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We investigate an aspect of defeasibility that has somewhat been overlooked by the non-
monotonic reasoning community, namely that of defeasible modes of reasoning. These aim
to formalise defeasibility of the traditional notion of necessity in modal logic, in particular
of its different readings as action, knowledge and others in specific contexts, rather than
defeasibility of conditional forms. Building on an extension of the preferential approach
to modal logics, we introduce new modal operators with which to formalise the notion of
defeasible necessity and distinct possibility, and that can be used to represent expected
effects, refutable knowledge, and so on. We show how KLM-style conditionals can smoothly
be integrated with our richer language. We also propose a tableau calculus which is sound and
complete with respect to our modal preferential semantics, and of which the computational
complexity remains in the same class as that of the underlying classical modal logic.
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1. Introduction

Accounts of defeasible reasoning, as traditionally studied in the literature on counterfac-
tuals and non-monotonic reasoning, have focused mostly on one aspect of defeasibility
(or exceptionality), namely that of argument forms or conditionals. Such is the case
in conditional logics (Lewis, 1973; Stalnaker, 1968) as well as in the approach to non-
monotonic reasoning by Kraus et al. (1990) and Lehmann and Magidor (1992), known as
the KLM approach, and related frameworks (Boutilier, 1994; Britz, Heidema, & Meyer,
2008, 2009; Britz, Meyer, & Varzinczak, 2011a, 2012; Crocco & Lamarre, 1992; Friedman
& Halpern, 2001; Giordano, Gliozzi, Olivetti, & Pozzato, 2009a, 2009b, 2013, 2015). For
instance, in the KLM approach, (propositional) defeasible consequence relations |∼ with
a preferential semantics (Lewis, 1974; Shoham, 1988) are studied. In this setting, the
meaning of a defeasible statement (or a ‘conditional’, as it is sometimes referred to) of
the form α |∼ β is that “all normal α-worlds are β-worlds”, leaving it open for α-worlds
that are, in a sense, exceptional not to satisfy β. With the theory that has been devel-
oped around this notion it becomes possible to cope with exceptionality when performing
reasoning, as in the well-known Tweety example: normally, birds fly; penguins are birds,
but normally, penguins do not fly.
There are of course many other appealing and equally useful aspects of defeasibil-

ity besides that of arguments. These include notions such as typicality (Booth, Casini,
Meyer, & Varzinczak, 2015; Booth, Meyer, & Varzinczak, 2012, 2013; Giordano et al.,
2009b), concerned with the most typical cases or situations (or even the most typical
representatives of a class), and belief plausibility (Baltag & Smets, 2006, 2008), which
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relates to the most plausible epistemic possibilities held by an agent, amongst others. It
turns out that with KLM-style defeasible statements one cannot capture these aspects
of defeasibility. This has to do partly with the syntactic restrictions imposed on |∼,
namely no nesting of conditionals, but, more fundamentally, it relates to where and how
the notion of normality is used in such statements. Indeed, in a KLM defeasible state-
ment α |∼ β, the normality spotlight is somewhat put on α, as though normality was
a property of the premise rather than the conclusion. Whether or not the situations in
which β holds are normal, plays no role in the reasoning that is carried out. Moreover, in
the original KLM framework, normality is also linked to the premise as a whole, rather
than its constituents. Technically, this meant one could not refer directly to normality
of a sentence in the scope of logical operators. This limitation is overcome by taking a
(modal) conditional approach à la Boutilier (1994) or Governatori et al. (2012) — the
resulting conditional logics are sufficiently general to allow for the expression of a num-
ber of different forms of defeasible reasoning in modal logics. However, the considered
modalities are still the classical ones and the emphasis remains on the defeasibility of
either conditionals or rules — again, of arguments forms.
In this paper, we investigate a related, but incomparable, notion which we refer to as

defeasible modes of inference (Britz & Varzinczak, 2012). These amount to defeasible
versions of the traditional notion of necessity in modal logics and its different readings as
action, knowledge and others in specific application domains. For instance, in an action
context, one can say that normally the outcome of a given action a is α. However, we
may also want to state that the normal outcome of a is α (Laverny & Lang, 2005), which
is different from the former statement. To see why, the first statement says that in the
most normal worlds, the result of performing the action a is always α, whereas in the
second one it is in the most normal situations resulting from a’s execution that α holds.
For a concrete example, assume one arrives at a dark room and wants to toggle the

light switch. Exceptionally, the light will not turn on. This can be either because the light
bulb is blown (the current situation is abnormal) or because an overcharge resulted from
switching the light (the action behaves abnormally). In the former case, the normality
of the situation or state before the action is assessed, whereas in the latter the relative
normality of the situation is assessed against all possible outcomes. Here we are interested
in the formalisation of the latter type of statement, where it becomes important to shift
the notion of normality from the premise of an inference to — in this example — the
effect of an action and, importantly, use it in the scope of other logical constructors.
The importance of defeasibility in specific modes of reasoning is also illustrated by

the following example. Although one may envisage a situation where the velocity of a
sub-atomic particle in a vacuum is greater than c (the speed of light in a vacuum), it
is in a sense known that c is the highest possible speed. We are then entitled to derive
factual consequences of this scientific theory that also will be ‘known’. This venturous
version of knowledge, which patently differs from belief, provides for a more fine-grained
notion of knowledge that may turn out to be wrong but which is not of the same nature
as suppositions or beliefs. (We do not say “we believe the speed of light is the limit”.) Our
proposal is not aimed at challenging the position of knowledge as indefeasible, justified
true belief (Gettier, 1963; Lehrer & Paxson, 1969), but rather provides an extension to
epistemic modal logics to allow for reasoning with a notion that we shall refer to as
“refutable knowledge”.

The remaining of the present text is structured as follows: after setting up the notation
and terminology that we shall follow in this paper (Section 2), we define a modal language
enriched with defeasible modalities allowing for the formalisation of defeasible versions of
modes of inference (Section 3). In particular, we discuss what an appropriate semantics
for this new modal language should be by examining some candidates from the literature.
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Following that, we revisit Britz et al.’s preferential semantics for modal logic (Britz et al.,
2011a, 2012) and argue that it is an adequate semantics for our framework (Section 4).
One of the reasons is that it allows for a smooth integration of KLM-style conditionals
with our richer language, which we address in Section 5. Following that, we define a
tableau system for this broader framework allowing for both defeasible modalities and
defeasible conditionals (Section 6), and show that it is sound and complete with respect
to our preferential semantics. After a discussion of, and comparison with, related work
(Section 7), we conclude with some comments and directions for further investigation.

The present submission is an elaborated extended version of the work read at the
14th Conference on Theoretical Aspects of Rationality and Knowledge (TARK), which
is available on arXiv (http://arxiv.org/abs/1310.6409).

2. Logical Preliminaries

In this work, we shall assume the reader is familiar with modal logic (Blackburn, Ben-
them, & Wolter, 2006; Chellas, 1980). The purpose of this section is mainly to make
explicit the terminology and notation that we shall employ.

We assume a set of atomic propositions P, using the logical connectives ∧ (conjunc-
tion), ¬ (negation), and a set of modal operators 2i, 1 ≤ i ≤ n. Propositions are
denoted by p, q, . . ., and sentences by α, β, . . ., constructed in the usual way according
to the following rule (1 ≤ i ≤ n):

α ::= p | ¬α | (α ∧ α) | 2iα

All the other truth-functional connectives (∨,→,↔, . . . ) are defined in terms of ¬ and ∧
in the usual way. Given 2i, 1 ≤ i ≤ n, with 3i we denote its dual modal operator, i.e., for
any α, 3iα := ¬2i¬α. We use > as an abbreviation for p∨¬p and ⊥ as an abbreviation
for p ∧ ¬p, for some p ∈ P.
With L2 we denote the language of all modal sentences, which is understood as the set

of symbol sequences generated according to the rules above. When writing down concepts
of L2, we shall omit parentheses whenever they are not essential for disambiguation.

The semantics is the standard possible-worlds one:

Definition 1 (Kripke Model). A Kripke model is a tuple M := 〈W,R,V〉 where W is
a (non-empty) set of possible worlds, R := 〈R1, . . . ,Rn〉, where each Ri ⊆W×W is an
accessibility relation on W, 1 ≤ i ≤ n, and V : W −→ {0, 1}P is a valuation function
mapping possible worlds into propositional valuations.

As an example, Figure 1 depicts the Kripke model M1 = 〈W1,R1,V1〉, where W1 :=
{wi | 1 ≤ i ≤ 4}, R1 := 〈Ra,Rb〉, with Ra := {(w1, w1), (w1, w2), (w3, w3), (w3, w4)}, and
Rb := {(w1, w4), (w2, w1), (w2, w2), (w2, w4), (w4, w3)}, and V1 is the obvious valuation
function.
In our pictorial representations of models, we shall represent propositional valuations

as sequences of 0s and 1s, and with the obvious implicit ordering of atoms. Thus, for
the logic generated from p and q, the valuation in which p is true and q is false will be
represented as 10. We shall use w, u, v, . . . (possibly decorated with primes) to denote
possible worlds.
Sentences of L2 are true or false relative to a possible world in a given Kripke model.

This is formalised by the following truth conditions:

Definition 2 (Truth Conditions). Let M = 〈W,R,V〉 and w ∈W:

3
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Figure 1. A Kripke model for P = {p, q} and two modalities, namely a and b.

• M , w  p if and only if V(w)(p) = 1;
• M , w  ¬α if and only if M , w 6 α;
• M , w  α ∧ β if and only if M , w  α and M , w  β;
• M , w  2iα if and only if M , w′  α for all w′ such that (w,w′) ∈ Ri.

Given α ∈ L2 and M = 〈W,R,V〉, we say that M satisfies α if there is at least one
world w ∈ W such that M , w  α. We say that M is a model of α (alias α is true in
M ), denoted M  α, if and only if M , w  α for every world w ∈ W. Given a class
(i.e., a collection) of models M, we say that α is valid in M, denoted |=M α, if and
only if every Kripke model M ∈ M is a model of α. Given K ⊆ L2 and α ∈ L2, we
say that K locally entails α in the class of modelsM, denoted K |=M α, if and only if
for every Kripke model M ∈ M and every w in M , if M , w  β for every β ∈ K, then
M , w  α. (When the class of models we are working with is clear from the context, we
shall dispense with subscripts and just write |= α and K |= α.)

Here we shall assume the system of normal modal logic K, of which all the other
normal modal logics are extensions. Semantically, K is characterised by the class of all
Kripke models. Syntactically, K corresponds to the smallest set of sentences containing
all propositional tautologies, all instances of the axiom schema K : 2i(α→ β)→ (2iα→
2iβ), 1 ≤ i ≤ n, and closed under the rule of necessitation below (1 ≤ i ≤ n):

(RN)
α

2iα

For more details on modal logic, we refer the reader to the handbook by Black-
burn et al. (Blackburn et al., 2006).

3. Towards a Logic for Expressing Defeasible Modalities

Recalling our discussion in the Introduction, we want to be able to state that a given
sentence holds in all the relatively normal alternative worlds. This leads us to the defi-
nition of a ‘weaker’ version of the 2 modality, which can be read as defeasible necessity.
Through it we shall then be able to single out those normal situations that one cannot
grasp via the classical 2 modalities (recall the examples in the Introduction). Similarly,
we want to be able to state that a given sentence holds in at least one relatively normal
alternative world. This leads us to the definition of a stronger version of 3, which, as we
shall see, may be read as distinct possibility.

4



October 20, 2017 Journal of Applied Non-Classical Logics JANCL-DefModalities

Example 1 below introduces the application scenario we shall use in the rest of the
paper, with the purpose of illustrating more concretely the definitions and results that
will follow.

Example 1. We want to reason about a particular message, which may or may not be
cyphered. If the message is cyphered, then it is safe. A given agent can encrypt, decrypt
or transmit the message (i.e., broadcast it, making it public). Usually, if the message
is public, then it is safe (because it presumably has been cyphered prior to transmission,
which made it public). Transmitting the message may fail in producing its expected effects.
Moreover, if the message is cyphered, then the agent (defeasibly) knows it is safe (since,
plausibly, no one else can decrypt the message).

We define a more expressive language than L2 by extending our modal language with
a family of defeasible modal operators p∼∼pi and p∼∼p i, 1 ≤ i ≤ n (called, respectively, ‘flag’
and ‘flame’), where n is the number of classical modalities in the language. The sentences
of the extended language are then recursively defined by:

α ::= p | ¬α | α ∧ α | 2iα | p∼∼piα | p∼∼p iα

(As before, the other connectives are defined in terms of ¬ and ∧ in the usual way, and
> and ⊥ are seen as abbreviations. It turns out that each p∼∼p i too is meant to be the
dual of p∼∼pi, as we shall see below.) With Lp∼∼p we denote the set of all sentences of such a
richer language. Example 2 below provides some examples of Lp∼∼p-sentences formalising
the scenario introduced in Example 1.

Example 2. Let P := {p, c, s} be a set of propositions representing, respectively, “the
message is public”, “the message is cyphered” and “the message is safe”. Let A := {e, d, t}
be a set of action names for the actions of “encrypting the message”, “decrypting the
message” and “transmitting the message”. The following are examples of Lp∼∼p-sentences:
c → s (“if the message is cyphered, then it is safe”); 2ec ∧ 2d¬c (“encrypting cyphers
the message and decrypting decyphers it”); p∼∼ptp (“a normal transmission of the message
ensures that it is public”) and c → p∼∼pts (“if the message is cyphered, then a normal
transmission ensures that the message remains safe”).

The question now is what an appropriate semantics for this language should be. Before
providing a concrete answer, we shall briefly assess some natural candidates from the
literature. (More details are provided in Section 7 on related work.)
Given the apparent similarities between the underlying intuition of p∼∼p and p∼∼p on the one

hand and the semantic characterisation of constructs from conditional logics (Boutilier,
1994; Delgrande, 1988; Stalnaker, 1968), counterfactuals (Lewis, 1973) and some deontic
logics (Hansson, 1969; Lewis, 1974) on the other, the obvious starting point would be
to consider the semantic definitions from these frameworks. Indeed, all of them handle,
in one way or another, operators that refer to “most typical” or “least abnormal” (or, in
the case of deontic logic, “most ideal”) situations.

Stalnaker’s semantics for conditional logics (Stalnaker, 1968) is based on a selection
function f which picks out the closest (most plausible) world to w satisfying a given
sentence:

f : L2 ×W −→W

The obvious drawback of adopting such a definition in our context is that it assumes
uniqueness of f(α,w), whereas we need the ability to single out possibly more than
one most normal alternative world to the current one. For instance, a non-deterministic
action may have more than one normal or expected outcome. To witness, when tossing
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a coin, there are two normal outcomes, viz. heads or tails, and an abnormal one, namely
the coin standing on its edge.
In Lewis’s systems of conditional and deontic logics (Lewis, 1973, 1974), the above

mentioned uniqueness assumption is dropped and f(α,w) is defined as a subset of W
instead. In principle, this should fit the bill. On the other hand, Lewis’s constructions
allow for a version of modus ponens for conditional statements:

α, α⇒ β

β

Even though a case can be made for having such a principle in a purely conditional
context, it becomes unwanted when interpreting conditionals as defeasible argument
forms (Boutilier, 1994, p. 92), as can be seen in our scenario example:

Example 3. Let the statement p ⇒ s denote “normally, if the message is public, then
it is safe”. Now, if the message is meant to always be public, one would (wrongly) infer
that it is always safe: from p and p⇒ s, conclude s.

Since our goal here is to move beyond defeasible conditionals but still making room for
them (as we shall see in Section 5), we must bear in mind the side effects that adopting
Lewis’s approach would bring about. (We shall come back to general conditional logics
à la Lewis in Section 7.)

Delgrande’s (1987; 1988) approach also adopts the semantics of standard conditional
logics and is based on a (general) selection function picking out the most normal worlds
relative to the current one. In his setting, a conditional α ⇒ β holds at a world w if
and only if the set of most normal α-worlds (relative to w) are also β-worlds. Besides
the issues pointed out by Kraus et al. (1990), a problem with Delgrande’s selection
function f is that it is arbitrary in the sense that the selected worlds in f(α,w) need
not satisfy α, which has the undesirable consequence that some α’s may not normally
imply themselves (Boutilier, 1994) — the so-called reflexivity property in KLM terms
that we shall recall in Section 5. We shall come back to Delgrande’s approach later on
in the section on related work (Section 7).

Baltag and Smets’s (2006; 2008) plausibility models capture some aspects of seman-
tics that we have in mind, but their focus is on epistemic and doxastic reasoning,
rather than on establishing a general framework, apt for reasoning e.g. about obliga-
tions or with ontologies in description logics (Baader, Calvanese, McGuinness, Nardi, &
Patel-Schneider, 2007), and integrating defeasible argument forms in the sense given by
Kraus et al. (1990). (We shall return to the latter point in Section 5.)
Van Benthem (2010) outlines a modal logic of ‘betterness’, applicable to decision theory

or game theory. Here, like in Baltag and Smets’ approach, the preferences of each agent
are explicit in the language in the form of a modal operator (the syntactic counterpart
of the plausibility relation ≤). Obligations can also be expressed using the preference
modality, but the resulting semantics of “α ought to be true” is then “α is true in all
the best worlds”. There is therefore no notion of defeasibility present as in our proposed
reading of “α is true in all the best alternative worlds”.

Of course, this is not to say that none of the aforementioned approaches are appro-
priate for our purposes here. At the end of the day, it remains a matter of finding a
good compromise among aspects that are crucial from a knowledge representation and
reasoning perspective. These include expressivity, intuitiveness, robustness, decidability,
scalability and amenability to implementation, to name but a few. Here we shall strive for
a semantic framework that (i) is expressive while still elegant and decidable, (ii) transfers
smoothly to different contexts (and possibly to different logics), and (iii) also accounts
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for defeasible arguments of the form α |∼ β, i.e., that can easily be integrated with
well-established approaches to non-monotonic reasoning such as the KLM one.

In this respect, we shall anchor our semantic constructions in the so-called prefer-
ential approach (Kraus et al., 1990; Shoham, 1988). The reason is threefold. First, it
is acknowledged as one of the most comprehensive and successful frameworks for non-
monotonic reasoning in the propositional case. Second, it transfers smoothly to more
expressive languages such as modal logic (Britz et al., 2011a, 2012; Britz & Varzinczak,
n.d., 2016b), description logics (Britz, Casini, Meyer, Moodley, & Varzinczak, 2013; Britz
et al., 2008; Britz & Varzinczak, 2016a, 2017a, 2017b; Giordano, Gliozzi, Olivetti, & Poz-
zato, 2007, 2008; Giordano et al., 2009b; Giordano, Gliozzi, Olivetti, & Pozzato, 2012;
Giordano et al., 2013, 2015), and others (Booth et al., 2015, 2012, 2013). Finally, it
satisfies two fundamental desiderata in logic-based knowledge representation and rea-
soning, namely simplicity of the representation formalism and amenability to practical
implementation (Casini, Meyer, Moodley, Sattler, & Varzinczak, 2015).
In the following, we provide the formal definition of our preferential semantics for

modal logic and investigate some of the properties of the resulting framework for defea-
sible modalities.

4. A Preferential Kripke Semantics for Defeasible Modalities

In this section, we modify the constructions for preferential reasoning in modal logic as
studied by Britz et al. (2011a; 2012) in the purely conditional case. We do so by enriching
standard Kripke models with preference relations, instead of placing an ordering on states
labeled by pointed Kripke models. Our starting point is therefore similar to the CT4O
models of Boutilier (1994) and the plausibility models of Baltag and Smets (2006). (The
differences will arise from the properties of our constructions and we shall point them
out in more detail in Section 7.)

Definition 3 (Preferential Kripke Model). A preferential Kripke model is a tuple P :=
〈W,R,V,≺〉 where W is a (non-empty) set of possible worlds, R := 〈R1, . . . ,Rn〉, where
each Ri ⊆ W ×W is an accessibility relation on W, 1 ≤ i ≤ n, V : W −→ {0, 1}P is a
valuation function, and ≺ ⊆W×W is a strict partial order (irreflexive and transitive)
on W, satisfying the smoothness condition, i.e., ≺ has no infinitely descending chains.

Given a preferential Kripke model P = 〈W,R,V,≺〉, we refer to M := 〈W,R,V〉 as
its associated standard Kripke model.

Definition 4 (Minimality w.r.t. ≺). Let P = 〈W,R,V,≺〉 and let W′ ⊆ W. Then
min≺W′ := {w ∈W′ | there is no w′ ∈W′ such that w′ ≺ w}, i.e., min≺W′ denotes the
minimal elements of W′ with respect to ≺.

The intuition behind the preference relation ≺ in a preferential Kripke model P
is that worlds lower down in the order are more preferred (or deemed as being more
normal (Booth et al., 2012; Boutilier, 1994)) than those higher up. Note that smoothness
ensures min≺W′ 6= ∅, for every non-empty subset W′ of the set of possible worlds in a
preferential Kripke model.
It is worth pointing out that the preference relation in a preferential Kripke model,

although a binary relation on W, is not to be seen as an accessibility relation. Indeed,
the ≺-component in a preferential Kripke model has no counterpart in the syntax as
each accessibility relation has (in the same way that possible wolds are not part of the
syntax). As will be made clear later on, this need not be the case, but there are very
good reasons for doing so.
We assume (for now) a single preference order across worlds in each preferential Kripke
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model, but of course Definition 3 can easily be generalised to a multi-preferential case.
(This is particularly useful if one wants the ability to allow for several subjective order-
ings, like in a multi-agent context (Baltag & Smets, 2006).)

As an example, Figure 2 below depicts the preferential Kripke model P1 :=
〈W1,R1,V1,≺1〉, where 〈W1,R1,V1〉 is as in Figure 1, and ≺1:= {(w1, w2), (w2, w3),
(w1, w3), (w4, w3)}, represented by the dashed arrows in the picture. (Note the direction
of the dashed arrows, which point from more preferred to less preferred worlds.)

P1 :

w100

w201 w3 11

w4 10

a

a

b

b

b

b

a

a

b

Figure 2. A Preferential Kripke model for P = {p, q} and two modalities.

If P = 〈W,R,V,≺〉 is a preferential Kripke model, w ∈ W and α ∈ L2 (i.e., α is
a classical modal sentence), then P, w  α if and only if M , w  α. With JαKP :=
{w ∈ W | M , w  α, where P = 〈W,R,V,≺〉} we denote the set of possible worlds
satisfying α (α-worlds for short) in P. We say that α is satisfiable in P if JαKP 6= ∅,
otherwise α is unsatisfiable in P. We say that α is true in P (denoted P  α) if
JαKP = W.
It is easy to see that the addition of the ≺-component preserves the truth of all

(classical) modal sentences that are true in the underlying Kripke structure. That is, for
every α ∈ L2 and every P = 〈W,R,V,≺〉, P  α if and only if 〈W,R,V〉  α.

We can define classes of preferential Kripke models in the same way we do in the
classical modal case. For instance, we can talk about the class of reflexive preferential
Kripke models, in which the R-components are reflexive. We say that α is valid in
the class M of preferential Kripke models if and only if α is true in every P ∈ M.
Therefore, an immediate consequence of the observation in the preceding paragraph is
that a classical modal sentence α is valid in the classM of preferential Kripke models
if and only if it is valid in the corresponding class of Kripke models.

Armed with the notion of preferential Kripke models, we can provide a simple and
intuitive semantics for our idea of defeasible modalities.

Definition 5 (Satisfaction Extended). Let P = 〈W,R,V,≺〉 be a preferential Kripke
model and w ∈W.

• P, w  p∼∼piα if and only if P, w′  α for all w′ such that w′ ∈ min≺Ri(w);
• P, w  p∼∼p iα if and only if P, w′  α for some w′ such that w′ ∈ min≺Ri(w).

Given α ∈ Lp∼∼p (introduced on page 5) and preferential Kripke model P = 〈W,R,V,≺〉,
as before, with JαKP we denote the set of elements of W satisfying α. The notions of
satisfaction in a preferential Kripke model, truth (in a model) and validity (in a class of
preferential Kripke models) are extended to sentences of Lp∼∼p in the obvious way.
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The intuition behind a sentence like p∼∼piα is that α holds in the most normal of Ri-
accessible worlds. p∼∼p iα intuitively says that α holds in at least one such relatively normal
accessible world. Example 4 below, which is a continuation of Example 2, illustrates
more concretely these notions.

Example 4. Consider the preferential Kripke model P2 := 〈W2,R2,V2,≺2〉, which is
depicted in Figure 3 below and where W2 := {wi | 1 ≤ i ≤ 6}, R2 := 〈Re,Rd,Rt〉,
with Re := {(w3, w1), (w4, w2)}, Rd := {(w1, w3), (w2, w4)}, Rt := {(w1, w2), (w2, w2),
(w3, w4), (w3, w5), (w5, w4), (w5, w6)}, V2 is the obvious valuation function, and ≺2:=
{(w1, w3), (w3, w5), (w1, w5), (w3, w4), (w1, w4), (w4, w6), (w3, w6), (w1, w6), (w2, w4),
(w4, w5), (w2, w5), (w2, w6)}. (For the sake of readability, the transitive arrows of ≺2

have been omitted from the picture.)

P2 :

w1011

w3000

w5001

w2 111

w4 100

w6 101

t

d

t

de

t

t

e

t

t

Figure 3. A Preferential Kripke model for P = {p, c, s} and the action modalities A = {e, d, t}.

Given the preferential Kripke model P2 in Figure 3, we can check that:

• P2  c→ s: “if the message is cyphered, then it is safe”;
• P2 6 p∼∼pts: “it is not the case that (every) normal transmission of the message
ensures that it is safe”, since w5 /∈ Jp∼∼ptsKP2;
• P2  p∼∼ptp: “(any) normal transmission of the message ensures that it is public”,
but note that P2 6 2tp, since w3 /∈ J2tpKP2 .

As mentioned before, in our enriched language, the preference relation is not explicit
in the syntax. The meaning of the new modalities is informed by the preference rela-
tion, which nevertheless remains tacit outside the realm of defeasible modalities.1 This
stands in contrast to the approaches of Baltag and Smets (2006; 2008), Boutilier (1994),
Britz et al. (2009) and Giordano et al. (2009a), which cast the preference relation as
an extra modality in the object language. From a knowledge representation perspective,
our approach has the advantage of hiding away some complex aspects of the semantics
from the user (e.g. a knowledge engineer who will write down sentences in an agent’s

1A similar approach is followed by Booth et al. (2015; 2012; 2013) in their extension of propositional logic to deal
with ‘typical’ α-situations.
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knowledge base and who will also have to maintain it during its life time). This speaks
to the desiderata we mentioned at the end of Section 3.

We now turn our attention to some of the properties of preference-based defeasible
modalities. We start by observing that, just as in the classical (i.e., non-defeasible) case,
the defeasible modal operators p∼∼p and p∼∼p are the dual of each other, i.e., for 1 ≤ i ≤ n:

|= p∼∼piα↔ ¬ p∼∼p i¬α (1)

The following validities are also easy to verify (1 ≤ i ≤ n):

|= p∼∼pi⊥ ↔ 2i⊥, |= 3i> ↔ p∼∼p i>, |= p∼∼pi> ↔ >, |= p∼∼p i⊥ ↔ ⊥

The following is the p∼∼p-version of axiom schema K.

|= p∼∼pi(α→ β)→ (p∼∼piα→ p∼∼piβ) (K̃)

The validity below is easy to verify:

|= p∼∼pi(α ∧ β)↔ (p∼∼piα ∧ p∼∼piβ) (R̃)

We also have |= (p∼∼piα ∨ p∼∼piβ) → p∼∼pi(α ∨ β), but not the converse, as can easily be
checked.

The following validity testifies to the adequacy of our preferential semantics as an
approach to defeasible modalities:

|= 2iα→ p∼∼piα (Ñ)

Intuitively, given i = 1, . . . , n, where n is the number of modalities in the language,
we want 2i and p∼∼pi to be somehow ‘tied together’ in so far as one is the defeasible
(respectively, the ‘hard’) version of the other. Schema (Ñ) is in line with the commonly
accepted principle that whatever is classically the case is also defeasibly so. (This is
similar to what happens in KLM consequence relations, i.e., α |= β implies α |∼ β (Kraus
et al., 1990), and in defeasible subsumption relations, i.e., C v D implies C <∼D (Britz
et al., 2008).)
Given (Ñ), it then follows that

|= p∼∼p iα→ 3iα, (2)

rendering support for our reading of p∼∼p as distinct possibility.

It can easily be checked that in our preferential semantics, the standard rule of ne-
cessitation holds.1 The following rule of normal necessitation (RNN) follows from RN
together with Schema (Ñ) above (1 ≤ i ≤ n):

(RNN)
α

p∼∼piα

1Contrary to a version of preferential semantics for modal logic (Britz, Meyer, & Varzinczak, 2011b; Britz et al.,
2012) based on states, which are labeled by pointed Kripke models, somewhat mimicking the original formulation
by Kraus et al. (1990) in the propositional case.

10
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From satisfaction of (1), (K̃) and (R̃), one can see that the logic of our defeasible
modalities shares properties commonly characterising the so-called normal modal log-
ics (Chellas, 1980). In particular, we have that the following rule holds:

(NRK)
(α1 ∧ . . . ∧ αn)→ β

(p∼∼piα1 ∧ . . . ∧ p∼∼piαn)→ p∼∼piβ
(n ≥ 0)

The observant reader would have noticed that we assume there are as many defeasible
modalities as there are classical ones. That is, for each 2i, a corresponding p∼∼pi (its
defeasible version) is assumed. Moreover, they are both linked together via Schema (Ñ).
In principle, from a technical point of view, nothing precludes us from having defeasible
modalities with no corresponding classical version or the other way round. The latter
is easily dealt with by simply not having p∼∼pi for some i for which 2i is present in
the language. The former case, on the other hand, would require an elaboration of our
semantics since the definition of satisfiability of p∼∼p-sentences calls upon the accessibility
relation Ri, associated with the 2i-modality. Even though one can make a case for
only wanting the defeasible version of a given modality to be available in the syntax,
it somewhat deviates from our stated aim of having defeasible versions of the (already
existing) modalities in our language and we shall not investigate this further here.
The dependency between each (classical) modality and its defeasible counterpart is

defined by a (fixed) preference order on worlds in the model. Since, by virtue of a moti-
vated design choice (Section 3), the preference relation ≺ is not in the object language,
clearly there can be no Hilbert-style axiomatisation of this dependency. One can get
such an axiomatisation at the expense of adding new constructs to the language. For
instance, by casting the preference order as a modality, one can axiomatise the relation-
ship between p∼∼pi, p∼∼p i and the preference order ≺, for each i. To this end, we may use,
for example, the modal axiomatisation of the preference order of Britz et al. (2009), or
one of Boutilier’s (1994) modal systems. (We shall postpone the technical details until
Section 7.) An axiomatisation then becomes possible at the expense of moving to a more
expressive language (see the remark in the first paragraph after Example 4 and also the
discussion in Section 7). Nevertheless, from a computational logic point of view, we shall
suffice with the definition of a tableau-based decision procedure, which will be presented
in Section 6.

5. Integrating Defeasible Modalities and KLM Conditionals

With defeasible modalities only we cannot directly express KLM-style conditionals of
which the intuition is to capture a notion of defeasible argument form. Therefore, an
obvious next step to the work presented here is the extension of Lp∼∼p with a version
of defeasible conditional, resulting in a framework allowing for the expression of both
defeasible modalities and defeasible argument forms.1

We now enrich Lp∼∼p with a defeasible implication connective ;. The sentences of the
extended language are then recursively defined by (1 ≤ i ≤ n):

α ::= p | ¬α | α ∧ α | 2iα | p∼∼piα | α; α

(Again, the classical connectives are defined in terms of ¬ and ∧ in the usual way, >
and ⊥ are seen as abbreviations, and each p∼∼p i is the dual of p∼∼pi — this being the reason

1In Section 7, we shall see how defeasible modalities can be used to simulate defeasible conditionals indirectly.
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why we now drop p∼∼p from the grammar.) A sentence of the form α ; β should be read
as “normally, if α, then β”. With Lp∼∼p+ ; we denote the set of all sentences of such a richer
language. Example 5 below provides some examples of Lp∼∼p+ ;-sentences.

Example 5. Let P and A be as in Examples 2–4. The following are examples of Lp∼∼p+ ;-
sentences: p ; s (“normally, if the message is public, then it is safe”); p ∧ ¬c ; ¬s
(“normally, if the message is public but not cyphered, then it is not safe”) and >; 2ts
(“normally, transmitting the message ensures that it is safe”).

Not surprisingly, our preferential Kripke semantics provides a natural way for inter-
preting ;-sentences:

Definition 6 (Satisfaction Extended Further). Let P = 〈W,R,V,≺〉 be a preferential
Kripke model and w ∈W. For every α, β ∈ Lp∼∼p+ ;:

• P, w  α; β if and only if w /∈ min≺JαKP or w ∈ JβKP .

As before, the notions of satisfaction in a preferential Kripke model, truth (in a model)
and validity (in a class of preferential Kripke models) are extended to sentences of Lp∼∼p+ ;

in the obvious way.

The intuition of a sentence of the form α; β is that in those most normal situations
in which α holds, β also holds. This is captured precisely by the following immediate
consequence of Definition 6: P  α ; β if and only if min≺JαKP ⊆ JβKP . As an
example, in the preferential model P1 of Figure 2, we have P1  ¬p; 2b¬q (but note
that P1 6 ¬p → 2b¬q). We also have P1  p ; 3b(q ∧ 2ap) and P1 6 2a¬p ; q
(from the latter follows P1 6 2a¬p→ q).

The observant reader would have noticed that the semantics of our ;-sentences differs
from that of KLM-style conditionals in that here we adopt a ‘local’ notion of satisfaction,
i.e., world driven, instead of model driven. This is the result of a number of choices
we make in the present work: (i) the adoption of local entailment, rather than global
entailment (cf. paragraph following Definition 2), (ii) the definition of ; at the object
level, rather than at the meta-level, as it is the case with KLM conditionals, and (iii) the
assumption of supraclassicality w.r.t. the underlying classical conditional.
There are strong arguments for each of these choices. About (i), local entailment is the

standard notion of entailment adopted and motivated in, e.g., standard texts on modal
logic such as Blackburn et al. (2006). With respect to (ii), including ; at the object
level allows for nesting of defeasible conditionals (as motivated by Boutilier (1994)), and
building complex modal expressions using different defeasible constructs. About (iii),
the assumption of supraclassicality of the defeasible conditional is a cornerstone of non-
monotonic reasoning in the KLM tradition.

It is worth noting that if only a classical underlying modal language is assumed (e.g.
as in the work of Britz et al. (2011a; 2012)), then defeasible conditionals of the above
form would still have the same intuition as mentioned in the Introduction. To witness,
the statement 3α; 2β just says that “all normal worlds with an α-successor have only
β-successors”. That is, any ;-sentence still refers only to normality in the premise, or, in
this case, of the ‘actual’ world. In our enriched language, it becomes possible to exploit
the different nuances resulting from where the normality spotlight is, as the following
example, which is a continuation of Example 4, shows in a context involving actions,
knowledge and conditionals.

Example 6. Assume that A designates an agent’s name and consider the preferential
Kripke model P3 := 〈W3,R3,V3,≺3〉, where W3 = W2, V3 = V2 and ≺3=≺2 as in P2

(Figure 3), and R3 := 〈Re,Rd,Rt,RA〉, with Re, Rd, Rt as in P2 and RA := {(w1, w1),
(w1, w2), (w2, w2), (w2, w1), (w5, w5), (w5, w6), (w6, w6), (w6, w5)}. Figure 4 depicts a
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representation of P3. (Again, in the picture we omit the transitive arrows of ≺3.)

P3 :

w1011

w3000

w5001

w2 111

w4 100

w6 101

t

d

t

de

t

t

e

t

t

AA A

AA A

Figure 4. A Preferential Kripke model for P = {p, c, s}, the action modalities A := {e, d, t} and the extra
epistemic modality A. Note that transitivity of ≺3 is implicit in the picture.

Given the preferential Kripke model P3 in Figure 4, one can check that:

• P3  p ; (¬c ; ¬s): “normally, if the message is public, then, normally, if it is
not cyphered, it is not safe either”;
• P3  2A(p ; s): “A knows that, normally, if the message is public, then it is
safe”;
• P3  p ; 2As: “normally, if the message is public, then A knows it is safe”;
• P3  p→ p∼∼pAs: “if the message is public, then A defeasibly knows that it is safe”;
• P3  p→ 2A(>; s): “if the message is public, then A knows that it is normally
safe”;
• P3  p∼∼pt2As: “normal transmission of the message ensures that A knows it is
safe”. But note that P3 6 2Ap∼∼pts, since w5 /∈ J2Ap∼∼ptsKP3 .

The addition of a defeasible implication connective to Lp∼∼p represents a natural pro-
gression of work in the non-monotonic reasoning tradition, including the KLM frame-
work (1990; 1992) and Boutilier’s conditional logics of normality (1994). The following
result shows that our defeasible implication connective ; behaves in a way that is com-
monly viewed as appropriate in the literature on non-monotonic reasoning. To be specific,
;-sentences satisfy versions of the well-known basic KLM rationality postulates (Kraus
et al., 1990), courtesy of our preferential Kripke semantics.

Proposition 1. For every α, β, γ ∈ Lp∼∼p+ ; and every preferential Kripke model P:

• P 6 >; ⊥ (Consistency)
• P  α; α (Reflexivity)
• If |= α↔ β and P  α; γ, then P  β ; γ (Left Logical Equivalence)
• If P  α; β and P  α; γ, then P  α; β ∧ γ (And)
• If P  α; γ and P  β ; γ, then P  α ∨ β ; γ (Or)
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• If P  α; β and |= β → γ, then P  α; γ (Right Weakening)
• If P  α; β and P  α; γ, then P  α ∧ γ ; β (Cautious Monotony)

Proof. See Appendix A.1.

Furthermore, we have that both |= ¬α ; (α ; β) and |= β ; (α ; β). This stands
in contrast with the conditional logics of Stalnaker (1968) and Lewis (1973), where
the exigence of avoiding the paradoxes of material implication was one of the main
motivations for their introduction. However, note that the following global variants of
the paradoxes of material implication do hold in the KLM framework:

p |∼ ⊥
p |∼ s

¬s |∼ ⊥
p |∼ s

(3)

We also have that for every α ∈ Lp∼∼p+ ; and every P, P  α if and only if P  ¬α; ⊥.
To see why, note that P  α if and only if JαKP = W if and only if J¬αKP = ∅ if and
only if min≺J¬αKP = ∅ if and only if min≺J¬αKP ⊆ J⊥KP if and only if P  ¬α; ⊥.
We conclude this section by observing that ;-sentences do not in general satisfy the

Rational Monotony property below proposed by Lehmann and Magidor (1992).

• If P  α; β and P 6 α; ¬γ, then P  α ∧ γ ; β

We shall not develop this further here, but we point out that by restricting our se-
mantics to ranked Kripke models (Britz et al., 2011a), i.e., preferential Kripke models
in which the preference relation is a modular order,1 we get a definition of ; satisfying
all the rationality postulates. Since ranked Kripke models are a subclass of preferencial
Kripke models, this would not affect the semantics of p∼∼p-sentences as studied in Section 4.

6. Tableau Calculus

In this section, we define a tableau calculus for reasoning with defeasible modalities
and defeasible conditionals. The calculus is based on labeled sentences and on explicit
accessibility relations (Goré, 1999).2 As we shall see, it also makes use of an auxiliary
structure of which the intention is to build a preference relation on possible worlds.
(For a discussion on the differences between our tableau method and the one by Gior-
dano et al. (2009a), which deals specifically with |∼-statements in a propositional setting,
see the end of Section 7.)

Definition 7 (Labeled Sentence). If n ∈ N and α ∈ Lp∼∼p+ ;, then n :: α is a labeled
sentence.

In a labeled sentence n :: α, n is the label. (As we shall see, informally, the idea is that
the label stands for some possible world in a Kripke model.)
Let mod(Lp∼∼p+ ;) denote the set of all classical modalities of Lp∼∼p+ ;. (Remember our

assumption that we have as many defeasible modalities as we have classical ones and
that, for a given i, both 2i and p∼∼pi semantically depend on the same Ri. This explains
why in the definition below it is enough to consider only the classical modalities in the
construction of a structure which, intuitively, corresponds to the accessibility relations
on worlds.)

1Given a set X, ≺ ⊆ X×X is modular if and only if there is a ranking function rk : X −→ N such that for every
x, y ∈ X, x ≺ y if and only if rk(x) < rk(y). Note that modular orders can be obtained from total preorders by
imposing anti-symmetry.
2Our exposition here follows that given by Varzinczak (2002) and Castilho et al. (1999; 2002).
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Definition 8 (Skeleton). A skeleton is a function Σ : mod(Lp∼∼p+ ;) −→P(N×N).

Informally, a skeleton maps modalities in the language to accessibility relations on the
set of possible worlds.

Definition 9 (Preference). A preference relation ≺ is a binary relation on N.

As alluded to above, ≺ is meant to capture a preference relation on possible worlds.
As we shall see below, like Σ, ≺ is built cumulatively through successive applications of
the tableau rules we shall introduce.

Definition 10 (Branch). A branch is a tuple 〈S,Σ,≺〉, where S is a set of labeled
sentences, Σ is a skeleton and ≺ is a preference relation.

Definition 11 (Tableau Rule). A tableau rule is a rule of the form:

ρ
N ; Γ

D1 ; Γ′1 | . . . | Dk ; Γ′k

where N ; Γ is the numerator and D1 ; Γ′1 | . . . | Dk ; Γ′k is the denominator.

Given a rule ρ, N represents one or more labeled sentences, called the main sentences
of the rule, separated by ‘,’. Γ stands for any additional conditions (on Σ or ≺) that must
be satisfied for the rule to be applicable. In the denominator, each Di, 1 ≤ i ≤ k, has one
or more labeled sentences, whereas each Γ′i is the additional conditions to be satisfied
after the application of the rule (e.g. changes in the skeleton Σ or in the relation ≺).
The symbol ‘|’ indicates the occurrence of a split in the branch, i.e., a non-deterministic
choice of the possible outcomes, each of which has to be explored.

Figure 5 presents the set of tableau rules for Lp∼∼p+ ;. We say that a rule ρ is applicable
to a branch 〈S,Σ,≺〉 if and only if S contains an instance of the main sentences of ρ and
the conditions Γ of ρ are satisfied by Σ and ≺ (whenever appropriate). In the rules, we
abbreviate (n, n′) ∈ Σ(i) as n i→ n′, and n′ ∈ Σ(i)(n) as n′ ∈ Σi(n). With n?, n′?, n′′?, . . .
we denote labels that have not been used before (in the sequence of rule applications).
For every α, we let Wα

S := {n | n :: α ∈ S}. Finally, with n ∈ min≺X we denote the
fact that n is a minimal element in the set X, i.e., there is no n′ ∈ X such that n′ ≺ n.
The Boolean rules together with (2i) are as usual and need no explanation. Rule (p∼∼pi)

propagates sentences in the scope of a defeasible necessity operator to the most preferred
(with respect to ≺) of all accessible nodes. Rule ( p∼∼p i) creates a preferred accessible node
with the corresponding labeled sentences as content.
Rule (3i) replaces the standard rule for 3-sentences and requires a more thorough

explanation. Unlike in the defeasible version of the rule, namely ( p∼∼p i), we cannot assume
that there is a minimal accessible ¬α-world. We therefore need to take into account the
additional possibility that the accessible ¬α-world is not minimal. (This has to be dealt
with explicitly in order to ensure soundness of the algorithm.) Therefore, when creating
a new accessible node, there are two possibilities: either (i) it is minimal (with respect
to ≺) amongst all the accessible nodes, in which case the result is the same as that of
applying Rule ( p∼∼p i), or (ii) it is not minimal, in which case there must be a most preferred
accessible node that is more preferred (with respect to ≺) than the newly created one.
(This splitting is of the same nature as that in the (∨)-rule, i.e., it fits the purpose of a
proof by cases.)
Rules (;) and (6;) take care of, respectively, ;-sentences and their negations. Note

that, in Rule (;), the accessible preferred n?-world need not be minimal. It is not hard
to see that this does not mean ≺ may fail the smoothness condition. Indeed, the finite
depth of nesting of ; in the language ensures that no infinite chains of increasingly
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(⊥)
n :: α, n :: ¬α

n :: ⊥
(¬)

n :: ¬¬α
n :: α

(∧)
n :: α ∧ β

n :: α, n :: β
(∨)

n :: ¬(α ∧ β)

n :: ¬α | n :: ¬β

(2i)
n :: 2iα ; n

i→ n′

n′ :: α
(p∼∼pi)

n :: p∼∼piα ; n
i→ n′, n′ ∈ min≺Σi(n)

n′ :: α

( p∼∼p i)
n :: ¬p∼∼piα

n′? :: ¬α ; n
i→ n′?, n′? ∈ min≺Σi(n)

(3i)
n :: ¬2iα

n′? :: ¬α ; Γ′1 | n′? :: ¬α ; Γ′2
, where:

Γ′1 = {n i→ n′?, n′? ∈ min≺Σi(n)} and
Γ′2 = {n i→ n′?, n

i→ n′′?, n′′? ≺ n′?, n′′? ∈ min≺Σi(n)}

(;)
n :: α; β

n :: ¬α | n? :: α ; n? ≺ n | n :: β
( 6;)

n :: ¬(α; β)

n :: α, n :: ¬β ; n ∈ min≺Wα
S

(⊥≺)
n ∈ min≺Wα

S , n
′ ≺ n for some n′ ∈Wα

S
n :: ⊥

Figure 5. Tableau rules for defeasible modalities and conditionals.

preferred worlds can arise. Also, since n? is not accessible from any other world in the
partially constructed model, explicit mention of minimality (as in the case of the 3i-rule
discussed above) is not required.
Finally, Rule (⊥≺) performs a supplementary (meta-) consistency check based on the

preference relation and of which the explanation speaks for itself.

Definition 12 (Tableau). A tableau T for α ∈ Lp∼∼p+ ; is the limit of a sequence T 0,
. . ., T n, . . . of sets of branches where the initial T 0 := {〈{0 :: α}, ∅, ∅〉} and every T i+1

is obtained from T i by the application of one of the rules in Figure 5 to some branch
〈S,Σ,≺〉 ∈ T i. Such a limit is denoted T ∞.

Here we make the so-called fairness assumption: any rule that can be applied will
eventually be applied, i.e., the order of rule applications is not relevant. Moreover, we
assume that no rule is applied more than once to the same instance of a labeled sentence
on the same branch. We say a tableau is saturated if no rule is applicable to any of its
branches.

Definition 13 (Closed Tableau). A branch 〈S,Σ,≺〉 is closed if and only if n :: ⊥ ∈ S
for some n. A saturated tableau T for α ∈ Lp∼∼p+ ; is closed if and only if all its branches
are closed. (If T is not closed, then we say that it is an open tableau.)

For an example construction of a tableau, assume an underlying monomodal language
and consider the sentence α := p∼∼p(p → q) → (2p ; 2q), which is not preferentially
valid. Figure 6 below depicts the (open) tableau T1 for ¬α := p∼∼p¬(p∧¬q)∧¬(2p; 2q).
From the open tableau T1 shown in Figure 6, we extract the preferential Kripke

model PT1 depicted in Figure 7. (In Figure 7, the understanding is that 3 ≺ 2 and
that 0 is incomparable with respect to ≺ to the other possible worlds.)
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0 :: p∼∼p¬(p ∧ ¬q) ∧ ¬(2p; 2q)

0 :: p∼∼p¬(p ∧ ¬q), 0 :: ¬(2p; 2q)

0 :: 2p, 0 :: ¬2q ; Γ′0

1 :: ¬q ; Γ′1

1 :: p

1 :: ¬(p ∧ ¬q)

1 :: ¬p

1 :: ⊥

(⊥)

(∨)

1 :: ¬¬q

1 :: q

1 :: ⊥

(⊥)

(¬)

(∨)

(p∼∼p)

(2)

(3)

2 :: ¬q ; Γ′2

2 :: p

3 :: p

3 :: ¬(p ∧ ¬q)

3 :: ¬p

3 :: ⊥

(⊥)

(∨)

3 :: ¬¬q

3 :: q

(¬)

(∨)

(p∼∼p)

(2)

(2)

(3)

(6;)

(∧)

Γ′0 = set 0 as min≺W
2p
S

Γ′1 = add (0, 1) to Σ and set 1 as min≺Σ(0)

Γ′2 = add (0, 2) and (0, 3) to Σ, (3, 2) to ≺ and set 3 as min≺Σ(0)

Figure 6. Visualisation of the open tableau T1 for p∼∼p¬(p ∧ ¬q) ∧ ¬(2p; 2q).

PT1 :

311

210

0 00

Figure 7. Preferential Kripke model PT1
constructed from Figure 6.

We are now ready to state the main result of this section.

Theorem 1. The tableau calculus for Lp∼∼p+ ; is sound and complete with respect to our
modal preferential semantics.

Proof. See Appendix A.2.

Moreover, our tableau calculus provides us with a decision procedure for Lp∼∼p+ ;:

Theorem 2. The tableau calculus for Lp∼∼p+ ; terminates.

Proof. It can easily be checked that in the construction of the tableau there is only a
finite number of distinct states since every sentence generated by the application of a
rule is a sub-sentence of the original one.
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We end this section by noting that the addition of both p∼∼p and ; to the underlying
modal language does not affect the space complexity of the resulting tableaux.

Theorem 3. Satisfiability checking for Lp∼∼p+ ; is pspace-complete.

Proof. It is well-known that satisfiability checking for classical modal logic K and Kn are
both pspace-complete (Halpern & Moses, 1992; Ladner, 1977). If the sentence at the
root of the tableau is α, and |α| = m, i.e., m is the number of symbols occurring in α,
then the space requirement for each label is at most O(m). Since there is a saturated
tableau with depth at most O(m2), the total space requirement is O(m3).

In summary, in spite of the additional expressivity brought in by the introduction of
preferential versions of modal operators and of a defeasible conditional, we remain in
the same complexity class as that of the modal logic we started off with.

7. Related Work

In what follows, we shall restrict our discussion to a representative selection of influential
related research efforts.

Conditional Logics

We start with a remark on a possible translation between our p∼∼p-logic and conditional
logic à la Lewis. Assume a multi-conditional language, i.e., assume we have a collection of
operators⇒i, 1 ≤ i ≤ n. For each w, let the selection function f(·) pick out the minimal
of the accessible worlds from w. Then each p∼∼piα can be captured as the statement
> ⇒i α. (This of course does not mean that the p∼∼p-logic is trivial since smoothness and
minimality still have to be axiomatised.) For the other direction, i.e., for an embedding of
conditionals in a p∼∼p-language, for each α ∈ L2, let Rα := {(w,w′) | w  α and w′  α}.
Then the conditional α ⇒ β is captured by the sentence p∼∼pαβ. Note that this mapping
still does not define each of the (classical) 2i, which would have to be defined separately,
and semantically linked to the corresponding p∼∼pi.
The exigence of avoiding the paradoxes of material implication was one of the main

motivations for the introduction of conditional logics by Stalnaker and Lewis. Our inte-
gration of defeasible implication ; with our language of defeasible modalities is rather a
natural progression of work in the non-monotonic reasoning tradition. To the best of our
knowledge, the first attempt to formalise a notion of relative normality in the context of
defeasible reasoning was that of Delgrande (1987; 1988) in which a conditional logic of
normality is defined. Given the relationship between the general constructions on which
we base our work and those by Kraus et al. (1990), most of the remarks in the com-
parison made by Lehmann and Magidor (1992, Section 3.7) are applicable in comparing
Delgrande’s approach to ours and we do not repeat them here. We note though that, like
Kraus et al. and Boutilier, Delgrande focuses on defeasibility of argument forms rather
than modes of reasoning as we studied here. Contrary to them, and as we have seen in
Section 3, Delgrande adopts the semantics of standard conditional logics (Chellas, 1980,
Chapter 10). In his setting, a conditional α⇒ β holds at a world w if and only if the set
of most normal α-worlds (relative to w) are also β-worlds. We can capture Delgrande’s
conditionals in our approach with p∼∼p-sentences of the form p∼∼p(α→ β) in the class of S5
preferential Kripke models.

Boutilier’s (1994) expressive conditional logics of normality act as unifying framework
for a number of conditional logics, including those of Delgrande and Kraus et al. The
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main difference between his approach and ours is in whether the underlying preference
order alters the meaning of modalities or not. Boutilier’s conditional is defined directly
from a preference order in a bi-modal language, but the meanings of any additional,
independently axiomatised, modalities are not influenced by the preference order. Our
defeasible modalities correspond to a modification of the other (classical) modalities
using the preference relation.

Makinson’s Conditional Obligations

In his comparative perspective on minimality, Makinson (1993) outlined a modal read-
ing of conditional obligations rooted in the work of Hansson (1969), Lewis (1974) and
others. Although he does not develop the formal details of the proposal, there are clear
connections with a deontic reading of our defeasible modalities, both technically and
philosophically. We therefore first sketch his proposal, and then link it to our work.
In Makinson’s proposal, the (indefeasible) conditional obligation O(β/α) is true in a

world w if and only if, for every world w′ future to w in which α is true, β is true in
all of the best among the worlds w′′ that are in turn accessible from w′. Leaving aside
the conditional and temporal aspects represented by α for a moment, this renders the
following simplified ‘customary’ reading of unconditional obligation: Oβ is true in w if
and only if β is true in the best of the worlds accessible from w. Now, this appears to
coincide with p∼∼p when it is interpreted as defeasible obligation, but one has to recall that
the conventional ‘best of the worlds’ presumably referred to here are the ‘ideal worlds’
selected by a choice function as found in counterfactual conditionals. The best of the
worlds here therefore have no bearing on the defeasibility of the obligation; rather, it is
part of the conventional stance on obligations referred to by Makinson, which can be
given a modal treatment. Of course, one can reinterpret the original meaning by placing
a preference order on worlds, apart from the accessibility relation corresponding to the
deontic modality. The best of the accessible worlds would then coincide with our notion
of defeasible obligation. In this sense, our work represents a natural progression of, e.g.
Lewis’s ‘best of a bad lot’, but it is incorrect to say that it amounts to the same thing.
Makinson then suggests bringing in a defeasible aspect by placing a normality order on

the temporal modality. So, instead of considering “every world w′ future to w in which α
is true”, we have “the most normal among the worlds w′ future to w in which α is true”.
This restriction yields, in our setting, a defeasible temporal modality. That is, given the
customary temporal modality F , we may form the defeasible modality p∼∼pF , with p∼∼pFα
true in w if and only if α is true in all the best of the worlds w′ amongst those in the
future of w.
The defeasibility suggested by Makinson is therefore not in the obligation itself, but

rather in the temporal aspect of the conditional. However, technically speaking, the idea
of a normality order interacting with a modality to introduce defeasibility is already
present here. As Makinson (1993) points out: “defeasibility can be expressed by intro-
ducing the concept of normality as an additional ingredient of the satisfaction rule.” Our
proposal naturally incorporates this idea. That is, we may introduce both a temporal
and a deontic modality and form both their defeasible counterparts. This would then
yield a logic in which we can express both defeasible conditionality and defeasible obliga-
tions. These two aspects of defeasibility in deontic reasoning remains to be investigated
in more detail, whether in the context of dyadic or monadic deontic logic.
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Plausibility Models

Baltag and Smets (2006; 2008) also employ preference orders to refer to the normality (or
plausibility) of accessible worlds. However, their aims and resulting semantics differ from
ours in some key aspects beyond those mentioned in Section 3. On one hand, they define
multi-agent epistemic and doxastic plausibility models that are similar to our preferential
Kripke models, but each accessibility relation is induced by a corresponding preference
order and linked to an agent whose beliefs are determined by what the agent deems
epistemically possible (contrast this with our classical modalities, which are defined
independently from the preference order). Minimality, or doxastic appearance, is therefore
determined relative to an epistemic context, which is induced as an equivalence relation
on worlds. This results in modalities of knowledge, (conditional) belief and safe belief
that are complementary to epistemic and doxastic versions of our defeasible modalities.
To see how this is the case, let Mp := 〈W,∼,≤,V〉 be a plausibility model, where W

and V are as usual, ∼ is an equivalence relation on W and ≤ is a plausibility relation on
worlds. The latter induces a safe belief operator 2≤ of which the semantics is given by:

Mp, w  2≤α if and only if for every w′ such that w′ ≤ w, M , w′  α

In other words, their 2≤α is true in a world w if and only if α is true in all better
accessible worlds from w. Contrast this with our p∼∼pα, which is true in w if and only
if α is true in all best accessible worlds. Moreover, in their case the ‘current’ w is always
amongst the selected worlds, whereas in our case it need not be (even if S5 is assumed,
since there may be accessible worlds that are more preferred than the current one). An
analysis of the philosophical implications of each of these two choices (“all the better” v.
“all the best”) in specific contexts, as well as a combination thereof, is a possible avenue
of further exploration.

Vague Modalities

The present paper defines modal constructs suitable for reasoning about defeasible modes
of inference. More generally, one may consider the definition of suitable modal con-
structs for reasoning about vague notions such as ‘generally’, ‘rarely’ or ‘most’ (Askou-
nis, Koutras, & Zikos, 2012). Such was the aim of Veloso et al. (2009) in their extension
of Kripke semantics to incorporate generalised modal operators for vague notions on
accessibility relations. Their framework is very broad, without the restrictions imposed
by a preference order on possible worlds, but their aims are aligned with ours in that
they present a direct modal treatment of vague assertions. Briefly, they extend standard
modal logic with a new modal operator ∇, whose intended meaning is that ∇α holds at
a state w if and only if the set of states reachable from w where α holds is an ‘important
set’. These sets deemed as important are defined by a complex K over a frame 〈W,R〉,
which is a function mapping each w ∈ W to a family of subsets K(w) ⊆P(R(w)). We
then have

M , w  ∇α if and only if {w′ | (w,w′) ∈ R and M , w′  α} ∈ K(w).

It follows that, in the semantics of the language Lp∼∼p, if we define the modality ∇ by
letting K(w) := {X | min≺R(w) ⊆ X}, then M , w  p∼∼pα if and only if M , w  ∇α.
Not every complex K corresponds to some preference order on W, hence we do not

have a converse result. Some vague notions that can be captured using ∇ are therefore
not expressible using p∼∼p. Additional structure may be imposed on K, for example, by
considering only families of ultra-filters as range. The structure provided by the prefer-
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ence order and principal filter generated by min≺R(w) and defined above thus define
a useful class of defeasible modalities that fits into the broader framework for vague
notions and modalities.

Preferential Approaches

Booth et al. (2015; 2012; 2013) introduce an operator with which one can refer directly in
the object language to those most typical situations in which a given sentence is true. For
instance, in their enriched language, a sentence of the form •α refers to the ‘most typical’
α-worlds in a semantics similar to ours. One of the advantages of such an extension is the
possibility to make statements of the kind “all normal α-worlds are normal β-worlds”,
thereby shifting the focus of normality from the antecedent by also allowing us to talk
about normality in the consequent. This additional expressivity can also be obtained
by the addition of the modality 2 of Modular Gödel-Löb logic to express normality
syntactically (Britz et al., 2009; Giordano et al., 2009a):

•α := α ∧ (2≺¬α) (4)

The modality 2≺ in (4) above refers to the preference relation ≺ seen as an extra
accessibility relation.
Despite the gain in expressivity, both the proposals by Booth et al. (2012) and

Britz et al. (2009) remain propositional in nature in that the only modality allowed is
the one with semantics determined by the preference order. Recently, Britz et al. (2011a;
2012) extended propositional preferential reasoning to the modal case, but the modalities
under consideration there remain classical — their meaning remains as in propositional
modal logic. This is so in spite of the underlying preferential semantics which is adopted
to deal with conditional statements of the form α |∼ β, where α and β are (classical)
modal sentences.

The similarities between the tableau method we presented here and the one by Gior-
dano et al. (2009a) are largely superficial. First, our preferential semantics counts as
a proper generalisation of the KLM approach to full modal logic, whereas theirs is an
embedding of propositional KLM consequence relations in a language enriched with a
modality to represent the conditional |∼. Second, again, in their approach the preference
relation is explicit and cast as an additional modality, requiring a special tableau rule to
deal with it. Here the preference relation is not present in the syntax and materialises
only in the inner workings of our semantic tableau method.

8. Concluding Remarks

The main contribution of the present paper is the provision of a natural, simple and intu-
itive framework within which to represent defeasible modes of inference. The defeasible
modalities we introduced here refer to the relative normality of accessible worlds, unlike
characterisations of normality (Booth et al., 2012, 2013; Boutilier, 1994; Giordano et al.,
2007, 2008, 2009a, 2009b), which refer to the relative normality of worlds in which a
given sentence is true, or versions of |∼ (Kraus et al., 1990; Lehmann & Magidor, 1992),
which refer to the relative normality of the worlds in which the premise is true.
In our logic, new operators are introduced that enable the normality-based relationship

among worlds to be implicitly indicated. From a knowledge representation perspective,
this is an appealing feature. Indeed, reasoning with p∼∼p-sentences is much easier than
with other frameworks because the preference relation on worlds is implicit, in a similar

21



October 20, 2017 Journal of Applied Non-Classical Logics JANCL-DefModalities

way that reasoning with temporal logic is easier than with its translation into predicate
calculus, as the relationships among time points are implicit.
Moreover, we have seen that in order for us to capture the semantics of p∼∼p-sentences

in standard conditional logics we would require the addition of an explicit preference
relation on worlds, all standard modalities we want to work with and a suitably defined
conditional for each modality in the language. Our contention here is that this route
would hardly simplify matters.
If instead we do want to internalise the preference relation in the object language,

then by also enriching our classical modal language with converse modalities and nom-
inals (Blackburn, de Rijke, & Venema, 2001), it turns out p∼∼p can be given an entirely
classical treatment as follows:

p∼∼pα :=
∨
o∈O

(o ∧2(¬α→ 3≺(α ∧ 3̆o))) (5)

where 3≺ is the dual of the modality characterising the preference relation (Britz et al.,
2009), 3̆ is the converse of 3 and O is a set of nominals. Then p∼∼pα is true at a world w
in a (hybrid) Kripke model if and only if w is the denotation of some nominal o ∈ O
and every ¬α-world that is accessible from w is less normal than some α-world which
is accessible from w. (Of course, besides ensuring that each nominal is interpreted as at
most one possible world one also has to make sure that each possible world in a Kripke
model is the denotation of some nominal o ∈ O. This is warranted in the class of named
models (Blackburn et al., 2001, pp. 439–447).)
The definition in (5) has the inconvenience of requiring infinitary disjunctions (Karp,

1964) in the object language. We can replace (5) with the following axiom schema:

(F) @op∼∼pα↔ @o2(2≺¬3̆o→ α)

As mentioned earlier, making use of such a machinery takes us to an unnecessarily more
expressive language. Note though that complexity-wise we remain in the same class —
satisfiability in the basic hybrid logic like the one briefly sketched above is pspace-
complete (Blackburn et al., 2001, Theorem 7.21).

Here we have investigated the case where a single preference order on worlds is as-
sumed. As we have seen, this fits the bill in capturing defeasibility of action effects or
obligations, where an ‘objective’ or commonly agreed upon notion of normality can be
justified. When moving to defeasible notions of knowledge or belief, though, a multi-
preference based approach seems to be more appropriate, as agents may have different
views on which worlds are more normal than others, i.e., preferences become subjective
or at least relative to an agent (Baltag & Smets, 2008).

In this paper, we have investigated defeasible modalities in the system K. Our basic
framework paves the way for exploring similar notions of defeasibility and additional
properties in specific systems of modal logics.1 Once this is in place, we will be able
to investigate further applications of defeasible modalities in e.g. dynamic epistemic
logic (Ditmarsch, Hoek, & Kooi, 2007) as well as in other similarly structured logics,
such as description logics (Baader et al., 2007). We have recently investigated preferential
versions of role restrictions in DLs along the lines of our preferential modalities (Britz,
Casini, Meyer, & Varzinczak, 2013), showing that our definitions are also fruitful in the
formalisation of different notions of defeasibility in ontologies.

1We have already caught a glimpse of this in Example 6, where an S5-modality for knowledge is assumed.
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Finally, entailment in the modal logics obtained through the addition of p∼∼p is mono-
tonic. In a broader defeasible reasoning context, though, a case can be made for non-
monotonic entailment relations such as those studied by Booth et al. (2015) in a propo-
sitional setting and by Giordano et al. (2013; 2015) in description logics.
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Appendix A. Proofs

A.1 Proof of Proposition 1

• Consistency: Assume P  > ; ⊥. Then min≺J>KP ⊆ J⊥KP , and therefore
min≺J>KP ⊆ ∅, from what follows min≺J>KP = ∅, and therefore W = J>KP = ∅,
which is a contradiction.
• Reflexivity: Straightforward, from the fact that min≺JαKP ⊆ JαKP .
• Left Logical Equivalence: Assume P  α ; γ and |= α ↔ β. Then min≺JαKP ⊆

JγKP . Since |= α ↔ β, in particular we have JαKP = JβKP , and therefore
min≺JαKP = min≺JβKP . Hence min≺JβKP ⊆ JγKP and then P  β ; γ.
• And: Assume we have both P  α; β and P  α; γ. Then min≺JαKP ⊆ JβKP

and min≺JαKP ⊆ JγKP , and therefore min≺JαKP ⊆ JβKP ∩ JγKP . Since JβKP ∩
JγKP = Jβ ∧ γKP , we have min≺JαKP ⊆ Jβ ∧ γKP and therefore P  α; β ∧ γ.
• Or: Assume we have both P  α ; γ and P  β ; γ. Let w ∈ min≺Jα ∨ βKP .

Then w is minimal in JαKP∪JβKP and therefore w ∈ min≺JαKP or w ∈ min≺JβKP .
In either case, w ∈ JγKP . Hence P  α ∨ β ; γ.
• Right Weakening: Assume we have both P  α ; β and |= β → γ. Then

min≺JαKP ⊆ JβKP and JβKP ⊆ JγKP . From this follows min≺JαKP ⊆ JγKP and
therefore P  α; γ.
• Cautious Monotony: Assume we have both P  α ; β and P  α ; γ. Then

min≺JαKP ⊆ JβKP and min≺JαKP ⊆ JγKP . Let w ∈ min≺Jα∧γKP . We show that
w ∈ min≺JαKP . Suppose that this is not the case. Since ≺ is well founded, there
must be w′ ∈ min≺JαKP such that w′ ≺ w. Because P  α ; γ, we must also
have w′ ∈ JγKP , and therefore w′ ∈ JαKP ∩ JγKP , i.e., w′ ∈ Jα ∧ γKP . From this
and w′ ≺ w, it follows that w is not minimal in Jα∧γKP , which is a contradiction.
Hence w ∈ min≺JαKP . From this and min≺JαKP ⊆ JβKP , it follows that w ∈ JβKP

and therefore we have P  α ∧ γ ; β.

A.2 Proof of Theorem 1

We first show completeness of our tableau method, i.e., if α ∈ Lp∼∼p+ ; is preferentially
valid, then every saturated tableau for ¬α is closed. Equivalently, if there is an open
(saturated) tableau for α, then α is satisfiable, i.e., there exists a preferential Kripke
model P in which JαKP 6= ∅.
In the following, we show that from any open tableau T for α ∈ Lp∼∼p+ ; one can construct

a preferential Kripke model satisfying α, from which the result will then follow.

Let T := T ∞ be an open saturated tableau for α ∈ Lp∼∼p+ ;. (Note that since the tableau
rules are applied systematically, T ∞ is finite.) Then there must be an open branch
〈S,Σ,≺〉 in T (cf. Definition 13). Let the tuple P := 〈WT ,RT ,VT ,≺T 〉 be defined as
follows:

• WT := {n | n :: β ∈ S};
• RT := 〈R1, . . . ,Rn〉, where each Ri := Σ(i), for 1 ≤ i ≤ n;
• VT := v, where v : WT × P −→ {0, 1} and v(n, p) = 1 if and only if n :: p ∈ S;
• ≺T := ≺+ (the transitive closure of ≺).
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Lemma 1. P is a preferential Kripke model.

Proof. That MT := 〈WT ,RT ,VT 〉 is a Kripke model follows immediately from the
definition of WT , RT and VT above. It remains to show that ≺T is a smooth, strict
partial order (Kraus et al., 1990), which amounts to showing that:

• ≺T is irreflexive and transitive: This follows from the definition of ≺T and the
construction of ≺ in Rules ( p∼∼p i), (3i), (;) and (6;), since no pair (n, n) is ever
added to ≺.
• ≺T has no infinitely descending chains: Clearly, no pair (n, n′) is added to≺ beyond

those added by Rules ( p∼∼p i), (3i), (;) and (6;). Given this, one can easily check
that ≺ must have minimal elements.

It remains to show that P above satisfies α.

Lemma 2. Let P = 〈WT ,RT ,VT ,≺T 〉 and let β be a sub-sentence of α. If n :: β ∈ S,
then n ∈ JβKP .

Proof. The proof is by structural induction on the number of connectives in β.
Base case: β is a literal. We have two cases: (i) β = p ∈ P. Then n :: p ∈ S if and only

if v(n, p) = 1 if and only if VT (n, p) = 1 if and only if n ∈ JpKP = JβKP . (ii) β = ¬p for
some p ∈ P. Then n :: ¬p ∈ S, and therefore n :: p /∈ S, otherwise n :: ⊥ ∈ S (as T is
saturated), contradicting the assumption that 〈S,Σ,≺〉 is open. Hence v(n, p) = 0, and
then n /∈ JpKP , from which follows n ∈WT \ JpKP = J¬pKP = JβKP .
Induction step: The Boolean cases are as usual. We analyse the modal and conditional

cases (below MT = 〈WT ,RT ,VT 〉):

• β = 2iγ: If n :: 2iγ ∈ S, then n′ :: γ ∈ S by Rule (2i), for every n′ such
that (n, n′) ∈ Ri. By the induction hypothesis, n′ ∈ JγKP , i.e., MT , n

′  γ for
every n′ such that (n, n′) ∈ Ri. From this we conclude MT , n  2iγ and therefore
n ∈ J2iγKP .
• β = ¬2iγ: If n :: ¬2iγ ∈ S, then by Rule (3i) there exists n′ such that (n, n′) ∈
Ri and n′ :: ¬γ ∈ S. Then n′ ∈ J¬γKP , by the induction hypothesis. Hence
n ∈ J¬2iγKP .
• β = p∼∼piγ: If n :: p∼∼piγ ∈ S, then n′ :: γ ∈ S by Rule (p∼∼pi), for every n′ such

that n′ ∈ min≺T Ri(n). By the induction hypothesis, n′ ∈ JγKP , and therefore
n ∈ Jp∼∼piγKP .
• β = ¬p∼∼piγ: If n :: ¬p∼∼piγ ∈ S, then by Rule ( p∼∼p i) there exists n′ such that n′ ∈

min≺T Ri(n) and n′ :: ¬γ ∈ S. Then n′ ∈ J¬γKP , by the induction hypothesis.
Therefore we have n ∈ J¬p∼∼piγKP .
• β = γ ; γ′: If n :: γ ; γ′ ∈ S, then by Rule (;) we have either (i) n :: ¬γ ∈ S;

(ii) n is not minimal in Wγ
S , or (iii) n :: γ′ ∈ S. By the induction hypothesis,

from (i) and (iii) follows, respectively, n ∈ J¬γKP and n ∈ Jγ′KP . In either case,
n ∈ Jγ ; γ′KP . From (ii) and the induction hypothesis follows that n is not
minimal in JγKP , hence we conclude n ∈ Jγ ; γ′KP .
• β = ¬(γ ; γ′): If n :: ¬(γ ; γ′) ∈ S, then by Rule ( 6;) we have that n :: γ ∈ S,
n :: ¬γ′ ∈ S, and n is set as minimal in Wγ

S . By the induction hypothesis, n ∈ JγKP

and n /∈ Jγ′KP . Since n is minimal in Wγ
S , it follows that n ∈ J¬(γ ; γ′)KP .

Now, since 0 :: α ∈ S, from Lemma 2 we conclude that 0 ∈ JαKP . Hence JαKP 6= ∅ for
the preferential Kripke model constructed as above, and therefore α is satisfiable, as we
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wanted to show.

In the following, we show soundness, i.e., if α ∈ Lp∼∼p+ ; is (preferentially) satisfiable,
then there is an open saturated tableau for α. Equivalently, if all the tableaux for α are
closed, then α is unsatisfiable, i.e., ¬α is valid.

Definition 14. Let S be a set of labeled sentences. S(n) := {β | n :: β ∈ S}.

Definition 15. Ŝ(n) :=
∧
{β | β ∈ S(n)}.

Lemma 3. For every tableau rule in Figure 5, if for all possible T j+1 = {. . . , 〈Sj+1,
Σj+1,≺j+1〉, . . .} that can be obtained from T j = {. . . , 〈Sj ,Σj ,≺j〉, . . .}1 there is an n

such that ̂Sj+1(n) is (preferentially) unsatisfiable, then there is an n such that Ŝj(n) is
(preferentially) unsatisfiable.

Proof. We content ourselves with the cases of Rules ( p∼∼p i), (3i), (;) and ( 6;). (Rule
(⊥≺) is similar to Rule (⊥).)

• Rule ( p∼∼p i): If Sj contains n :: ¬p∼∼piβ, then an application of Rule ( p∼∼p i) creates a
new label n′, adds (n, n′) to Σj(i) to obtain Σj+1(i), adds n′ :: ¬β to Sj to obtain
Sj+1, and sets n′ as minimal in Σj+1(i) with respect to ≺j+1 (which extends ≺j).
Now, suppose there is n′′ such that ̂Sj+1(n′′) is unsatisfiable. Then, either n′′ = n′

or n′′ 6= n′. If the latter is the case, then Ŝj(n′′) is unsatisfiable (since ̂Sj+1(n) =

Ŝj(n), for every n 6= n′), and therefore the lemma holds. If n′′ = n′ is the case,
then ̂Sj+1(n′) is unsatisfiable. But, since ̂Sj+1(n′) = ¬β (as Sj+1 = Sj ∪{n′ :: ¬β}
and n′ is a freshly added label), then ¬β must be unsatisfiable, i.e., |= β. From
this and normal necessitation — Rule (RNN) —, we have |= p∼∼piβ. Hence Ŝj(n) is
unsatisfiable too because n :: ¬p∼∼piβ ∈ Sj .

• Rule (3i): If Sj contains n :: ¬2iβ, then an application of Rule (3i) will create a
new label n′ and either
(1) Add (n, n′) to Σj(i) to obtain Σj+1

(1) (i), add n′ :: ¬β to Sj to obtain Sj+1
(1) , and

set n′ as minimal in Σj+1
(1) (i) w.r.t. ≺j+1

(1) (thereby extending ≺j), or
(2) Add (n, n′) to Σj(i) to obtain Σj+1

(2) (i), add n′ :: ¬β to Sj to obtain Sj+1
(2) ,

create a new label n′′ and also add (n, n′′) to Σj+1
(2) (i), add (n′′, n′) to ≺j to

obtain ≺j+1
(2) and set n′′ as minimal in Σj+1

(2) (i) w.r.t. ≺j+1
(2) , in other words, set

n′ as not minimal in Σj+1
(2) (i) w.r.t. ≺j+1

(2) .

Now suppose there are n1 and n2 such that both ̂Sj+1
(1) (n1) and ̂Sj+1

(2) (n2) are
unsatisfiable (i.e., both branches explored after the rule application are closed). If
n1 = n or n2 = n or both, then the lemma holds for the same reason given in
the case of Rule ( p∼∼p i) above. If neither n1 = n nor n2 = n, then we must have
n1 = n2 = n′ (the unsatisfiability of each of Sj+1

(1) and Sj+1
(2) is brought in by the

new added world and its minimality or not w.r.t. ≺j+1
(1) and ≺j+1

(2) ). From this, and

looking again at cases (1) and (2) above, we conclude that ̂Sj+1
(1) (n′) and ̂Sj+1

(2) (n′)

are both unsatisfiable if and only if
– ¬β is unsatisfiable or n′ is not minimal, and
– ¬β is unsatisfiable or n′ is minimal

1In fact, there is only one possibility, except in the cases of Rules (∨), (3i) and (;).
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from which it follows that either ¬β is unsatisfiable or n′ is and is not minimal.
Therefore, ¬β is unsatisfiable, i.e., |= β. From this and the necessitation rule, we
have |= 2iβ. Hence Ŝj(n) is unsatisfiable too because n :: ¬2iβ ∈ Sj .

• Rule (;): If Sj contains n :: α; β, then an application of Rule (;) will either
(1) Add n :: ¬α to Sj to obtain Sj+1

(1) , or

(2) Create a new label n′, add n′ :: α to obtain Sj+1
(2) and set n′ ≺ n (thereby

extending ≺j), or
(3) Add n :: β to obtain Sj+1

(3) .

Now suppose there are n1, n2 and n3 such that each of ̂Sj+1
(1) (n1),

̂Sj+1
(2) (n2) and

̂Sj+1
(3) (n3) is unsatisfiable (i.e., all branches explored after the rule application are

closed). If n1 6= n or n3 6= n or both, then either Ŝj(n1) or Ŝj(n3) is unsatisfiable,
since Sj+1

(1) \ S
j = {n :: ¬α} and Sj+1

(3) \ S
j = {n :: β}. If n2 = n, the lemma also

follows. Hence, there remains one case to be explored, namely n1 = n3 = n and
n2 = n′. From this, and looking again at cases (1)–(3) above, we conclude that
̂Sj+1
(1) (n), ̂Sj+1

(2) (n′) and ̂Sj+1
(3) (n) are all unsatisfiable if and only if

– Ŝj(n) |= α ∧ ¬β, and
– Either |= ¬α (because Sj+1

(2) (n′) = {α} and ̂Sj+1
(2) (n′) is unsatisfiable) or there

can be no label more preferred than n w.r.t. ≺j+1.
Now, if |= ¬α, then Ŝj(n) |= ⊥ and the lemma follows. If 6|= ¬α, then, since
Ŝj(n) |= α, we must have n minimal in Wα

S w.r.t. ≺j+1. It is not hard to see
that there can be no preferential Kripke model with a possible world satisfying all
sentences in Sj(n) and that also satisfies this minimality constraint, for, if there
were such a possible world in a preferential model, then it would satisfy α ; β

and ¬(α; β), which is absurd. Hence Ŝj(n) is preferentially unsatisfiable.

• Rule (6;): If Sj contains n :: ¬(α ; β), then an application of Rule ( 6;) adds
n :: α and n :: ¬β to Sj to obtain Sj+1, and sets n as minimal in Wα

S w.r.t. ≺j+1

(which extends ≺j). Now, suppose ̂Sj+1(n′) is unsatisfiable for some n′. Then,
Ŝj(n′) |= α ; β. If n′ 6= n, then Sj+1(n′) = Sj(n′) (because the rule application
concerns only sentences labeled with n), from which the lemma follows. If n′ = n,
then Ŝj(n) is unsatisfiable, since n :: ¬(α; β) ∈ Sj .

From Lemma 3 we conclude that if all tableaux for α are closed, then every Ŝ(n) is
unsatisfiable. In particular Ŝ(0) = α is unsatisfiable, too. Hence all the rules preserve
satisfiability when transforming one set of branches into another one. This warrants
soundness of our tableau rules.

By putting the above results together, we get to the proof of the theorem.

Theorem 1. The tableau calculus for Lp∼∼p+ ; is sound and complete with respect to our
modal preferential semantics.

Proof. Soundness follows from Lemma 3. Completeness is established by Lemmas 1
and 2.
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