
Preferential Modalities Revisited

Katarina Britz
CSIR-SU Centre for AI Research

Stellenbosch University, South Africa
abritz@sun.ac.za

Ivan Varzinczak
Centre de Recherche en Informatique de Lens

Université d’Artois, France
varzinczak@cril.fr

Abstract

We venture beyond the customary semantic approach
in NMR, namely that of placing orderings on worlds
(or valuations). In a modal-logic setting, we motivate
and investigate the idea of ordering elements of the ac-
cessibility relations in Kripke frames, i.e., world pairs
pw,w1

q (or ‘arrows’). The underlying intuition is that
some world pairs may be seen as more normal (or typ-
ical, or expected) than others. We show this delivers an
elegant and intuitive semantic construction, which gives
a new perspective on present notions of defeasible ne-
cessity. From a modeler’s perspective, the new frame-
work we propose is more intuitively appealing. Tech-
nically, though, the revisited logic happens to not sub-
stantively increase the expressive power of the previ-
ously defined preferential modalities. This conclusion
follows from an analysis of both semantic constructions
via a generalisation of bisimulations to the preferential
case. Lest this be seen as a negative result, it essen-
tially means that reasoners based on the previous se-
mantics (which have been shown to preserve the com-
putational complexity of the underlying classical modal
language) suffice for reasoning over the new seman-
tics. Finally, we show that the kind of construction we
here propose has many fruitful applications, notably in a
description-logic context, where it provides the founda-
tions on which to ground useful notions of defeasibility
in ontologies yet to be explored.

Introduction
Accounts of normality (or typicality), plausibility and alike
traditionally have an underlying semantics built on a notion
of preference on worlds. Such is the case of non-monotonic
entailment (Shoham 1988; Kraus, Lehmann, and Magidor
1990; Makinson 2005), conditionals (Lehmann and Magidor
1992; Boutilier 1994), belief revision (Katsuno and Mendel-
zon 1991; Baltag and Smets 2006; 2008), counterfactu-
als (Stalnaker 1968; Lewis 1973; 1974), obligations (Hans-
son 1969) and many others, as known from the literature
on non-monotonic reasoning, conditional and deontic log-
ics, and related areas. Roughly speaking, the usual approach
consists in selecting some worlds (or propositional valua-
tions) as being more normal (alias typical, alias desirable)
and carrying out the reasoning relative to an underlying nor-
mality ordering on worlds.

A typical representative of these different yet interrelated
threads of investigation is the well-known preferential ap-
proach (Shoham 1988) and its derivatives (Kraus, Lehmann,
and Magidor 1990; Lehmann and Magidor 1992). There, a
preference relation is defined on the set of possible worlds
with the (tacit) assumption that these contain all is needed
to reason about what is normal or expected. A case can in-
deed be made for such an assumption in a propositional set-
ting. However, in logics with more structure, it is reason-
able to say that the normality ‘spotlight’ should not be con-
fined to worlds, but rather (also) be put on (possibly) what-
ever structure one has at one’s disposal in the respective un-
derlying semantics. To witness, in a modal logic context,
it makes sense to ask whether some links between worlds
in a frame are (relatively) more normal (or preferred) than
others—irrespective of whether the worlds involved are by
any means comparable in that way or another amongst them-
selves. In other words, one can be interested in the normality
of the transition from one world to another one. This point
is better illustrated with some well-known concrete applica-
tions of modal logics as given below.

Let us assume a very simplistic scenario in which we have
only one propositional atom, on, of which the intuition is
that a particular light-bulb is on. Moreover, let us assume
there is only one action at one’s disposal, namely toggle
(hereafter abbreviated t), of which the intuition is that of
changing the state of the light switch. Figure 1 below de-
picts a possible-worlds model for this scenario.
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Figure 1: A possible-worlds model for one action (toggle)
and one atom (on).

Intuitively, normal (or typical, or expected) executions of
the toggle action are given by the t-transitions from w1 to
w2 and back, whereas the reflexive arrows are, in a sense,
less expected in the given scenario. Therefore, it becomes
important to single out those executions of the action that are
deemed more normal from those that are not. In Figure 1,



this would amount to enriching the semantic structure (in
a way still to be defined) with information specifying that
the pairs pw1, w2q and pw2, w1q somehow take ‘precedence’
over pw1, w1q and pw2, w2q when reasoning about possible
executions of the action.

Let us now consider a variant of the above scenario (al-
though just as simple), in which we have only one atomic
proposition, correct (which we shall abbreviate as c), the in-
tuition of which is that a proposed proof for a mathematical
statement is correct. Furthermore, let us assume there is a
good mathematician, M, whose knowledge about the cor-
rectness of the proof is of interest to us. Figure 2 below de-
picts one possible configuration of this scenario.
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Figure 2: A possible-worlds model for one agent (the good
mathematician M) and one atom (correct).

As a good mathematician, Agent M should know whether
the proof is correct. Nevertheless, in the model of Figure 2,
M does not know (in the classical sense) whether the proof
is correct or not, since, also by virtue of being a good mathe-
matician, M admits the (unlikely) possibility of being wrong
(at least until the proof has been submitted to peer-reviewed
scrutiny). In this case, we would say that Agent M defeasi-
bly knows whether the proof is correct or not, an epistemic
stance that can be adopted by ‘focusing’ on the most nor-
mal (or expected) of the epistemic possibilities held by the
agent, namely pw1, w1q and pw2, w2q in Figure 2, which, in
this example, are more normal than pw1, w2q and pw2, w1q.
(It is not hard to see that the motivation above also holds in a
doxastic context, as certain beliefs may be more entrenched
than others.)

In order to motivate the foregoing ideas in a deontic
context, let us assume a language with a single proposi-
tional atom, namely fair-play, henceforth abbreviated f and
of which the intuition is that, in a competition, the players
abide by an established standard of ‘decency’ or an ‘honor-
able conduct’. In this context, adopting a fair-play stance is
not to be seen as an obligation in the usual (strict) meaning
of the term. It is rather a matter of best practice in that it
corresponds to the expected, though not enforceable (even
if, in some cases, liability-biding), attitude. Figure 3 below
depicts a possible-worlds model for this scenario.
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Figure 3: A possible-worlds model for one atom (fair-play)
in a deontic-context.

A case can be made that envisioning an f-world as a bet-
ter alternative (to the current one) is more appropriate than
the contemplation of a  f-one. Semantically, this require-
ment would be translated as setting the pairs pw1, w1q and
pw2, w1q as more preferred than pw2, w2q and pw1, w2q. In
this specific example, it happens that we could also model
the underlying preference as an ordering on worlds, with f-
worlds preferred to the  f-worlds. However, in the preced-
ing examples, ordering worlds rather than pairs of worlds is
neither intuitive nor is it immediately clear whether this is
even possible.

In this work, we address precisely these issues. We shall
start by shifting the normality spotlight from possible worlds
to transitions amongst them, i.e., to accessibility relations in
Kripke frames. The justification for doing so stems from a
comparison with the classical (monotonic) case: In classical
Kripkean semantics, modalities are primarily about accessi-
bility, only secondarily about worlds’ contents. Hence, we
contend that accounts of a notion of defeasibility in modal-
ities (like those illustrated above) should primarily focus on
normality of the accessibility relations rather than (or at least
prior to) that of the (accessible) worlds. With that we hope to
pave the way for further explorations of non-monotonicity in
modal logics, in particular in extensions of the preferential
approach therein (Britz, Meyer, and Varzinczak 2011a).

Preliminaries
In this section, we provide the required formal background
for the rest of this work. In particular, we set up the nota-
tion and conventions that shall be followed in the upcoming
sections. (The reader conversant with modal logic can safely
skip the first subsection below.)

Modal Logic
We work in a set of atomic propositions P , using the logi-
cal connectives ^ (conjunction),  (negation), and a set of
modal operators 3i, 1 ď i ď n. Propositions are denoted by
p, q, . . ., and sentences by α, β, . . ., constructed in the usual
way according to the rule (1 ď i ď n):

α ::“ p |  α | α^ α | 3iα

All the other truth-functional connectives (_, Ñ, Ø, . . . )
are defined in terms of  and ^ in the usual way. Given 3i,
1 ď i ď n, with 3i we denote its dual modal operator, i.e.,
for any α, 3iα :“  3i α. We use J as an abbreviation
for p _  p and K as an abbreviation for p ^  p, for some
p P P . With L 3 we denote the set of all sentences of the
modal language.

The semantics is the standard possible-worlds one:

Definition 1 (Kripke Model) A Kripke model is a tuple
M :“ xW,R,Vy where W is a (non-empty) set of possi-
ble worlds, R :“ xR1, . . . ,Rny, where each Ri Ď W ˆW is
an accessibility relation on W, 1 ď i ď n, and V : W ÝÑ

t0, 1uP is a valuation function mapping possible worlds into
propositional valuations.



As an example, Figure 4 depicts the Kripke model M1 “

xW1,R1,V1y, where W1 :“ twi | 1 ď i ď 4u, R1 :“
xRa,Rby, with Ra :“ tpw1, w2q, pw1, w3q, pw4, w3qu, and
Rb :“ tpw1, w4q, pw2, w3qu, and V1 is the obvious valuation
function.

In our pictorial representations of models, we represent
propositional valuations as sequences of 0s and 1s, and with
the obvious implicit ordering of atoms. Thus, for the logic
generated from p and q, the valuation in which p is true and q
is false will be represented as 10.

M1 :
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Figure 4: A Kripke model for P “ tp, qu and two modali-
ties, namely a and b.

We shall use w, u, v, . . . (possibly decorated with primes)
to denote possible worlds. Moreover, where it aids readabil-
ity, we shall henceforth sometimes write tuples of the form
pw,w1q as ww1.

Sentences of L 3 are true or false relative to a possible
world in a given Kripke model:

Definition 2 (Truth Conditions) Let M “ xW,R,Vy and
w P W:

• M , w , p if and only if Vpwqppq “ 1;
• M , w ,  α if and only if M , w . α;
• M , w , α^ β if and only if M , w , α and M , w , β;
• M , w , 3iα if and only if M , w1 , α for all w1 such

that pw,w1q P Ri.

Given α P L 3 and M “ xW,R,Vy, we say that M
satisfies α if there is at least one world w P W such that
M , w , α. We say that M is a model of α (alias α is true
in M ), denoted M , α, if M , w , α for every world
w P W. Given a class (i.e., a collection) of models M, we
say that α is valid in M, denoted |ùM α, if and only if every
Kripke model M PM is a model of α. Given K Ď L 3 and
α P L 3, we say that K locally entails α in the class of mod-
els M, denoted K |ùM α, if and only if for every Kripke
model M P M and every w in M , if M , w , β for ev-
ery β P K, then M , w , α. (When the class of models we
are working with is clear from the context, we shall dispense
with subscripts and just write |ù α and K |ù α.)

Here we shall assume the system of normal modal
logic K, of which all the other normal modal logics are ex-
tensions. Semantically, K is characterised by the class of all
Kripke models (Definition 1). Syntactically, K corresponds
to the smallest set of sentences containing all propositional

tautologies, all instances of the axiom schema K : 3ipα Ñ
βq Ñ p 3iαÑ 3iβq, 1 ď i ď n, and closed under the rule
of necessitation below:

pRNq
α

3iα
(1)

For more details on modal logic, we refer the reader to the
handbook by Blackburn et al. (2006).

Preferential Modalities
In previous work (Britz, Meyer, and Varzinczak 2011a;
Britz and Varzinczak 2013), we have investigated the fruit-
fulness of extending the standard Kripke semantics with a
preference relation on the set of possible worlds. This gives
rise to the following semantic structure, of which the under-
lying motivation is similar to that behind Boutilier’s (1994)
CT4O models and the plausibility models of Baltag and
Smets (2006; 2008).
Definition 3 (W-Ordered Model) A W-ordered model is a
tuple W :“ xW,R,V,ăy where xW,R,Vy is as in Defini-
tion 1 and ă Ď WˆW is a well-founded strict partial order
on W, i.e., ă is irreflexive, transitive and every non-empty
W1 Ď W has minimal elements w.r.t. ă (see Definition 4).

The intuition behind the preference relation ă in a W-
ordered model W is that the worlds lower down in the or-
dering are deemed as more preferred (or more normal) than
those higher up.
Definition 4 (Minimality w.r.t. ă) Let W “ xW,R,V,ăy
be a W-ordered model and let X Ď W. Then mină X :“
tw P X | there is no w1 P X such that w1 ă wu, i.e.,
mină X denotes the minimal elements of X with respect to
the preference relation ă.

As an example, Figure 5 below depicts the W-ordered
model W1 “ xW1,R1,V1,ă1y, where xW1,R1,V1y is as
in Figure 4 and ă1 :“ tpw1, w2q, pw2, w3q, pw1, w3q,
pw4, w3qu.
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Figure 5: A W-ordered model for P “ tp, qu and two modal-
ities (a and b). The preference relation ă1 is represented by
the dashed arrows, which point from more preferred to less
preferred worlds.

We can then extend L 3 with a family of defeasible modal
operators p„„pi (called ‘flag’), 1 ď i ď n, where n is the num-
ber of classical modalities in the language. The sentences of



the extended language are then recursively defined by:

α ::“ p |  α | α^ α | 3iα | p„„piα

As before, the other connectives are defined in terms of  
and ^ in the usual way, J and K are seen as abbreviations,
and 3i is the dual of 3i. Moreover, with p„„p i (called ‘flame’)
we denote the dual of p„„pi. We shall use Lp„„p to denote the set
of all sentences of such a richer language.

Definition 5 (Truth Conditions for Lp„„p) Let a W-ordered
model W “ xW,R,V,ăy and let w P W.
• L 3-sentences are evaluated as usual (Definition 2);
• W , w ,p„„piα if and only if for all w1, if w1 P mină Ripwq,

then W , w1 , α.

The notions of satisfaction, truth (in a model), validity (in
a class of models) and local entailment are generalised to
Lp„„p-sentences and W-ordered models in the obvious way.

Informally, a sentence of the form p„„piα holds in a world
if α holds in all the most preferred amongst its i-accessible
worlds. It is easy to see that p„„p is weaker than 3, i.e., the
following is a validity (1 ď i ď n):

|ù 3iαÑ p„„piα

Hence, intuitively, flag can be read as defeasible necessity.

As an example, considering the W-ordered model W1

from Figure 5, we have that W1, w1 , p„„pa p (but note that
W1, w1 . 3a p).

Revisiting Preferential Modal Logics
In spite of its gain in expressiveness when checked against
traditional approaches to defeasible reasoning, p„„pdoes not
quite seem to allow us to formalise the type of reasoning
motivated in the Introduction inasmuch as it relies on order-
ings on worlds. In this section, we shall revisit the frame-
work for preferential modalities, in particular its semantic
constructions.

R-Ordered Models
We start by giving a formal account of the semantic ideas
put forward in the Introduction.

Definition 6 (R-Ordered Model) An R-ordered model is a
tuple R :“ xW,R,V,Îy where W is a (non-empty and pos-
sibly infinite) set of possible worlds, R :“ xR1, . . . ,Rny,
where each Ri Ď W ˆ W is an accessibility relation on
W, for 1 ď i ď n, V : W ÝÑ t0, 1uP is a valua-
tion function assigning each world to a valuation on P ,
and Î :“ xÎ1, . . . ,Îny, where each ÎiĎ Ri ˆ Ri, for
1 ď i ď n, is a well-founded strict partial order on the
respective Ri, i.e., each Îi is irreflexive, transitive and ev-
ery non-empty R1

i Ď Ri has minimal elements w.r.t. Îi (see
Definition 7).

Given R :“ xW,R,V,Îy, the intuition of W, R and V is
the same as that in a standard Kripke model. The intuition of
each Îi in Î is that the pairs pw,w1q that are lower down in
the ordering Îi are deemed as the most normal (or typical,
or expected) in the context of Ri.

Definition 7 (Minimality w.r.t. Îi) Let R “ xW,R,V,Îy
be an R-ordered model and letX Ď Ri, for some 1 ď i ď n.
Then minÎi

X :“ tpw,w1q P X | there is no pu, vq P X
such that pu, vq Îi pw,w

1qu, i.e., minÎi
X denotes the

minimal elements of X with respect to the preference rela-
tion Îi associated to Ri.

Since we assume each Îi to be a well-founded strict par-
tial order on the respective Ri, we are guaranteed that for
every X Ď Ri such that X ‰ H, minÎi X is well defined.

As an example, Figure 6 below depicts the R-ordered
model R1 :“ xW1,R1,V1,Î1y, where xW1,R1,V1y is
as in Figure 4, and Î1:“ xÎa,Îby, where Îa:“
tpw1w2, w1w3q, pw1w3, w4w3q, pw1w2, w4w3qu and Îb:“
tpw1w4, w2w3qu, represented, respectively, by the dashed
and the dotted arrows in the picture. (Note the direction of
the Î-arrows, which point from more preferred to less pre-
ferred transitions.) For the sake of readability, in our picto-
rial representations of R-ordered models, we shall omit the
transitive Î-arrows.

R1 :
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Figure 6: An R-ordered model for P “ tp, qu and two
modalities. The preference relation Îa is represented by the
dashed arrows, whereas Îb by the dotted one.

A New Logic of Defeasible Modalities
We shall now enrich our underlying modal language with a
family of additional modal operators p„„„pi, 1 ď i ď n, where
n is the number of classical modalities in the language. (For
lack of a better term, we shall call p„„„p the ‘banner’.) The sen-
tences of the extended modal language are recursively de-
fined as follows:

α ::“ p |  α | α^ α | 3iα | p„„„piα
With Lp„„„p we shall denote the set of all sentences of the

banner language.

Definition 8 Let R “ xW,R,V,Îy. For every w P W and
every Ri Ď WˆW, we define:

Rwi :“ tpu, vq | pu, vq P Ri and u “ wu

Definition 9 (Lp„„„p Truth Conditions) Let R “ xW,R,V,Îy
be an R-ordered model and w P W.
• L 3-sentences are evaluated as usual;
• R, w , p„„„piα if and only if for every w1, if pw,w1q P

minÎi
Rwi , then R, w1 , α.



The notions of satisfaction, truth (in a model), validity (in
a class of models) and local entailment are also generalised
to Lp„„„p-sentences and R-ordered models in the usual way.

Informally, a sentence of the form p„„„piα holds in a world
if α holds in all its most normally i-accessible worlds. As an
example, in the R-ordered model R1 of Figure 6, we have
that R1, w1 , p„„„pa p (but, of course, R1, w1 . 3a p).

Incidentally, p„„„p too is weaker than 3, as witnessed by the
validity below (1 ď i ď n):

|ù 3iαÑp„„„piα

Hence, p„„„p provides an alternative perspective on the no-
tion of defeasible necessity as formalised by p„„p. For instance,
in an action context, some executions (which refer to tran-
sitions) of a given action are deemed as more normal than
others. A priori, this is different from saying that some ef-
fects (which refer to target worlds) are normal. Indeed, an
abnormal execution may still lead to the expected (normal)
effect, just as a normal execution may produce an abnormal
effect. (We shall come back to this issue later on.)

The definitions of R-ordered models and p„„„p, alongside the
comment right above, raise the question as to how Lp„„p and Lp„„„p

compare to each other in terms of expressive power. This is
what we address in the next section.

Preferential Bisimulations
Standard bisimulations are used to determine whether two
Kripke models have the same modal properties, and to rea-
son about modal expressivity. Here, we extend the definition
of bisimulations to W-ordered and R-ordered models, and
use it to make precise the connection between these notions,
and the resulting modalities and modal languages.

Definition 10 Let M “ xW,R,Vy and M 1 “ xW1,R1,V1y.
A bisimulation between M and M 1 is a non-empty binary
relation E between their domains (that is, E Ď WˆW1) such
that, whenever wEw1, we have that:

1. For every p P P , M , w , p if and only if M 1, w1 , p;
2. if wRiv, then there exists a world v1 in W1 such that vEv1

and w1R1
iv

1, and
3. if w1R1

iv
1, then there exists a world v in W such that vEv1

and wRiv.

Informally, two worlds are bisimilar if they satisfy
the same atomic information, and their modal accessibil-
ity structures match. Two pointed models pM , wq and
pM 1, w1q are bisimilar if there exists a bisimulation E be-
tween M and M 1 such that wEw1. It then follows that:

Lemma 1 (Bisimulation invariance lemma) If E is a bi-
simulation between M “ xW,R,Vy and M 1 “ xW1,R1,V1y,
w P W and w1 P W1, and wEw1, then w and w1 satisfy the
same basic modal sentences.

The next definition and lemma generalise bisimulations
to take account of a preference order on worlds, as defined
on models of Lp„„p. Informally, two worlds are bisimilar if
they satisfy the same atomic information and their modal ac-
cessibility structures match, both with respect to accessible

worlds and with respect to most preferred relative accessible
worlds. Bisimilar worlds then also satisfy the same prefer-
ential modal sentences.

Definition 11 (W-ordered bisimulation) Let W-ordered
models W “ xW,R,V,ăy and W 1 “ xW1,R1,V1,ă1y. A
bisimulation between W and W 1 is a non-empty binary
relation E Ď W ˆ W1 such that, whenever wEw1, we have
that:

1. For every p P P , W , w , p if and only if W 1, w1 , p;
2. if wRiv, then there exists a world v1 in W1 such that vEv1

and w1R1
iv

1, and
• if v P mină Ripwq, then v1 P mină1 R1

ipw
1q;

3. if w1R1
iv

1, then there exists a world v in W such that vEv1

and wRiv, and
• if v1 P mină1 R1

ipw
1q, then v P mină Ripwq.

Lemma 2 (W-ordered bisimulation invariance lemma)
If E is a bisimulation between W “ xW,R,V,ăy and
W 1 “ xW1,R1,V1,ă1y, and wEw1, then w and w1 satisfy the
same modal sentences in the extended modal language Lp„„p.

Proof:
The lemma is proved by structural induction on α P Lp„„p.
We show that, for any w P W and w1 P W1, if wEw1, then
W , w , α iff W 1, w1 , α. For atomic propositions, and
when α “  β or α “ β1 _ β2, the proof is immediate. We
consider the remaining two cases, namely when α “ 3iβ
or α “p„„piβ.

Assume α “ 3iβ and let W , w , 3iβ. The proof is as
for basic modal logic: Suppose v1 P R1

ipw
1q. Since wEw1,

there is some v P Ripwq with vEv1. Therefore W , v , β,
and hence W 1, v1 , β by the induction hypothesis. It fol-
lows that W 1, w1 , 3iβ. A symmetric argument applies if
W 1, w1 , 3iβ.

Assume α “ p„„piβ and let W , w , p„„piβ. Suppose v1 P

mină R1
ipw

1q. Since wEw1, there is some v P mină Ripwq
with vEv1. Therefore W , v , β, and hence W 1, v1 , β by
the induction hypothesis. It follows that W 1, w1 , p„„piβ. A
symmetric argument applies if W 1, w1 , 3iβ.

We now turn to bisimulations between R-ordered models.
As above, two worlds are bisimilar if they satisfy the same
atomic information and their modal accessibility structures
match, both in terms of accessible worlds and in terms of
preference of accessibility.

Definition 12 (R-ordered bisimulation) Let R-ordered
models R “ xW,R,V,Îy and R1 “ xW1,R1,V1,Î1y. A
bisimulation between R and R1 is a non-empty binary
relation E Ď W ˆ W1 such that, whenever wEw1, we have
that:

1. For every p P P , R, w , p if and only if R1, w1 , p;
2. if wRiv, then there exists a world v1 in W1 such that vEv1

and w1R1
iv

1, and

• if wv P minÎi Rwi , then w1v1 P minÎ1
i

R1w1

i ;

3. if w1R1
iv

1, then there exists a world v in W such that vEv1

and wRiv, and
• if w1v1 P minÎ1

i
R1w1

i , then wv P minÎi
Rwi .



Lemma 3 (R-ordered bisimulation invariance lemma)
If E is a bisimulation between R “ xW,R,V,Îy and
R1 “ xW1,R1,V1,Î1y, w P W and w1 P W1, and wEw1, then
w and w1 satisfy the same modal sentences in the extended
language Lp„„„p.

Proof:
The proof is by structural induction on α P Lp„„„p and is similar
to that of Lemma 2. We show that, for any w,w1 P W, if
wEw1, then R, w , α iff R1, w1 , α. We only prove the
case when α “p„„„piβ.

Assume α “ p„„„piβ and let R, w , p„„„piβ. Suppose w1v1 P

minÎ1
i

R1w1

i . Since wEw1, there is some wv P minÎi Rwi
with vEv1. Therefore R, v , β, and hence R1, v1 , β by
the induction hypothesis. It follows that R1, w1 , p„„„piβ. A
symmetric argument applies if R1, w1 , p„„„piβ.

The relationship between Lp„„„p and Lp„„p, and between R-
ordered and W-ordered models, can be made precise using
bisimulations. We first show that Lp„„„p is at least as expressive
as Lp„„p: Given a sentence α P Lp„„p, let αp„„„p be the sentence ob-
tained by replacing all occurrences of p„„pi in α with p„„„pi.
Definition 13 Let W “ xW,R,V,ăy be a W-ordered
model. For any u, v, w P W such that wRiu and wRiv and
u ă v, let wu Îi wv. Then RW “ xW,R,V,Îy is the
R-ordered model induced by W .

Lemma 4 For any α P Lp„„p, W “ xW,R,V,ăy and w P W,
W , w , α if and only if in the R-ordered model RW “

xW,R,V,Îy induced by W , RW , w , αp„„„p.

Proof:
The proof is simple and proceeds by structural induction on
the sentence α.

Lemma 4 shows that, if α and β are not equivalent in Lp„„p,
then their translations αp„„„p and β p„„„p are also not equivalent in
Lp„„„p. Further, if pW , wq and pW 1, w1q are distinguishable by
some α P Lp„„p, say, W , w , α and W 1, w1 . α, then RW and
R1

W are distinguishable by αp„„„p P Lp„„„p. Hence, Lp„„„p is at least as
expressive as Lp„„p.

The converse of this result may not be as obvious to see,
and translating R-ordered models to W-ordered models re-
quires more care. The light switch example (Figure 1) shows
that, even in the case of a single modality, there is no direct
translation of a preference order on R to a preference order
on W. There is no order on the two worlds w1 and w2 such
that w1 is the preferred result of toggling the light switch
when the light is off, but w2 is the preferred result when the
light is on. A further problematic aspect is that R-ordered
models allow for a preference order on each accessibility re-
lation, whereas a W-ordered semantics assume a single com-
mon preference order on worlds.

Definition 14 Let R “ xW,R,V,Îy be an R-ordered
model with single accessibility relation R1. Let W1 “ WˆW;
let V1puwq “ Vpwq; let uvR1

1vw whenever vR1w, and let
uv ă u1v1 whenever uv Î u1v1. Then WR “ xW1,R1,V1,ăy
is the W-ordered model induced by R.

As an example, we apply Definition 14 to obtain the W-
ordered models induced by the models of Figures 1 and 2,

and depicted in Figure 7 and Figure 8 respectively. Note that
in Figure 7, w1w2 ă w1w1 and w2w1 ă w2w2, reflecting
the intuition of normal execution of the action as an order
on worlds. In Figure 8, the order on worlds is reversed, with
w1w1 ă w1w2 and w2w2 ă w2w1, depicting the intuition
of defeasible knowledge of the agent as an order on worlds.

w1w20

w1w11 w2w2 0

w2w1 1

Figure 7: The induced W-ordered possible-worlds model for
one action (toggle) and one atom (on).

w1w20

w1w11 w2w2 0

w2w1 1

Figure 8: The induced W-ordered possible-worlds model for
one agent (M) and one atom (correct).

Theorem 1 Let R “ xW,R,V,Îy be an R-ordered model
with a single accessibility relation R1 and let WR “

xW,R,V,ăy be the W-ordered model induced by R. Let
RWR “ xW

1,R1,V1,Î1y be the R-ordered model induced by
WR. Then there is a full bisimulation between R and RWR ,
i.e., with domain W and range WˆW.

Proof:
Let E be defined by: wEvw for all v, w P W. We need to
show that E is a full bisimulation relation. So, let u, v P W.
Then vEuv.

1. It follows immediately from the construction of RWR that
v and uv satisfy the same atomic propositions.

2. Suppose vR1w. It follows again from the construction
of RWR that uvR1

1vw and wEvw. Further, if vw P

minÎ1
Rv1 , then vw P mină R1puvq, and hence vw P

minÎ1
1
pR1

1q
uv .



3. Suppose uvR1
1vw. It again follows from the construc-

tion of RWR that vR1w and wEvw. Further, if vw P

minÎ1
1
pR1

1q
uv , then vw P mină R1pwq, and hence vw P

minÎ1 Rv1 .

We illustrate the construction of Theorem 1 by applying
Definition 13 to the induced W-ordered model in Figure 7
to obtain the R-ordered model of Figure 9. In Figure 9, the
dashed arrows represent the preference order Î1. Theorem 1
then states that the R-ordered model of Figure 1 (with the
order as described in the Introduction) is bisimilar to the R-
ordered model of Figure 9, The construction is via the W-
ordered model of Figure 7.

Similarly, the R-ordered model of Figure 2 (again, with
the order as described in the Introduction) is bisimilar to the
R-ordered model of Figure 10, which is constructed via the
W-ordered model of Figure 8.

w1w20

w1w11 w2w2 0

w2w1 1

Figure 9: The induced bisimilar R-ordered model for one
action (toggle) and one atom (on).

w1w20

w1w11 w2w2 0

w2w1 1

Figure 10: The induced bisimilar R-ordered model for one
agent (M) and one atom (correct).

Corollary 1 Lp„„„p and Lp„„p can distinguish between the same
modal propositions when restricted to a single modality.

Proof:
The bisimulation result of Theorem 1 shows that any R-

ordered model is bisimilar to some R-ordered model in-
duced by a W-ordered model. Lemma 3 ensures that bisimi-
lar worlds satisfy the same modal sentences, and that bisim-
ilar models can distinguish between the same modal prop-
erties. We need therefore consider only R-ordered models
induced by some W-ordered model when reasoning about
expressivity. The result then follows from Lemma 4.

Corollary 1 may be seen as a negative result in the sense
that, at least in the monomodal case, no richer language is
obtained when substituting a preference order on the acces-
sibility relation for the preference order on worlds. It is also
clear that the results of Theorem 1 and Corollary 1 can be
generalised to multi-modal languages if multiple preference
relations on W are allowed.

What, then, has been gained? As we have argued, there
are a number of contexts in which an order on the accessibil-
ity relation has an intuitive appeal. The induced W-ordered
models of Definition 13 are technically useful, but intuitively
hard to motivate. However, from an implementation per-
spective, we now know that a reasoner based on a W-ordered
semantics suffices also for reasoning over R-ordered mod-
els. This, together with our previous results (Britz and Varz-
inczak 2013), establish the following:

Corollary 2 Satisfiability checking for monomodal Lp„„„p is
PSPACE-complete.

Discussion and Related Work
It might be worth emphasising that the logics we have in-
vestigated here do not aim at providing a formal account of
the notion of most, as addressed in the study of generalised
quantifiers (Lindström 1966) and, more recently, in a modal
context by Veloso et al. (2009) and Askounis et al. (2012).
Clearly, they are not about degrees of truth, as it has been
studied in fuzzy logics, nor about degrees of possibility and
necessity, as addressed by possibilistic logics (Dubois, Lang,
and Prade 1994). Instead, here we have investigated a rather
complementary notion to those ones, namely that of normal,
expected, practical necessity, which need not rely on major-
ity or degrees of likelihood.

In a sense, the notions we investigated here can be seen as
the qualitative counterpart of possibilistic modalities (Liau
1999; Liau and Lin 1996). (We thank an anonymous referee
for pointing this out to us.) There, each possible world w is
associated with a possibility distribution πw : W ÝÑ r0, 1s,
the intuition of which is to capture the degree of likelihood
(in terms of belief) of all possible worlds w.r.t. w. In that
setting, the pairs pw,w1q for which πwpw1q is maximal cor-
respond here to the most preferred pairs in a single accessi-
bility relation. In this sense, there are strong links between
monomodal p„„„p and the preferential possibilistic semantics
for epistemic reasoning.

Currently, the definition of R-ordered model (Defini-
tion 6) allows only for elements of the same accessibility re-
lation Ri to be ordered (via the respective Îi). More gener-
ally, we could have defined Î as a relation on

Ť

1ďiďn Ri ˆ



Ť

1ďiďn Ri, so that we allow pairs pw,w1q belonging to dif-
ferent R-components to be compared as well. An investiga-
tion of the philosophical and practical ramifications of this
alternative definition is left for future work.

We have seen that one can obtain R-ordered models from
W-ordered models by inducing an ordering on edges from
the ordering on worlds. The result is an ‘embedding’ of p„„p
into Lp„„„p. Conversely, in the monomodal case, we can ob-
tain W-ordered models from R-ordered models by induc-
ing an ordering on worlds from an ordering on edges. If we
allow multiple preferences on worlds, the latter result can
easily be generalised, thereby establishing that Lp„„„p and Lp„„p

are equally expressive. This would have an interesting con-
sequence, namely that the notions of ‘normal effects’ and
‘normal executions’ of actions are one and the same. This a
priori counter-intuitive claim is easily justifiable. It turns out
the effects of an action (the worlds one ‘lands’ in) depend
to a large extent on what the current state of the world (the
‘departing’ points) is. In other terms, talking about effects
(tacitly) amounts to talking about pairs pw,w1q, linking both
a context of execution and the action’s outcome. This feature
just carries over when normality is considered.

In this work, we have not addressed the question as to
what an appropriate notion of entailment for Lp„„„p is and have
contented ourselves with the standard (Tarskian) definition,
which is monotonic (and therefore inappropriate in many
contexts). The recent results by Booth et al. (2015) in a
propositional setting may provide us with a springboard to
investigate this matter in more expressive languages such as
those we are interested in here.

Outlook on Further Work
We shall now briefly discuss about possible ideas for explo-
ration stemming from the present work.

R-based Conditionals
A framework for representing and reasoning with defeasi-
bility would not be complete without an account of (defea-
sible) conditionals. Here we catch a glimpse of two versions
thereof which can both be defined in our R-ordered models
semantics.

Given an R-ordered model R, for every propositional sen-
tence α, let Rα :“ tpw,w1q | R, w , α and R, w1 , αu
and Îα its corresponding preference relation. (Of course,
if we work in a finite propositional language, then there are
finitely many of such Rαs and Îαs.) We can then define a
conditional statement as a macro in Lp„„„p as follows:

• α;1 β if and only if p„„„pαβ.

Such a definition, of course, has its limitations, as it only
allows for propositional sentences in the antecedent of the
conditional. A generalisation to the case where α P Lp„„„p

would hardly improve matters, as we would end up with an
infinite number of accessibility relations in the R-component
of our R-ordered models.

Fortunately, we can do better than this. First, we need to
define an extra, identity relation id on W and order its ele-
ments in the same way as for the other R-components. The

intuition of doing so is that the most normal id-arrows cor-
respond to the most normal worlds, i.e., we get an ordering
on worlds induced by the ordering on the elements of the
identity relation. With this, we can define our second candi-
date for a conditional in the following way. First, for every
α P Lp„„„p, let idα :“ tpw,wq P id | R, w , αu. Then

• R , α;2 β if and only if for everyw such that pw,wq P
minÎid idα, it holds that R, w , β.

We shall leave an investigation of the appropriateness
of ;2 as a defeasible conditional for future work.

Next Steps in Preferential Reasoning for DLs
In the context of formal ontologies specified in Description
Logics (Baader et al. 2007), placing a preference order on
binary relations as we proposed here has a natural appeal.
As an example, consider the role name hasChild: ‘Normal’
tuples in this relation may be biological or adopted parent-
child tuples, while an ‘exceptional’ tuple may be an ap-
pointed legal guardian parent-child tuple. In this example,
there is nothing exceptional about either the legal guardian
or the child—the exceptionality lies in the nature of their
relationship.

To make things more precise, given a DL interpretation
I “ x∆I , ¨Iy, we can enrich it with a collection of pref-
erence relations ÎI :“ xÎI

r1 , . . . ,Î
I
rny, one for each role

name and each of which satisfying the conditions in Defi-
nition 6. Armed with this semantic construction, it becomes
possible to:

• Define defeasible value restrictions (Britz et al. 2013)
of the form

Ž

„r.C, like
Ž

„hasChild.Male, which refers to
those individuals whose most normal parenting relations
are of male children;

• State defeasible role inclusions of the form r1 Ă
„ r2, as in

e.g. parentOf Ă
„ progenitorOf, which stipulates that the

role of being a parent is usually that of also being the pro-
genitor;

• State typicality-based role instances in the ABox of the
form ‚rpa, bq, where ‚ is the extension of a typicality
operator (Booth, Meyer, and Varzinczak 2012; Giordano
et al. 2007) to roles, like ‚hasChildpjohn, anneq, convey-
ing the information that, under the interpretation of role
hasChild, the tuple pjohn, anneq is to be regarded as a typ-
ical one;

• State defeasible role properties like in saying that role
marriedTo is normally functional and that partOf is nor-
mally transitive, while allowing for exceptions, i.e., less
normal tuples failing the relation’s property under consid-
eration.

Moreover, definitions analogous to those in the preceding
subsection would allow us to:

• State defeasible concept subsumptions (Britz, Heidema,
and Meyer 2008; Britz, Meyer, and Varzinczak 2011b;
Casini and Straccia 2010; Giordano et al. 2007) of the
form C Ă

„ D, as in Mother Ă
„ DmarriedTo, of which the

intuition is that usually, mothers are married.



It is an open question whether a result similar to that ob-
tained in Theorem 1 holds in a DL context. Roles can be rei-
fied, similar to the reification of n-ary relations in DLs (Sat-
tler, Calvanese, and Molitor 2007), as a workaround to
model preferences on tuples as preferences on objects in
a DL enriched with a preferential subsumption relation Ă

„ .
Nevertheless, it is not immediately clear how the addition
of preferential roles to a DL with preferential subsumption
would affect its expressivity.

Defeasible Comparative Epistemic Logic

By placing a preference relation on the accessibility rela-
tions, we can get to a generalisation of Comparative Epis-
temic Logic (CEL) (Ditmarsch, Hoek, and Kooi 2012).

In CEL, a statement of the form a ľ b intuitively means
“agent b knows at least as much as agent a”. The correspond-
ing semantics is given by:

• M , w , a ľ b if and only if Rbpwq Ď Rapwq.

In the context of our enriched semantic framework, we
could envisage making statements of the form “agent b nor-
mally knows as much as agent a”, of which a semantics can
be given by the condition minÎb

Rwb Ď Rwa .

Summary and Conclusion
The contributions of the present paper can be summarised
as follows: (i) the motivation for and the definition of a se-
mantic structure allowing for the ordering of pairs of worlds
(instead of worlds tout court, as is customary in traditional
NMR formalisms) and (ii) a generalisation of bisimulation
to the preferential case together with a result relating our
new semantics to that we studied in previous work and show-
ing that, in the monomodal case, they are equivalent.

We have introduced a logic allowing for modal operators
the intuition of which is to capture the idea of some transi-
tions being more normal than others. As we have seen, our
R-ordered models can be used to provide the extended lan-
guage with an intuitive and elegant semantics. The resulting
framework provides for an alternative formalisation for the
notion of defeasible necessity we studied previously.

We have given examples, in an action, epistemic and de-
ontic contexts, of what this semantic structure, as simple as
it is, would allow us to represent (or give a meaning to) that
one cannot do with standard Kripkean semantics. Likewise,
we have briefly illustrated the fruitfulness of our definitions
in other formalisms, in particular in a DL setting.
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