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Abstract

In this paper we continue recent investigations into be-
lief change for Horn logic. The main contribution
is a result which shows that the construction method
for Horn contraction for belief sets based on infra-
remainder sets, as recently proposed by Booth et al.,
corresponds exactly to Hansson’s classical kernel con-
traction for belief sets, when restricted to Horn logic.
This result is obtained via a detour through Horn con-
traction for belief bases during which we prove that
kernel contraction for Horn belief bases produces pre-
cisely the same results as the belief base version of
the Booth et al. construction method. The use of be-
lief bases to obtain the result provides evidence for the
conjecture that Horn belief change is best viewed as a
“hybrid” version of belief set change and belief base
change. One of the consequences of the link with base
contraction is the provision of a more elegant represen-
tation result for Horn contraction for belief sets in which
a version of the Core-retainment postulate features. The
paper focuses on Delgrande’s entailment-based contrac-
tion (e-contraction), but we also mention similar results
for inconsistency-based contraction (i-contraction) and
package contraction (p-contraction).

Introduction
In his seminal paper, (Delgrande 2008) has shed some light
on the theoretical underpinnings of belief change by weak-
ening the usual assumption in the belief change commu-
nity that the underlying logical formalism should be at
least as strong as (full) classical propositional logic. Del-
grande investigated contraction for belief sets (sets of sen-
tences closed under logical consequence) for Horn clauses.
Delgrande’s main contributions were threefold. Firstly, he
showed that the move to Horn logic leads to different types
of contraction, referred to as entailment-based contraction
and inconsistency-based contraction, which coincide in the
full propositional case. Secondly, Delgrande showed that
Horn contraction for belief sets does not satisfy the contro-
versial Recovery postulate, but exhibits some characteristics
that are usuallly associated with the contraction of bases (ar-
bitrary sets of sentences). And finally, Delgrande made a
tentative conjecture that a version of Horn contraction usu-
ally referrred to as orderly maxichoice contraction is the ap-
propriate method for contraction in Horn theories.

In a subsequent paper, Booth et al. (2009) showed that
while Delgrande’s partial meet constructions are appropri-
ate choices for contraction in Horn logic, they do not con-
stitute all the appropriate forms of Horn contraction. They
build on a more fine-grained construction for belief set con-
traction which we refer to in this paper as infra contraction.
In addition to the two types of Horn contraction introduced
by Delgrande, they also introduce a third.

However, the investigation into Horn belief contraction is
not closed yet. For one thing, Booth et al.’s representation
result has the rather unsatisfactory property that it relies on a
postulate which refers directly to the construction method it
is intended to characterise. Moreover, as referred to earlier,
although Horn contraction is defined on Horn belief sets, it
seems to be related in some ways to contraction for belief
bases: an aspect which has not yet been explored properly.

In this paper we continue the investigation into contrac-
tion for Horn logic, and address both the issues mentioned
above, as well as others. We bring into the picture a con-
struction method for contraction first introduced by Hans-
son (1994), known as kernel contraction. Although ker-
nel contraction is usually associated with base contraction,
it can be applied to belief sets as well. Our main contri-
bution is a result which shows that the infra contraction of
Booth et al. corresponds exactly to a version of Hansson’s
kernel contraction for belief sets, when restricted to Horn
logic. In order to prove this, we first take a close look at Horn
contraction for belief bases, defining a base version of infra
contraction and proving that this construction is equivalent
to kernel contraction for Horn belief bases. Since Horn be-
lief sets are not closed under classical consequence, they can
be seen as a “hybrid” between belief sets and belief bases.
This justifies the use of belief bases to obtain results for be-
lief set Horn contraction.

The investigation into base contraction also affords us the
opportunity to improve on the rather unsatisfactory repre-
sentation result proved by Booth et al. for infra contraction.
We show that a more elegant representation result can be ob-
tained by replacing the postulate introduced by Booth et al.
with the well-known Core-retainment postulate, which is
usually associated with base contraction. The presence of
Core-retainment here further enforces the hybrid nature of
Horn belief change—lying somewhere between belief set
change and base change.



The paper focuses on Delgrande’s entailment-based con-
traction (e-contraction), but we also mention similar results
for two other relevant types of Horn contraction.

Horn logic has found extensive use in Artificial Intel-
ligence, in particular in logic programming, truth mainte-
nance systems, and deductive databases.1 This explains, in
part, our interest in belief change for Horn logic. Another
reason for focusing on this topic is because of its application
to debugging and repairing ontologies in description logics
(Baader et al. 2003). In particular, Horn logic can be seen as
the backbone of the EL family of description logics (Baader,
Brandt, and Lutz 2005), and a proper understanding of be-
lief change for Horn logic is therefore important for finding
solutions to similar problems expressible in the EL family.

The rest of the paper is structured as follows: The next
section introduces the formal background needed. This is
followed by discussions on base contraction and belief set
contraction, after which we briefly review the existing work
on propositional Horn contraction. The following three sec-
tions constitute the core of the paper. In the first one we
prove that kernel contraction and infra contraction are equiv-
alent on the level of bases. This enables us, in the following
section, to prove that kernel contraction and infra contrac-
tion are equivalent on the Horn belief set level as well. And
from this we are led in the next section to provide a more
elegant characterisation for infra contraction for Horn be-
lief sets than the one presented by Booth et al.. We wrap
up with a section on related work which also concludes and
discusses future directions of research.

Logical Background
We work in a finitely generated propositional language LP

over a set of propositional atoms P, which includes the dis-
tinguished atoms > and ⊥, and with the standard model-
theoretic semantics. Atoms will be denoted by p, q, . . ., pos-
sibly with subscripts. We use ϕ,ψ, . . . to denote classical
formulas. They are recursively defined in the usual way.

Classical logical consequence and logical equivalence are
denoted by |= and ≡ respectively. For X ⊆ LP, the set of
sentences logically entailed by X is denoted by Cn(X). A
belief set is a logically closed set, i.e., for a belief set K,
K = Cn(K). We usually denote belief sets by K, possibly
decorated by primes. P(X) denotes the power set (set of
all subsets) of X .

A Horn clause is a sentence of the form p1 ∧ p2 ∧ . . . ∧
pn → q where n ≥ 0, pi, q ∈ P for 0 ≤ i ≤ n (recall that
the pis and q may be one of ⊥ or > as well). If n = 0 we
write q instead of→ q. A Horn set is a set of Horn clauses.

Given a propositional languageLP, the Horn languageLH

generated from LP is simply the Horn clauses occurring in
LP. The Horn logic obtained from LH has the same seman-
tics as the propositional logic obtained from LP, but just re-
stricted to Horn clauses. A Horn belief set, usually denoted
by H (possibly with primes), is a Horn set closed under log-
ical consequence, but containing only Horn clauses. Hence,

1Despite our interest in Horn clauses, it is worth noting that in
this work we do not consider logic programming explicitly and we
do not use negation as failure at all.

|=, ≡, the Cn(.) operator, and all other related notions are
defined relative to the logic we are working in (e.g. |=

PL
for

propositional logic and |=
HL

for Horn logic). We shall dis-
pense with such subscripts where the context makes it clear
which logic we are dealing with.

Base Contraction
Contraction is intended to represent situations in which an
agent has to give up information, say a formula ϕ, from its
current stock of beliefs. Other operations of interest in be-
lief change are the expansion of an agent’s current beliefs by
ϕ, where the basic idea is to add ϕ regardless of the conse-
quences, and the revision of its current beliefs by ϕ, where
the intuition is to incorporate ϕ into the current beliefs in
some way while ensuring consistency at the same time.

We commence with a discussion on base contraction
where an agent’s beliefs are represented as a set of sentences,
also known as a base. We usually denote bases by B, possi-
bly decorated with primes.

Definition 1 A base contraction − for a base B is a func-
tion from LP to P(LP).

Intuitively the idea is that, for a fixed base B, contraction of
a formula ϕ produces a new base B − ϕ.

One of the standard approaches for constructing belief
contraction operators is based on the notion of a remainder
set—a maximally consistent subset ofB not entailing ϕ (Al-
chourrón, Gärdenfors, and Makinson 1985). Below we ap-
ply this to bases, but as we shall see, it can be applied to
belief sets (closed under logical consequence) as well.

Definition 2 Given a set B, X ∈ B⊥ϕ iff (i) X ⊆ B;
(ii) X 6|= ϕ; (iii) for all X ′ s.t. X ⊂ X ′ ⊆ B, X ′ |= ϕ. We
call the elements of B⊥ϕ the remainder sets of B w.r.t. ϕ.

It is easy to verify that B⊥ϕ = ∅ if and only if |= ϕ.

Since there is no unique method for choosing between
possibly different remainder sets, there is a presupposition
of the existence of a suitable selection function for doing so.

Definition 3 A selection function γ for a set B is a (par-
tial) function from P(P(LP)) to P(P(LP)) such that
γ(B⊥ϕ) = {B} if B⊥ϕ = ∅, and ∅ ⊂ γ(B⊥ϕ) ⊆ B⊥ϕ
otherwise.

Selection functions provide a mechanism for identifying the
remainder sets judged to be most appropriate, and the result-
ing contraction is then obtained by taking the intersection of
the chosen remainder sets.

Definition 4 For a selection function γ, the base contrac-
tion −γ generated by γ as follows: B −γ ϕ =

⋂
γ(B⊥ϕ)

is a base partial meet contraction.

Two subclasses of base partial meet deserve special mention.

Definition 5 Given a selection function γ, −γ is a base
maxichoice contraction iff γ(B⊥ϕ) is always a singleton
set. It is a base full meet contraction iff γ(B⊥ϕ) = B⊥ϕ
whenever B⊥ϕ 6= ∅.



Base full meet contraction is unique, while base maxichoice
contraction usually is not.

For reasons that will become clear, it is interesting to ob-
serve that the following convexity principle does not hold for
belief bases.

(Convexity) For a base B, let −mc be a base maxichoice
contraction, and let −fm be base full meet contraction.
For every set X and ϕ s.t. (B −fm ϕ) ⊆ X ⊆ B −mc ϕ,
there is a base partial meet contraction −pm s.t. B −pm
ϕ = X .

The principle simply states that every set between the re-
sults obtained from base full meet contraction and some base
maxichoice contraction can be obtained from some base
partial meet contraction. To see that it does not hold, let
B = {p → q, q → r, p ∧ q → r, p ∧ r → q} and consider
contraction by p → r. It is easily verified that base maxi-
choice gives eitherB−(p→ r) = B′ = {p→ q, p∧r → q}
or B − (p → r) = B′′ = {q → r, p ∧ q → r, p ∧ r → q}
and therefore the only other result obtained from base partial
meet contraction is that which is provided by base full meet
contraction: B − (p → r) = B′′′ = {p ∧ r → q}. But
observe that even though it is the case that B′′′ ⊆ X ⊆ B′′

where X = {p ∧ q → r, p ∧ r → q}, X is not equal to any
of B′, B′′, or B′′′.

Base partial meet contraction can be characterised by the
following postulates

(B − 1) If 6|= ϕ, then B − ϕ 6|= ϕ (Success)

(B − 2) B − ϕ ⊆ B (Inclusion)

(B − 3) If B′ |= ϕ if and only if B′ |= ψ for all B′ ⊆ B,
then B − ϕ = B − ψ (Uniformity)

(B − 4) If ψ ∈ (B \ (B − ϕ)), then there is a B′ s.t.
(B − ϕ) ⊆ B′ ⊆ B and B′ 6|= ϕ, but B′ ∪ {ψ} |= ϕ
(Relevance)

Theorem 1 (Hansson 1992) Every base partial meet con-
traction satisfies (B − 1)–(B − 4). Conversely, every base
contraction which satisfies (B−1)–(B−4) is a base partial
meet contraction.

Kernel contraction was introduced by Hansson (1994) as
a generalization of safe contraction (Alchourrón and Makin-
son 1985). Instead of looking at maximal subsets not imply-
ing a given formula, kernel operations are based on minimal
subsets that imply a given formula.

Definition 6 For a base B, X ∈ B⊥⊥ϕ iff (i) X ⊆ B;
(ii) X |= ϕ; and (iii) for every X ′ s.t. X ′ ⊂ X , X ′ 6|= ϕ.
B⊥⊥ϕ is called the kernel set of B w.r.t. ϕ and the elements
of B⊥⊥ϕ are called the ϕ-kernels of B.

The result of a base kernel contraction is obtained by
removing at least one element from every (non-empty) ϕ-
kernel of B, using an incision function.

Definition 7 An incision function σ for a base B is a func-
tion from the set of kernel sets of B to P(LP) such that
(i) σ(B⊥⊥ϕ) ⊆

⋃
(B⊥⊥ϕ); and (ii) if ∅ 6= X ∈ B⊥⊥ϕ,

then X ∩ (σ(B⊥⊥ϕ)) 6= ∅.

Definition 8 Given an incision function σ for a base B, the
base kernel contraction −σ for B generated by σ is defined
as: B −σ ϕ = B \ σ(B⊥⊥ϕ).

Base kernel contraction can be characterised by the same
postulates as base partial meet contraction, except that Rel-
evance is replaced by the Core-retainment postulate below:

(B − 5) If ψ ∈ (B \ (B − ϕ)), then there is some B′ ⊆ B
such that B′ 6|= ϕ but B′ ∪ {ψ} |= ϕ (Core-retainment)

Theorem 2 (Hansson 1994) Every base kernel contraction
satisfies (B − 1)–(B − 3) and (B − 5). Conversely, every
base contraction which satisfies (B−1)–(B−3) and (B−5)
is a base kernel contraction.

Observe that Core-retainment is slightly weaker than Rele-
vance. And indeed, it thus follows that all base partial meet
contractions are base kernel contractions, but as the follow-
ing example from Hansson (1999) shows, some base kernel
contractions are not base partial meet contractions.

Example 1 LetB = {p, p∨q, p↔ q}. ThenB⊥⊥ (p∧q) =
{{p, p ↔ q}, {p ∨ q, p ↔ q}}, from which it follows that
there is an incision function σ for B s.t. σ(B⊥⊥ (p ∧ q)) =
{p∨ q, p↔ q}, and then B −σ (p∧ q) = {p}. On the other
hand, B⊥(p ∧ q) = {{p, p ∨ q}, {p ↔ q}}, from which it
follows that base partial meet contraction B− (p∧q) yields
either {p, p∨ q}, or {p↔ q}, or {p, p∨ q} ∩ {p↔ q} = ∅,
none of which are equal to B −σ (p ∧ q) = {p}.

Belief Set Contraction
In belief set contraction the aim is to describe contraction on
the knowledge level (Gärdenfors 1988) independent of how
beliefs are represented. Thus, contraction is defined only for
belief sets (i.e., sets closed under logical consequence).

Definition 9 A belief set contraction − for a belief set K is
a function from LP to P(LP).

By the principle of categorical matching (Gärdenfors and
Rott 1995) the contraction of a belief set by a sentence is
expected to yield a new belief set.

Given the construction methods for base contraction al-
ready discussed, two obvious first attempts to define belief
set contraction are to consider both partial meet contraction
and kernel contraction restricted to belief sets. For partial
meet contraction this works well: the remainder sets (Defi-
nition 2) of belief sets are all belief sets as well, the defini-
tion of selection functions (Definition 3) carries over as is for
belief sets, and partial meet contraction (Definition 4) when
applied to belief sets will always yield a belief set as a result.
When applied to belief sets, we refer to the contractions in
Definition 4 as belief set partial meet contractions.

For kernel contraction matters are slightly more compli-
cated. For one thing, for a belief set as input, base kernel
contraction does not necessarily produce a belief set as a
result. Of course, it is possible to ensure that a belief set
is obtained by closing the result obtained from base kernel
contraction under logical consequence.

Definition 10 Given a belief set K and an incision function
σ for K, the belief set contraction ≈σ for K generated as



follows: K ≈σ ϕ = Cn(K −σ ϕ), is a belief set kernel
contraction.

This is very closely related to a version of base contraction
that Hansson (1999) refers to as saturated base kernel con-
traction:

Definition 11 Given a base B and an incision function σ
for B, the base contraction ≈σ for B generated as follows:
B ≈σ ϕ = B ∩ Cn(B −σ ϕ), is a saturated base kernel
contraction.

It is easily shown that when the set B in the definition for
saturated base kernel contraction is a belief set, the two no-
tions coincide.

Observation 1 For a belief set K and an incision function
σ for K, the saturated base kernel contraction for σ and the
belief set kernel contraction for σ are identical.

While it can be shown that some saturated base kernel con-
tractions are not base partial meet contractions, this distinc-
tion disappears when considering belief sets only.

Theorem 3 (Hansson 1994) Let K be a belief set. A belief
set contraction − is a saturated base kernel contraction if
and only if it is a belief set partial meet contraction.

And as a result of Observation 1 and Theorem 3 we imme-
diately have the following corollary:

Corollary 1 Let K be a belief set. A belief set contraction
− is a belief set kernel contraction if and only if it is a belief
set partial meet contraction.

Belief set contraction defined in terms of partial meet con-
traction (and kernel contraction) corresponds exactly to what
is perhaps the best-known approach to belief change: the so-
called AGM approach (Alchourrón, Gärdenfors, and Makin-
son 1985). AGM requires that belief set contraction be char-
acterised by the following set of postulates:

(K − 1) K − ϕ = Cn(K − ϕ) (Closure)

(K − 2) K − ϕ ⊆ K (Inclusion)

(K − 3) If ϕ /∈ K, then K − ϕ = K (Vacuity)

(K − 4) If 6|= ϕ, then ϕ /∈ K − ϕ (Success)

(K − 5) If ϕ ≡ ψ, then K − ϕ = K − ψ (Extensionality)

(K − 6) If ϕ ∈ K, then Cn((K − ϕ) ∪ {ϕ}) = K (Recovery)

Alchourrø’n et al. (1985) have shown that these postulates
characterise belief set partial meet contraction exactly.

Theorem 4 Every belief set partial meet contraction satis-
fies (K − 1)–(K − 6). Conversely, every belief set contrac-
tion which satisfies (K − 1)–(K − 6) is a belief set partial
meet contraction.

We will not elaborate in detail on these postulates, except
for a brief comparison with the postulates for base contrac-
tion. Closure is specific to belief set contraction and has no
counterpart in base contraction. Both Inclusion and Success
also occur as postulates for base contraction. A modified
version of Vacuity (in which the antecedent is changed to
“If B 6|= ϕ”) holds for base contraction. Extensionality is

a special case of the Uniformity postulate for base contrac-
tion. And finally, Recovery is stronger than both Relevance
and Core-retainment, and does not hold for base contraction.

A final word on belief set contraction for full proposi-
tional logic: Booth et al. (2009) have shown that the Con-
vexity property holds for belief sets.

Proposition 1 (Convexity) Let K be a belief set, let −mc
be a (belief set) maxichoice contraction, and let −fm be
(belief set) full meet contraction. For every belief set X and
sentence ϕ s.t. (K−fm ϕ) ⊆ X ⊆ K−mc ϕ, there is a (be-
lief set) partial meet contraction −pm s.t. K −pm ϕ = X .

The result shows that every belief set between the results ob-
tained from full meet contraction and some maxichoice con-
traction can also be obtained from some partial meet con-
traction. This means that it is possible in principle to define
a version of belief set contraction based on such sets.

Definition 12 For belief sets K and K ′, K ′ ∈ K ↓ϕ if and
only if there is some K ′′ ∈ K⊥ϕ such that (

⋂
K⊥ϕ) ⊆

K ′ ⊆ K ′′. We refer to the elements of K ↓ ϕ as the infra
remainder sets of K with respect to ϕ.

Note that all remainder sets are also infra remainder sets, and
so is the intersection of any set of remainder sets. Indeed, the
intersection of any set of infra remainder sets is also an infra
remainder set. So the set of infra remainder sets contains all
belief sets between some remainder set and the intersection
of all remainder sets. This explains why infra contraction
below is not defined as the intersection of infra remainder
sets (cf. Definition 4).

Definition 13 (Infra Contraction) Let K be a belief set.
An infra selection function τ is a (partial) function from
P(P(LP)) to P(LP) such that τ(K ↓ϕ) = K whenever
K ↓ ϕ = ∅, and τ(K ↓ ϕ) ∈ K ↓ ϕ otherwise. A belief set
contraction −τ is a belief set infra contraction if and only if
K −τ ϕ = τ(K ↓ϕ).

Because of Proposition 1 we can extend Corollary 1 to
show that kernel contraction, partial meet contraction, and
infra contraction all coincide for belief sets.

Corollary 2 Let K be a belief set. A belief set contraction
− is a belief set kernel contraction iff it is a belief set partial
meet contraction iff it is a belief set infra contraction.

Horn Contraction
While there has been some work on revision for Horn
clauses (Eiter and Gottlob 1992; Liberatore 2000; Langlois
et al. 2008), it is only recently that attention has been
paid to contraction for Horn logic. In particular, Delgrande
(2008) investigated two distinct classes of contraction func-
tions for Horn belief sets: e-contraction, for removing an
unwanted consequence; and i-contraction, for removing for-
mulas leading to inconsistency; while Booth et al. (2009)
subsequently extended the work of Delgrande. Our focus in
this paper is on e-contraction, although Delgrande, as well
as Booth et al., also consider i-contraction. Delgrande’s def-
inition of Horn logic allows for the conjunction of Horn
clauses, and we shall follow his convention in this paper.
(This differs from the definition of Booth et al. although



their version can be recast into that of Delgrande without
any loss—or gain—in expressivity.) Remembering, here we
are going to use H , sometimes decorated with primes, to
denote a Horn belief set.

Definition 14 An e-contraction− for a Horn belief set H is
a function from LH to P(LH).

Delgrande’s method of construction for e-contraction is
in terms of partial meet contraction. The definitions of re-
mainder sets (Definition 2), selection functions (Definition
3), partial meet contraction (Definition 4), as well as maxi-
choice and full meet contraction (Definition 5) all carry over
for e-contraction, with the set B in each case being replaced
by a Horn belief set H , and we shall refer to these as e-
remainder sets (denoted by H⊥eϕ), e-selection functions,
partial meet e-contraction, maxichoice e-contraction and full
meet e-contraction respectively (we leave out the reference
to the term “Horn”, since there is no room for ambiguity).
As in the full propositional case, it is easy to verify that
all e-remainder sets are also Horn belief sets, and that all
partial meet e-contractions (and therefore the maxichoice
e-contractions, as well as full meet e-contraction) produce
Horn belief sets.

Although Delgrande defines and discusses partial meet
e-contraction, he argues that maxichoice e-contraction (to
be precise, a special case of maxichoice e-contraction re-
ferred to as orderly maxichoice e-contraction) is the ap-
propriate approach for e-contraction. Booth et al. (2009),
on the other hand, argue that although all partial meet e-
contractions are appropriate choices for e-contraction, they
do not make up the set of all appropriate e-contractions.
The argument for appropriate e-contractions other than par-
tial meet e-contraction is based on the observation that the
convexity result for full propositional logic in Proposition 1
does not hold for Horn logic.

Example 2 (Booth, Meyer, and Varzinczak 2009) Let
H = CnHL({p→ q, q → r}). It is easy to ver-
ify that, for the e-contraction of p → r, maxichoice
yields either H1

mc = CnHL({p→ q}) or H2
mc =

CnHL({q → r, p ∧ r → q}), that full meet yields Hfm =
CnHL({p ∧ r → q}), and that these are the only three par-
tial meet e-contractions. Now consider the Horn belief
set H ′ = CnHL({p ∧ q → r, p ∧ r → q}). It is clear that
Hfm ⊆ H ′ ⊆ H2

mc, but there is no partial meet e-
contraction yielding H ′.

In order to rectify this situation, Booth et al. propose that ev-
ery Horn belief set between full meet and some maxichoice
e-contraction ought to be seen as an appropriate candidate
for e-contraction.

Definition 15 (Infra e-Remainder Sets) For Horn belief
sets H and H ′, H ′ ∈ H ↓eϕ iff there is some H ′′ ∈ H⊥eϕ
s.t. (

⋂
H⊥eϕ) ⊆ H ′ ⊆ H ′′. We refer to the elements of

H ↓eϕ as the infra e-remainder sets of H w.r.t. ϕ.

As with the case for full propositional logic, e-remainder
sets are also infra e-remainder sets, and so is the intersection
of any set of e-remainder sets. Similarly, the intersection of
any set of infra e-remainder sets is also an infra e-remainder

set, and the set of infra e-remainder sets contains all Horn
belief sets between some e-remainder set and the intersec-
tion of all e-remainder sets. As in the full propositional case,
this explains why e-contraction is not defined as the intersec-
tion of infra e-remainder sets (cf. Definition 4).

Definition 16 (Horn e-Contraction) Let H be a Horn be-
lief set. An infra e-selection function τ is a (partial) func-
tion from P(P(LH)) to P(LH) such that τ(H ↓eϕ) = H
whenever H ↓e ϕ = ∅, and τ(H ↓e ϕ) ∈ H ↓e ϕ otherwise.
An e-contraction −τ is an infra e-contraction if and only if
H −τ ϕ = τ(H ↓eϕ).

Booth et al. show that infra e-contraction is captured pre-
cisely by the six AGM postulates for belief set contraction,
except that Recovery is replaced by the following (weaker)
postulate (H −e 6), and the Failure postulate (below) is
added.

(H −e 6) If ψ ∈ H \ (H − ϕ), then there exists an X s.t.⋂
(H⊥eϕ) ⊆ X ⊆ H and X 6|= ϕ, but X ∪ {ψ} |= ϕ

(H −e 7) If |= ϕ, then H −e ϕ = H (Failure)

More formally (Booth, Meyer, and Varzinczak 2009):

Theorem 5 Every infra e-contraction satisfies postulates
(K−1)–(K−5), (H−e6) and (H−e7). Conversely, every
e-contraction which satisfies (K − 1)–(K − 5), (H −e 6)
and (H −e 7) is an infra e-contraction.

Observe firstly that (H −e 6) bears some resemblance to
the Relevance postulate for base contraction. Observe also
that it is a somewhat unusual postulate in that it refers di-
rectly to e-remainder sets. It is possible to provide a more el-
egant characterisation of infra e-contraction as we shall see.
Before we do so, however, we first take a detour through
base contraction.

Base Infra Contraction
In the section on base contraction we have considered re-
mainder sets for bases and kernel sets for bases, but not in-
fra remainder sets for bases. We commence this section with
the definition of base infra remainders sets.

Definition 17 (Base Infra Remainder Sets) For bases B
and B′, B′ ∈ B ↓ ϕ iff there is some B′′ ∈ B⊥ϕ s.t.
(
⋂
B⊥ϕ) ⊆ B′ ⊆ B′′. We refer to the elements of B ↓ϕ as

the base infra remainder sets of B with respect to ϕ.

Observe that the definition of base infra remainder sets is
the same as for infra e-remainder sets, differing only in that
(i) it deals with belief bases and not belief sets; and (ii) it
is defined in terms of remainder sets for bases, and not for
(Horn) belief sets.

Base infra remainder sets can clearly be used to define a
form of base contraction in a way that is similar to that in
Definitions 13 and 16.

Definition 18 (Base Infra Contraction) A base infra se-
lection function τ is a (partial) function from P(P(LP))
to P(LP) s.t. τ(B ↓ ϕ) = B whenever B ↓ ϕ = ∅, and
τ(B ↓ ϕ) ∈ B ↓ ϕ otherwise. A base contraction −τ gen-
erated by τ as follows: B −τ ϕ = τ(B ↓ϕ) is a base infra
contraction.



A natural question to ask is how base infra contraction
compares with base partial meet contraction and base kernel
contraction. The following fundamental result, which plays
a central role in this paper, shows that base infra contraction
corresponds exactly to base kernel contraction.

Theorem 6 A base contraction for a baseB is a base kernel
contraction for B iff it is a base infra contraction for B.

From the section on base contraction, and from Exam-
ple 1, specifically, we know that base kernel contraction is
more general than base partial meet contraction—every base
partial meet contraction is also a base kernel contraction, but
the converse does not hold. From Theorem 6 it therefore
follows that base infra contraction is more general than base
partial meet contraction as well. This is not surprising, given
that a similar result holds for partial meet e-contraction and
infra e-contraction as we have seen in the section on Horn
contraction (cf. Example 2).

Theorem 6 has a number of other interesting conse-
quences as well. On a philosophical note, it provides cor-
roborative evidence for the contention that the kernel con-
traction approach is more appropriate than the partial meet
approach. The fact that kernel contraction is at least as gen-
eral as partial meet contraction for both base and belief set
contraction is already an argument favouring it over partial
meet contraction. Theorem 6 adds to this by showing that a
seemingly different approach to contraction (infra contrac-
tion), which is also at least as general as partial meet con-
traction for both base and belief set contraction, turns out
to be identical to kernel contraction. As we shall see in the
next section, Theorem 7 is also instrumental in “lifting” this
result to the level of Horn belief sets.

Kernel e-contraction = Infra e-contraction
Through the work of Booth et al. (2009) we have already
encountered partial meet contraction and infra contraction
for Horn belief sets (partial meet e-contraction and infra e-
contraction), but we have not yet defined a suitable version
of kernel contraction for this case.

Definition 19 Given a Horn belief set H and an incision
function σ for H , the Horn kernel e-contraction for H , ab-
breviated as the kernel e-contraction for H is defined as
H ≈eσ ϕ = CnHL(H −σ ϕ), where −σ is the base kernel
contraction for ϕ obtained from σ.

Given the results on how kernel contraction, partial meet
contraction and infra contraction compare for the base case
(kernel contraction and infra contraction are identical, while
both are more general than partial meet contraction), one
would expect similar results to hold for Horn belief sets.
And this is indeed the case. Firstly, infra e-contraction and
kernel e-contraction coincide.

Theorem 7 Given a Horn belief setH , an e-contraction for
H is an infra e-contraction for H if and only if it is a kernel
e-contraction for H .

Proof sketch: Consider a base B and a formula ϕ. From
Theorem 6 it follows that the set of base infra remainder sets
of B w.r.t. ϕ (i.e., the set B ↓ϕ) is equal to the set of results

obtained from the base kernel contraction of B by ϕ, call it
KCBϕ . Now letB be such that is a set of Horn clauses closed
under Horn consequence (a Horn belief set) and ϕ a Horn
clause. The elements of KCBϕ are not necessarily closed
under Horn consequence, but if we do close them, we obtain
exactly the set of results obtained from kernel e-contraction
when contracting B by ϕ (by the definition of kernel e-
contraction). Let us refer to this latter set as CnHL(KCBϕ ).
I.e., CnHL(KCBϕ ) = {CnHL(X) | X ∈ KCBϕ }. Also, the
elements of B ↓ ϕ are not closed under Horn consequence,
but if we do close them the resulting set (refer to this set as
CnHL(B ↓ϕ)) contains exactly the infra e-remainder sets of
B w.r.t. ϕ. I.e., CnHL(B ↓ϕ) = B ↓eϕ (why this is the case,
will be explained below). But sinceB ↓ϕ = KCBϕ , it is also
the case that CnHL(B ↓ϕ) = CnHL(KCBϕ ), and therefore
CnHL(KCBϕ ) = B ↓eϕ. [QED]

To see why CnHL(B ↓ϕ) = B ↓e ϕ, observe that since
B is closed under Horn consequence, the (base) remainder
sets of B w.r.t. ϕ (i.e., the elements of B⊥ϕ) are also closed
under Horn consequence. So the elements of B ↓ ϕ are all
the sets (not necessarily closed under Horn consequence) be-
tween

⋂
(B⊥ϕ) and some element of B⊥ϕ. Therefore the

elements of CnHL(B ↓ϕ) are all those elements of B ↓ ϕ
that are closed under Horn consequence. That is, exactly the
infra e-remainder sets of B with respect to ϕ.

From Theorem 7 and Example 2 it follows that par-
tial meet e-contraction is more restrictive than kernel e-
contraction. When it comes to Horn belief sets, we therefore
have exactly the same pattern as we have for belief bases—
kernel contraction and infra contraction coincide, while both
are strictly more permissive than partial meet contraction.
Contrast this with the case for belief sets for full proposi-
tional logic where infra contraction, partial meet contraction
and kernel contraction all coincide.

One conclusion to be drawn from this is that the restric-
tion to the Horn case produces a curious hybrid between be-
lief sets and belief bases for full propositional logic. On the
one hand, Horn contraction deals with sets that are logically
closed. But on the other hand, the results for Horn logic ob-
tained in terms of construction methods are close to those
obtained for belief base contraction.

Either way, the new results on base contraction have
proved to be quite useful in the investigation of contraction
for Horn belief sets. In the next section we provide another
result for Horn contraction inspired by the new results on
base contraction in this paper.

An Elegant Characterisation for e-Contraction
In the section on Horn contraction we remarked that
the characterisation of infra e-contraction, specifically the
(H −e 6) postulate, is somewhat unusual in that it refers di-
rectly to an aspect of the construction method (e-remainder
sets) that it is meant to characterise. In this section we show
that it is possible to provide a more elegant characterisation
of infra e-contraction—one that replaces (H −e 6) with the
Core-retainment postulate which we encountered in the sec-



tion on base contraction, and that is used in the characterisa-
tion of base kernel contraction.

Theorem 8 Every infra e-contraction satisfies (K − 1)-
(K − 5) Core-retainment and (H −e 7). Conversely, ev-
ery e-contraction which satisfies (K − 1)-(K − 5), Core-
retainment and (H −e 7) is an infra e-contraction.

This result was inspired by Theorem 6 which shows that
base kernel and base infra contraction coincide. Given that
Core-retainment is used in characterising base kernel con-
traction, Theorem 6 shows that there is a link between Core-
retainment and base infra contraction, and raises the ques-
tion of whether there is a link between Core-retainment and
infra e-contraction. The answer, as we have seen in Theorem
8, is yes. This result provides more evidence for the hybrid
nature of contraction for Horn belief sets—in this case the
connection with base contraction is strengthened.

Related Work and Concluding Remarks
We have mentioned the work on revision for Horn clauses
by Eiter and Gottlob (1992), Liberatore (2000) and Lan-
glois (2008). Apart from the work of Delgrande (2008) and
Booth et al. (2009) which were discussed extensively in ear-
lier sections, there is some recent work on obtaining a se-
mantic characterisation of Horn contraction by Fotinopou-
los (2009). Billington (1999) considered revision and con-
traction for defeasible logic which is quite different from
Horn logic in many respects, but nevertheless has a rule-like
flavour to it which has some similarity to Horn logic.

In bringing Hansson’s kernel contraction into the picture,
we have made useful and meaningful contributions to the
investigation into contraction for Horn logic. More specif-
ically, the main contributions of this paper are (i) a result
which shows that infra contraction and kernel contraction
for the base case coincide; (ii) lifting the previous results
to Horn belief sets to show that infra contraction and ker-
nel contraction for Horn belief sets coincide; and (iii) using
these results as a guide to the provision of a more elegant
characterisation of the representation result by Booth et al.
for infra contraction as applied to Horn belief sets.

In addition to e-contraction, Delgrande investigated a ver-
sion of Horn contraction he refers to as inconsistency-based
contraction (or i-contraction) where the purpose is to mod-
ify an agent’s Horn belief set in such a way as to avoid incon-
sistency when a sentence ϕ is provided as input. That is, an
i-contraction −i should be such that (H −i ϕ)∪ {ϕ} 6|=HL

⊥. In addition Booth et al. considered a version of pack-
age contraction (or p-contraction) by a set of sentences Φ,
for which none of the sentences in Φ should be in the re-
sult obtained from p-contraction. Although it seems that the
new results presented in this paper can be applied to both i-
contraction and p-contraction, this still has to be verified in
detail.

Finally, we have seen that kernel e-contraction and in-
fra e-contraction are more general than partial meet e-
contraction. But there is evidence that even these forms of
Horn contraction may not be sufficient to obtain all mean-
ingful answers, as can be seen from the following example.

Example 3 Consider again our Horn belief set example
CnHL({p→ q, q → r}) encountered in Example 2. If we
view basic Horn clauses (clauses with exactly one atom
in the head and the body) as representative of arcs in a
graph, in the style of the old inheritance networks, then one
possible desirable outcome of a contraction by p → r is
CnHL(q → r). However, as we have seen in Example 2,
this is not an outcome supported by infra e-contraction (and
therefore not by kernel e-contraction either).

Ideally, a truly comprehensive e-contraction approach for
Horn logic would be able to account for such cases as well.
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