpretations that E � α |∼γ β iff R � α |∼ β . From Theorem 2.1, it follows that the |∼
generated by R satisfies the original KLM postulates. For this specific γ it then follows that |∼γ satisfies the situated 
rationality postulates.

Case 3: If �γ � ⊆ U \ (Uf
E ∪ U∞

E ), then R(u) def= ∞ for all u ∈ �γ �. Again, it follows from Definition 3.2 and the definition 
of satisfaction for |∼ in ranked interpretations that E � α |∼γ β iff R � α |∼ β . From Theorem 2.1, it follows that the |∼
generated by R satisfies the original KLM postulates. For this specific γ , it then follows that |∼γ satisfies the situated 
rationality postulates.

Putting the three cases above together, it then follows immediately that the situated conditional |∼γ obtained from E
satisfies the situated rationality postulates.

Now, in order to show that the converse does not hold, consider the language generated from (and only) {p, q}. Note 
first that there is a ranked interpretation R such that R � α |∼ β iff p ∧ q ∧ α |= β . From Theorem 2.1, it follows that |∼, 
defined in this way, is a rational conditional, and therefore satisfies the situated KLM postulates. Similarly, there is a ranked 
interpretation R ′ such that R ′ � α |∼ β iff p ∧ q ∧ α |= β . From Theorem 2.1, it follows that |∼, defined in this way, is a 
rational conditional, and therefore satisfies the situated KLM postulates. Now, define a situated conditional by letting α |∼p β

iff p ∧q ∧α |= β , and α |∼γ β iff α |= β , for every γ other than p. It then follows immediately that this situated conditional is 
a BSC. However, it is easy to see that it cannot be generated by an epistemic interpretation. To see why, observe that p |∼p q, 
but that p�|∼p∨pq. �
Theorem 3.2. Every epistemic interpretation generates an FSC. Every FSC can be generated by an epistemic interpretation.

Proof. Let E be an epistemic interpretation and let γ ∈ L. Suppose Uf
E ∩ �γ � �= ∅. Then if E � α |∼γ β , it follows by 

Definition 3.2 that E � α ∧γ |∼� β . On the other hand, if Uf
E ∩ �γ � = ∅, then E � α ∧γ |∼� β . This means that the situated 

conditional |∼ obtained from E as follows satisfies Inc: α |∼γ β iff E � α |∼γ β .
Suppose E � � |∼� ¬γ . This means that Uf

E ∩ �γ � �= ∅. Then if E � α ∧ γ |∼� β , it follows by Definition 3.2 that 
E � α |∼γ β . This means that the situated conditional |∼ obtained from E as follows satisfies Vac: α |∼γ β iff E � α |∼γ β .

That the situated conditional obtained from E as follows satisfies Ext follows immediately from Definition 3.2: α |∼γ β

iff E � α |∼γ β .
For SupExp we consider two cases. For Case 1, if Uf

E ∩ �γ ∧ δ� �= ∅, then the result follows easily. For Case 2, suppose 
Uf

E ∩ �γ ∧ δ� = ∅. If Uf
E ∩ �δ� = ∅, then the result follows easily. Otherwise the result follows from the fact that Uf

E ∩ �α ∧
γ ∧ δ� = ∅.

For SubExp, suppose that E � δ |∼� ⊥. This means E � α ∧ γ |∼δ β implies that U∞
E ∩ �α ∧ γ ∧ δ� ⊆ �β�, from which it 

follows that E � α |∼γ ∧δ β .
For the converse, consider any FSC |∼. We construct an epistemic interpretation E as follows. First, consider |∼� . Since it 

satisfies the situated KLM postulates, there is a ranked interpretation R such that R � α |∼ β iff α |∼� β . We set Uf
E

def=Uf
R , 

and for all u ∈ Uf
E , we let E (u) def= 〈f, R(u)〉. Next, let U ′ def= U \ Uf

E . Let kf be a formula such that �kf� = Uf
E . Similarly, 

let k∞ be a formula such that �k∞� = U ′ . Now, consider |∼k∞ . Since it satisfies the situated KLM postulates, there is a 
ranked interpretation R ′ such that R ′ � α |∼ β iff α |∼k∞ β . We let U∞

E
def= {u ∈ U ′ | R ′(u) �= ∞}, and for all u ∈ U ′ , we let 

E (u) def= 〈∞, R ′(u)〉. Observe that for some u ∈ U ′ it may be the case that E (u) = 〈∞, ∞〉, which means that for such a u, 
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u /∈ U∞
E . It is easily verified that E is indeed an epistemic interpretation. Next we show that α |∼γ β iff E � α |∼γ β . We do 

so by considering two cases.
Case 1: Uf

E ∩ �γ � �= ∅. Note first that it follows easily from the construction of E that α |∼� β iff E � α |∼� β . 
Suppose α |∼γ β . By Inc, α ∧ γ |∼� β and therefore E � α ∧ γ |∼� β , and E � α |∼γ β , by definition. Conversely, sup-
pose E � α |∼γ β . Then by definition, E � α ∧ γ |∼� β , and therefore α ∧ γ |∼� β . Since ��|∼�¬γ , it then follows from Vac 
that α |∼γ β .

Case 2: Uf
E ∩�γ � �= ∅. By the construction of E , it follows that α |∼k∞ β iff E � α |∼k∞ β . Suppose α |∼γ β . Note that γ ≡

k∞ . By Ext, α |∼γ ∧k∞ β and so, by SupExp, α ∧ γ |∼k∞ β . It then follows that E � α ∧ γ |∼k∞ β and, by Definition 3.2, that 
E � α |∼γ β . Conversely, suppose that E � α |∼γ β . Then E � α ∧ γ |∼k∞ β , by Definition 3.2, and, therefore, using Ext, we 
have α ∧γ |∼γ ∧k∞ β . Note that E � kf |∼� ⊥ and therefore kf |∼� ⊥. By SubExp it then follows that α |∼γ ∧k∞ β , and by Ext 
that α |∼γ β holds. �
Lemma 4.1. For every epistemic interpretation E , if Uf

E ∩ �γ � = ∅, then E � α |∼γ β iff E ∞↓ � α ∧ γ |∼ β .

Proof. In case α ∧ γ is not logically consistent, the lemma holds since E � α |∼γ β and E ∞↓ � α ∧ γ |∼ β for any β . Hence 
we assume that α ∧ γ is logically consistent.

Let E � ¬γ , that is, there are no valuations in the finite ranks satisfying γ . Then the satisfaction of the conditionals 
with situation γ must be checked, referring to the valuations that are ranked as infinite. E � α |∼γ β implies two possible 
situations: either there are some valuations among the ones in �γ � that are ranked as infinite and satisfy α ∧ γ , and 
among them, all the minimal ones satisfy also β; or all the valuations satisfying α ∧ γ have rank 〈∞, ∞〉. γ has finite rank 
in E ∞↓ , or the rank 〈∞, ∞〉. In the latter case, we have E ∞↓ � α ∧ γ |∼ β . In the former case, the rank of γ in E is 〈∞, i〉, 
with i < ∞, that is, the rank of γ ∧ α in E ∞↓ is 〈f, j〉, for some j s.t. i ≤ j < ∞, or 〈∞, ∞〉. In the latter case, again, it 
is straightforward to conclude E ∞↓ � α ∧ γ |∼ β . In the former case, we have E � α |∼γ β , and the construction of E ∞↓
imposes that the minimal valuations in �α ∧ γ � satisfy also β , that is, E ∞↓ � α ∧ γ |∼ β .

The proof is analogous in the opposite direction. Let E � ¬γ and E ↓∞ � α ∧ γ |∼ β . Either the minimal valuations 
in E ↓∞ satisfying α ∧ γ are in rank 〈f, i〉, for some i < ∞, and they all satisfy β (Case 1), or they are in 〈∞, ∞〉 (Case 2). 
Since E � ¬γ , in E all the valuations satisfying γ are in U∞

E ∪ 〈∞, ∞〉, and consequently the satisfaction of the SC α |∼γ β

needs to be judged considering the valuations in U∞
E ∪ 〈∞, ∞〉. If we are in Case 1, since a valuation w has rank 〈f, i〉

in E ↓∞ iff w has rank 〈∞, i〉 in E (see the definition of counterfactual shifting in Section 4), we have that the minimal 
valuations in E satisfying α ∧ γ have rank 〈∞, i〉, for some i < ∞, and they all satisfy β . If we are in Case 2, since E � ¬γ , 
a valuation w that satisfies γ can have rank 〈∞, ∞〉 in E ↓∞ only if w has rank 〈∞, ∞〉 in E (again, see the definition of 
counterfactual shifting in Section 4 and consider that no valuation with a finite rank satisfies γ in E ); hence we have that 
the minimal valuations in E satisfying α ∧ γ are in rank 〈∞, ∞〉. In both cases, we have E � α |∼γ β . �
Proposition 4.4. Let KB be a consistent SCKB, and let EKB be the epistemic interpretation built as in Definition 4.6. Then EKB is the 
only minimal epistemic model of KB.

Proof. We divide the proof into two parts. First, we prove that EKB is a minimal epistemic model, then that it is also 
the only minimal epistemic model.

Regarding minimality, we proceed by contradiction. We know, by Proposition 4.3, that EKB is an epistemic model of KB. 
Assume it is not minimal, that is, assume there is an epistemic model E ′ of KB s.t., for every u ∈ U , E ′(u) ≤ EKB(u), and 
there is a w ∈ U s.t. E ′(w) < EKB(w). Regarding the ranking of w , we have two possibilities:

Case 1. EKB(w) = 〈f, i〉, for some i, and E ′(w) = 〈f, j〉, for some j < i. Let KBf
E ′ = {α |∼γ β ∈ KB | E ′ � ¬γ }. By Corol-

lary 4.1, E ′ � α ∧ γ |∼ β , for every α |∼γ β ∈KBf
E ′ . Consider the ranked interpretation R ′ defined as:

R′(u) =
{

i, if E ′(u) = 〈f, i〉, for some i;
∞, otherwise.

R ′ above is clearly a ranked model of every α ∧ γ |∼ β s.t. α |∼γ β ∈ KBf
E ′ . Since R ′ has only one infinite rank, ∞, 

R ′ is also a ranked model of every α ∧ γ |∼ β s.t. α |∼γ β ∈ KB \ KBf
E ′ , since the minimal valuations satisfying their 

premises are in �〈∞, ∞〉�, and consequently they are trivially satisfied. Hence, R ′ is a ranked model of KB∧ .
By Definition 4.6, EKB has been built using the minimal ranked model R of KB∧ . But now we have also a ranked 
model R ′ of KB∧ s.t. R ′ is a ranked model of KB∧ and, moreover, R ′ is preferred to R: by Definition 4.6, for every 
u ∈ U ,

R(u) =
{

i, if EKB(u) = 〈f, i〉, for some i;
∞, otherwise.

Since we have assumed that E ′(u) ≤ EKB(u) for every u, and there is a w s.t. EKB(w) = 〈f, i〉, for some i, 
and E ′(w) = 〈f, j〉, for some j < i, we have that R ′(u) ≤ R(u) for every u, and there is a w s.t. R(w) = i, for some 
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i ∈N , and R ′(w) = j, for some j < i. That is, for every u ∈ U R ′(u) ≤ R(u), and R ′(w) < R(w). Hence R is not the 
minimal model of KB∧ , and this leads to a contradiction.

Case 2. EKB and E ′ are identical w.r.t. the finite ranks, and EKB(w) = 〈∞, i〉, for some i. We have two subcases: E ′(w) =
〈∞, j〉, for some j < i, or E ′(w) = 〈f, j〉, for some j. The latter subcase leads to a contradiction: it can be proved 
analogously to Case 1. It remains to prove the first subcase.
The proof is still close to the one for Case 1 above; we simply have to refer to the counterfactual shiftings of EKB
and E ′ , E ∞

KB↓ and E ′∞↓ (see page 11). Since EKB and E ′ are epistemic models of KB∧ , E ∞
KB↓ and E ′∞↓ are epistemic 

models of KB∧∞ , and E ′∞↓ is preferred to E ∞
KB↓ . From E ∞

KB↓ and E ′∞↓ , we can extract two ranked interpretations, 
R∞

KB and R ′∞ (see Definition 3.3), that are both epistemic models of KB∧∞ . In the construction of EKB , following 
Definition 4.6, we have used for the infinite ranks the ranked interpretation R∞

KB , which, also by Definition 4.6, must 
be the minimal ranked model of KB∧∞ . But in the present case, R∞

KB cannot be the minimal ranked model of KB∧∞ , 
since R ′∞ is a ranked model of KB∧∞ that is preferred to R∞

KB . This leads to a contradiction.

To conclude this part, in all the possible cases, if EKB is not a minimal epistemic model of KB, then we end up with a 
contradiction. Hence EKB must be a minimal epistemic model of KB.

The final step consists in proving that EKB is the only minimal epistemic model of KB. The procedure is again by 
contradiction, assuming that EKB is not the only minimal epistemic model of KB. Hence, let E ′ be another minimal 
epistemic model of KB. The structure of the proof actually mirrors the one for the previous part, about the minimality 
of EKB . Again, we can distinguish two main cases.

Case 1. EKB and E ′ differ w.r.t. the ranking of some valuations among the ones ranked as finite. From EKB and E ′ , we can 
extract, respectively, the ranked models R and R ′ , which are both ranked models of KB∧ . But, by Definition 4.5, R is 
the only minimal ranked model of KB∧ , that is, R ≺ R ′ , which implies that E ′ cannot be a minimal epistemic model 
of KB.

Case 2. EKB and E ′ do not differ w.r.t. the ranking of the valuations that are ranked as finite in both of them but differ 
w.r.t. the ranking of some valuation, w , that is ranked as infinite in one of the two. W.l.o.g., we assume that w is ranked 
as infinite in EKB . We have two subcases: E ′(w) = 〈∞, j〉, for some j, or E ′(w) = 〈f, j〉, for some j. The latter subcase 
leads to a contradiction: it can be proved analogously to Case 1 using the extracted ranked models. It remains to show 
the first subcase.
The proof is still analogous to Case 2 above. We refer to the counterfactual shiftings of EKB and E ′ , E ∞

KB↓ and E ′∞↓ . 
Since EKB and E ′ are epistemic models of KB∧ and they are identical w.r.t. the finite ranks, E ∞

KB↓ and E ′∞↓ are 
epistemic models of KB∧∞ . From E ∞

KB↓ and E ′∞↓ , we can extract two ranked interpretations, R∞
KB and R ′∞ (see 

Definition 3.3), that are both ranked models of KB∧∞ . In the construction of EKB , following Definition 4.5, we have 
used for the infinite ranks the ranked interpretation R∞

KB , which, also by Definition 4.5, must be the minimal ranked 
model of KB∧∞ . If R∞

KB is the minimal ranked model of KB∧∞ , then R∞
KB is preferred to R ′∞ , and, by construction, 

EKB must be preferred to E ′ . This leads to a contradiction.

To conclude, if we assume that there is another minimal epistemic model of KB beyond EKB , we end up with a 
contradiction. Hence, EKB must be the only minimal epistemic model of KB. �
Theorem 5.1. Let KB be an SCKB. MinimalClosure(KB, α |∼γ β) returns true iff KB |=m α |∼γ β .

Proof. We already know that algorithms Exceptional, ComputeRanking, Rank and RationalClosure are com-
plete and correct w.r.t. the corresponding semantic notions.

As a first step, we need to prove that algorithm Partition returns the correct result, that is, the sets KB∞ and KB∧∞↓
correspond to the same sets introduced in Definition 4.6.

The correspondence of KB∞ to the semantic notion introduced in Definition 4.6 is guaranteed by the correctness of 
algorithm ComputeRanking w.r.t. the semantic definition of ranks w.r.t. the rational closure.

To prove the correspondence of KB∧∞↓ to the semantic notion in Definition 4.6, we need to prove also that the defeasible 
conditionals μ |∼ ⊥ and sent(Uf

R) |∼ ⊥ are equivalent, which is an immediate consequence of Lemma 5.1 and the LLE 
postulate.

Now we can check the correctness of algorithm MinimalClosure. We consider the possible cases as presented in the 
algorithm.

Case 1. KB∧ |= ⊥.
By Corollary 4.2, KB∧ |= ⊥ iff KB is inconsistent, and in such a case KB |=m α |∼γ β for every α, γ , β , and the 
algorithm behaves correctly.

Case 2. KB∧ �|= ⊥ and Rank(KB∧, γ ) < ∞.
We have to prove that in this case, α ∧ γ |∼ β is in the RC of KB∧ iff α |∼γ β is in the minimal closure of KB.
21
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Assume α ∧ γ |∼ β is in the RC of KB∧ , and let R be the minimal ranked model of KB∧ . That means that min�α ∧
γ �R ⊆ �β�. Also, since Rank(KB∧, γ ) < ∞, we have that �γ � ∩ Uf

R �= ∅. By construction of the minimal epistemic 
model of KB, EKB , Uf

EKB
= Uf

R , and the rank of each valuation is the same. Consequently, we have that �γ �fEKB
�= ∅. 

According to Definition 3.2, we have to check whether �γ �fEKB
⊆ �¬α� or �α ∧ γ �EKB ⊆ �β�. From R � α ∧ γ |∼ β , we 

single out two possible cases:
– Rank(KB∧, α) = ∞. This implies that �γ �fEKB

⊆ �¬α�.

– Otherwise, in R we have min�α ∧ γ �f ⊆ �β�. Since EKB preserves in Uf
EKB

the same ranking as in Uf
R , we have 

�α ∧ γ �fEKB
⊆ �β�.

We can conclude that EKB � α |∼γ β .
Now we check the opposite direction: we assume EKB � α |∼γ β . Since Rank(KB∧, γ ) < ∞, by Definition 4.6 we have 
that �γ �fEKB

�= ∅. The latter, together with EKB � α |∼γ β , implies �α ∧ γ �fEKB
⊆ �β�. By Definition 4.6, this condition 

implies that �α ∧ γ �fR ⊆ �β�, which in turn implies R � α ∧ γ |∼ β .

Case 3. KB∧ �|= ⊥ and Rank(KB∧, γ ) = ∞.
We have to prove that in this case α ∧ γ |∼ β is in the RC of KB∧∞↓ iff α |∼γ β is in the minimal closure of KB.

Since Rank(KB∧, γ ) = ∞, we have that �γ � ∩ Uf
R = ∅. By construction of the minimal epistemic model of KB, EKB , 

Uf
EKB

= Uf
R . Consequently, we have that �γ �fEKB

= ∅ and �γ �EKB all have rank 〈∞, j〉, for some j.

Assume α∧γ |∼ β is in the RC of KB∧∞↓ , and let R ′ be the minimal ranked model of KB∧∞↓ . According to Definition 3.2, 
we have to check whether �α ∧γ �EKB ⊆ �β�. Assume this is not the case, that is, EKB � α |∼γ β . Since �γ �fEKB

= ∅, all 
the valuations in �γ �EKB are ranked as infinite, and EKB � α |∼γ β implies that there is a valuation w in �α ∧ γ �EKB
s.t. w � β . Let w ∈ �〈∞, i〉�, for some i < ∞, and w � v , for every v ∈ �α ∧ γ �. By Definition 4.5, in R ′ we have 
w ∈ �i�, for some i < ∞, and w � v , for every v ∈ �α ∧ γ �. Hence, we would have R ′ � α ∧ γ |∼ β , which is against 
our hypothesis that α ∧ γ |∼ β is in the RC of KB∧∞↓ .

Now we assume EKB � α |∼γ β . Again, since �γ �fEKB
= ∅, all the valuations in �γ �EKB are ranked as infinite. The 

latter, together with Definition 4.5, implies that �γ �EKB = min�α ∧ γ �R′ , and consequently �γ �EKB ⊆ �β� implies 
min�α ∧ γ �R′ ⊆ �β�. We can conclude R ′ � α ∧ γ |∼ β , that is, α ∧ γ |∼ β is in the RC of KB∧∞↓ .

We have proved that in all possible cases MinimalClosure(KB, α |∼γ β) returns true iff KB |=m α |∼γ β . �
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