
Cardinality Restrictions within Description Logic

Connection Calculi

Fred Freitas1 and Ivan Varzinczak2

1Informatics Center, Federal University of Pernambuco (CIn - UFPE), Brazil
2 CRIL, University of Artois & CNRS, France

fred@cin.ufpe.br, varzinczak@cril.fr

Abstract. Recently, we have proposed the 𝜃-connection method for the de-

scription logic (DL) 𝒜ℒ𝒞, the 𝒜ℒ𝒞 𝜃-CM. It replaces the usage of Skolem terms

and unification by additional annotation and introduces blocking through a new

rule in the connection calculus, to ensure termination in the case of cyclic on-

tologies. In this work, we enhance this calculus and its representation to take on

𝒜ℒ𝒞ℋ𝑄=, an extended fragment that includes role hierarchies, qualified number

restrictions and (in)equalities. The main novelty of the calculus lies in the intro-

duction of equality, as well as in the redefinition of connection to accommodate

number restrictions, either explicitly or expressed through equality. The new

calculus uses the Eq system, thus introducing substitutivity axioms for each

concept or role name. The application of Bibel’s equality connections appears

here as a first solution to deal with equality.

Keywords: description logic, connection method, inference system, cardinality

restrictions, role hierarchies, reasoning.

1 Introduction

Particularly after the appearance of the Semantic Web, Description Logic (DL) [1]

has attracted growing attention in the Informatics’ mainstream, with applications in

many areas. The possibility of supplying Web users with query answers obtained by

complex, albeit decidable reasoning may constitute the main reason for such interest.

 At least in the last two decades, the field of DL reasoning has been taken over by

tableaux calculi and reasoners. The DL family of languages has spread to include very

expressive fragments such as 𝒮ℛ𝒪ℐ𝒬 [15]; cutting-edge reasoning performance was

accordingly achieved, with the development of DL-specific optimization techniques.

 On the one hand, a clear advantage for tableaux calculi against the growing array

of DL constructs - which demand particular treatment during reasoning - may lie in its

easy adaptability. Dealing with a new construct may only require conceiving a new

tableaux rule, maybe along with some optimization companion.

 On the other hand, promising methods may have been neglected in such a scenar-

io, in which the tough competition is often focused on gains through optimizations.

Therefore, perhaps there is still room available for “basic research” on DL reasoning,

in the sense that other efficient calculi need to be adapted to DL, tuned and tested.

mailto:fred@cin.ufpe.br

2

Recently, we have embarked in such an endeavor. Departing from the successful

first-order logic (FOL) Connection Method (CM) - whose matrix representation pro-

vides a parsimonious usage of memory compared to other methods -, we designed, a

first connection calculus for DL, the 𝒜ℒ𝒞 𝜃-CM [6]. It incorporates several features of

most DL calculi: blocking (implemented by a new rule in connection calculi), lack of

variables, unification and Skolem functions.

 Moreover, RACCOON [7], the reasoner which embodied this calculus, displayed

surprisingly promising performance for an engine which has no DL optimizations. In

most of our benchmarking for 𝒜ℒ,𝒜ℒℰ and 𝒜ℒ𝒞, it was only clearly surpassed by

Konclude [15] (even against FacT++ [16] and Hermit [8] – see Section 5), even con-

sidering that these reasoners were designed to face more complex DL fragments than

𝒜ℒ𝒞, a disadvantage for them. Nonetheless, this fact corroborates connection calculi

as fair, competitive choices for DL ontology querying and reasoning.

In an attempt to extend the expressivity of the ontologies it can cope with, in this

work we enhance this calculus and its representation to take on 𝒜ℒ𝒞ℋ𝑄=, an extend-

ed fragment that includes role ℋierarchies, 𝒬ualified number restrictions and

(in)equalities. The main novelty lies in the introduction of (in)equalities, as well as the

redefinition of connection to accommodate number restrictions, either explicitly or

expressed through equalities. The application of Bibel’s eq-connections (equality

connections) [4] appears here as a first solution to deal with (in)equalities, although

cardinality restrictions do not need equality connections, once, in this case, an equali-

ty connects only to an inequality, given a proper 𝜃-substitution for the pair is availa-

ble. Surely, there are other more efficient solutions to dealing with equality, such as

paramodulation [13] and RUE (Resolution and Unifications with Equality) [5], not to

speak on the many advanced techniques already applied in the DL setting. The aim of

the new 𝒜ℒ𝒞ℋ𝑄=𝜃-connection calculus is providing a first solution and roadmap on

how to deal with equality and number restrictions, based on its semantics.

The text is organized as follows. Section 2 provides an explanation of the FOL

CM. Section 3 introduces 𝒜ℒ𝒞ℋ𝑄=; its normalization is shown in Section 4. Section

5 explains our formal connection calculus for 𝒜ℒ𝒞ℋ𝑄=. Section 6 discusses related

work on equality handling in FOL and DL. Section 7 concludes the article. The calcu-

lus’ termination, soundness and completeness are proven in cin.ufpe.br/~fred/RR.pdf.

2 The Connection Method

The connection method has a long tradition in automated deduction. Conceived by W.

Bibel in the early 80’s, it is a validity procedure (opposed to refutation procedures

like tableaux and resolution), i.e., it tries to prove whether a formula, theorem or que-

ry is valid. It consists of a matrix-based deduction procedure designed to be economi-

cal in the use of memory, as it is not generative as tableaux and resolution, in the

sense that it does not create intermediary clauses or sentences during proof search.

We explain how it works below, preceded by necessary definitions.

A (first-order) literal, denoted by 𝐿, is either an atomic formula or its negation. The

complement ¬𝐿 of a literal 𝐿 is 𝑃 if 𝐿 is of the form ¬𝑃, and ¬𝐿 otherwise. A formu-

la in disjunctive normal form (DNF) is a disjunction of conjunctions (like 𝐶1 ∨ … ∨

3

 𝐶𝑛), where each clause 𝐶𝑖 has the form 𝐿1 ∧ … ∧ 𝐿𝑚 and each 𝐿𝑖 is a literal. The ma-

trix of a formula in DNF is its representation as a set {𝐶1, … , 𝐶𝑛}, where each 𝐶𝑖 has

the form {𝐿1, … , 𝐿𝑚} with literals 𝐿𝑖. In the graphical matrix representation, clauses

are represented as columns.

2.1 Method Representation

Suppose we wish to entail whether 𝐾𝐵 ⊨ 𝛼 is valid using a direct method, like the

Connection Method (CM). By the Deduction Theorem [3], we must then prove direct-

ly 𝐾𝐵 → 𝛼, or, in other words, if ¬𝐾𝐵 ∨ {𝛼} is valid. This opposes to classical refuta-

tion methods, like tableaux and resolution, which builds a proof by testing whether
𝐾𝐵 ∪ {¬𝛼} ⊨ ⊥. Hence, in the CM, the whole knowledge base 𝐾𝐵 should be negated,

including instantiated predicates, like 𝐴(𝑎), where 𝑎 is a constant or individual. Given
𝐾𝐵 = {𝛼1, 𝛼2, … , 𝛼𝑛}, 𝛼𝑖 being FOL formulae, in this work we define query as a ma-

trix ¬𝐾𝐵 ∨ {𝛼} (i.e., ¬𝛼1 ∨ ¬𝛼2 ∨ …∨ ¬𝛼𝑛 ∨ 𝛼) to be proven valid, where 𝛼 is the

query consequent. A query represented in this way is said to be in positive DNF.

Besides, the effects for a negated 𝐾𝐵 in a DNF representation are: (i) axioms of the

form 𝐸 → 𝐷 (in DL, 𝐸 ⊑ 𝐷) translate into 𝐸 ∧ ¬𝐷; (ii) in a matrix, variables are exis-

tentially quantified; (iii) FOL Skolemization works over universally quantified varia-

bles, instead of existentially ones; and (iv) the consequent 𝛼 is not negated.

Example 1 (Query, positive DNF, clause, matrix). The query

{∀𝑤 𝐴𝑛𝑖𝑚𝑎𝑙 (𝑤) ∧ ∃𝑧 (ℎ𝑎𝑠𝑃𝑎𝑟𝑡(𝑤, 𝑧) ∧ 𝐵𝑜𝑛𝑒(𝑧)) → 𝑉𝑒𝑟𝑡𝑒𝑏𝑟𝑎𝑡𝑒(𝑤), ∀𝑥 𝐵𝑖𝑟𝑑(𝑥) →

𝐴𝑛𝑖𝑚𝑎𝑙(𝑥) ∧ ∃𝑦 (ℎ𝑎𝑠𝑃𝑎𝑟𝑡(𝑥, 𝑦) ∧ 𝐵𝑜𝑛𝑒(𝑦)) ∧ ∃𝑣 (ℎ𝑎𝑠𝑃𝑎𝑟𝑡(𝑥, 𝑣) ∧ 𝐹𝑒𝑎𝑡ℎ𝑒𝑟(𝑣)) }
⊨ ∀𝑡 𝐵𝑖𝑟𝑑(𝑡) → 𝑉𝑒𝑟𝑡𝑒𝑏𝑟𝑎𝑡𝑒(𝑡)

is represented by the following positive DNF matrix and graphical matrix, where

variables 𝑦, 𝑣 and 𝑡 were skolemized by functions 𝑓(𝑥), 𝑔(𝑥) and constant 𝑐:

{{𝐴𝑛𝑖𝑚𝑎𝑙(𝑤), ℎ𝑎𝑠𝑃𝑎𝑟𝑡(𝑤, 𝑧), 𝐵𝑜𝑛𝑒(𝑧), ¬𝑉𝑒𝑟𝑡𝑒𝑏𝑟𝑎𝑡𝑒(𝑤)}, {𝐵𝑖𝑟𝑑(𝑥) , ¬𝐴𝑛𝑖𝑚𝑎𝑙(𝑥)}, {𝐵𝑖𝑟𝑑(𝑥),

¬ℎ𝑎𝑠𝑃𝑎𝑟𝑡(𝑥, 𝑓(𝑥))}, {𝐵𝑖𝑟𝑑(𝑥) , ¬𝐵𝑜𝑛𝑒(𝑓(𝑥))}, {𝐵𝑖𝑟𝑑(𝑥), ¬ℎ𝑎𝑠𝑃𝑎𝑟𝑡(𝑥, 𝑔(𝑥))}, {𝐵𝑖𝑟𝑑(𝑥) ,

¬𝐹𝑒𝑎𝑡ℎ𝑒𝑟(𝑔(𝑥))}, {¬𝐵𝑖𝑟𝑑(𝑐)}, {𝑉𝑒𝑟𝑡𝑒𝑏𝑟𝑎𝑡𝑒(𝑐)}} .

[

𝐴(𝑤) 𝐵(𝑥) 𝐵(𝑥) 𝐵(𝑥) 𝐵(𝑥) 𝐵(𝑥) ¬𝐵(𝑐) 𝑉(𝑐)

ℎ(𝑤, 𝑧) ¬𝐴(𝑥) ¬ℎ(𝑥, 𝑓(𝑥)) ¬𝐵𝑜(𝑓(𝑥)) ¬ℎ(𝑥, 𝑔(𝑥)) ¬𝐹(𝑔(𝑥))

𝐵𝑜(𝑧)

¬𝑉(𝑤)]

Fig. 1. A FOL query in disjunctive clausal form represented as a matrix and graphical matrix

(with literals abridged, e.g. 𝐴(𝑤) stands for 𝐴𝑛𝑖𝑚𝑎𝑙(𝑤), etc)

2.2 Method Intuition and Functioning

We have represented a FOL query in DNF with clauses as columns, i.e., we are deal-

ing with the matrix vertically. If we change our perspective, traversing the matrix

horizontally in all possible ways (or paths), with each column supplying only one

literal in a path, and group these paths conjunctively, we are indeed converting the

4

query to the conjunctive normal formal (in the most inefficient way). For instance, in

the matrix above, two of the paths are (randomly) listed below:

{𝐴(𝑤), 𝐵(𝑥), 𝐵(𝑥), ¬𝐵𝑜(𝑓(𝑥)),¬ℎ(𝑥, 𝑔(𝑥)), 𝐵(𝑥), ¬𝐵(𝑐), 𝑉(𝑐)}

{ℎ(𝑤, 𝑧), ¬𝐴(𝑥), 𝐵(𝑥), ¬𝐵𝑜(𝑓(𝑥)),¬ℎ(𝑥, 𝑔(𝑥)), ¬𝐹(𝑔(𝑥)), ¬𝐵(𝑐), 𝑉(𝑐)}.

The conjunctive formula would look like (with all variables quantified):

… ∧ (𝐴(𝑤) ∨ 𝐵(𝑥) ∨ 𝐵(𝑥) ∨ ¬𝐵𝑜(𝑓(𝑥)) ∨ ¬ℎ(𝑥, 𝑔(𝑥)) ∨ 𝐵(𝑥) ∨ ¬𝐵(𝑐) ∨ 𝑉(𝑐)) ∧ …

∧ (ℎ(𝑤, 𝑧) ∨ ¬𝐴(𝑥) ∨ 𝐵(𝑥) ∨ ¬𝐵𝑜(𝑓(𝑥)) ∨ ¬ℎ(𝑥, 𝑔(𝑥)) ∨ ¬𝐹(𝑔(𝑥)) ∨ ¬𝐵(𝑐) ∨ 𝑉(𝑐)) ∧ …

It is now easy to see that such a formula (or matrix) is valid iff every path has a

connection, i.e., a 𝜎-complimentary pair of literals, where 𝜎 is the (most general)

unifier between them. For instance, the first path above is true, once it contains the

valid sub-formula 𝐵(𝑥) ∨ ¬𝐵(𝑐), with 𝜎 = {𝑥/𝑐}; the second is true because it has the

sub-formula ℎ(𝑤, 𝑧) ∨ ¬ℎ(𝑥, 𝑔(𝑥)), with 𝜎 = {𝑥/𝑐, 𝑤/𝑐, 𝑧/𝑔(𝑐)}, and so on.

The method then must check all paths for connections in a systematic way. Note

that a connection prunes many paths in a single pass, due to the matricial arrangement

of clauses, a relevant source of reasoning efficiency.

Example 2 (Connection Method). Figure 2 shows the step-by-step query solution.

The reader may note, e.g., that the first connection (step 1.) solves 16 paths.

Each connection can create up to two sets of literals still to be solved, one in each

clause (column) involved in the connection. The first of these literals in each clause is

marked in each step of the Figure with an arrow.

1.

[

𝐴(𝑤) 𝐵(𝑥) ⇐ 𝐵(𝑥) 𝐵(𝑥) 𝐵(𝑥) 𝐵(𝑥) ¬𝐵(𝑐) 𝑉(𝑐)

ℎ(𝑤, 𝑧) ⇐ ¬𝐴(𝑥) ¬ℎ(𝑥, 𝑓(𝑥)) ¬𝐵𝑜(𝑓(𝑥)) ¬ℎ(𝑥, 𝑔(𝑥)) ¬𝐹(𝑔(𝑥))

𝐵𝑜(𝑧)

¬𝑉(𝑤)]

 𝜎 = {𝑤/𝑥}

2.

[

𝐴(𝑤) 𝐵(𝑥) 𝐵(𝑥) 𝐵(𝑥) 𝐵(𝑥) 𝐵(𝑥) ¬𝐵(𝑐) 𝑉(𝑐)

ℎ(𝑤, 𝑧) ⇐ ¬𝐴(𝑥) ¬ℎ(𝑥, 𝑓(𝑥)) ¬𝐵𝑜(𝑓(𝑥)) ¬ℎ(𝑥, 𝑔(𝑥)) ¬𝐹(𝑔(𝑥))

𝐵𝑜(𝑧)

¬𝑉(𝑤)]

 𝜎 = {𝑤/𝑐, 𝑥/𝑐}

3.

[

𝐴(𝑤) 𝐵(𝑥) 𝐵(𝑥) ⇐ 𝐵(𝑥) 𝐵(𝑥) 𝐵(𝑥) ¬𝐵(𝑐) 𝑉(𝑐)

ℎ(𝑤, 𝑧) ¬𝐴(𝑥) ¬ℎ(𝑥, 𝑓(𝑥)) ¬𝐵𝑜(𝑓(𝑥)) ¬ℎ(𝑥, 𝑔(𝑥)) ¬𝐹(𝑔(𝑥))

𝐵𝑜(𝑧) ⇐

¬𝑉(𝑤)]

 𝜎 = {𝑤/𝑐, 𝑥/𝑐}

4.

[

𝐴(𝑤) 𝐵(𝑥) 𝐵(𝑥) 𝐵(𝑥) 𝐵(𝑥) 𝐵(𝑥) ¬𝐵(𝑐) 𝑉(𝑐)

ℎ(𝑤, 𝑧) ¬𝐴(𝑥) ¬ℎ(𝑥, 𝑓(𝑥)) ¬𝐵𝑜(𝑓(𝑥)) ¬ℎ(𝑥, 𝑔(𝑥)) ¬𝐹(𝑔(𝑥))

𝐵𝑜(𝑧) ⇐

¬𝑉(𝑤)]

 𝜎 = {𝑤/𝑐, 𝑥/𝑐, 𝑧/𝑓(𝑐)}

5 − 7.

[

𝐴(𝑤) 𝐵(𝑥) 𝐵(𝑥) 𝐵(𝑥) 𝐵(𝑥) 𝐵(𝑥) ¬𝐵(𝑐) 𝑉(𝑐)

ℎ(𝑤, 𝑧) ¬𝐴(𝑥) ¬ℎ(𝑥, 𝑓(𝑥)) ¬𝐵𝑜(𝑓(𝑥)) ¬ℎ(𝑥, 𝑔(𝑥)) ¬𝐹(𝑔(𝑥))

𝐵𝑜(𝑧)

¬𝑉(𝑤)]

 𝑠𝑎𝑚𝑒 𝜎

Fig. 2. The query solution, with literals abridged. Arrows stand for pending sets of literals.

Otten [11] proposed a “sequent-style” calculus formalization, alternatively to the

graphical matricial one. Our calculus is based on his; it is explained in Section 5.

5

3 The Description Logic 𝓐𝓛𝓒𝓗𝑸=

An ontology in 𝒜ℒ𝒞ℋ𝑄= is a set of axioms over a signature Σ = (𝑁𝐶 , 𝑁𝑅, 𝑁𝑂), where

𝑁𝐶 is the set of concept names (unary predicate symbols), 𝑁𝑅 is the set of role or prop-

erty names (binary predicate symbols), and 𝑁𝑂 is the set of individual

names (constants) [1]. The sets are mutually disjoint. The set of 𝒜ℒ𝒞ℋ𝑄= concept

expressions (C) is recursively defined as follows (with 𝑛 ∈ ℕ∗, and 𝐶 a concept ex-

pression, i.e., 𝐶 ∈ C):

𝐶 ∷= 𝑁𝐶| 𝐶 ⊓ 𝐶|𝐶 ⊔ 𝐶|¬𝐶|∃𝑟. 𝐶|∀𝑟. 𝐶| ≥ 𝑛 𝑟| ≥ 𝑛 𝑟. 𝐶|≤ 𝑛 𝑟| ≤ 𝑛 𝑟. 𝐶

 𝒜ℒ𝒞ℋ𝑄= allows for a set of basic axioms (TBox, RBox), and a set of axioms of a

particular situation (ABox). In the definitions below a,b ∈ 𝑁𝑂, 𝑟, 𝑠 ∈ 𝑁𝑅 , 𝐷, 𝐸 ∈ C
and 𝑖, 𝑛 ≥ 1. A TBox axiom is a subsumption like D ⊑ E; an RBox one is like 𝑟 ⊆ 𝑠;

and an ABox A w.r.t. a TBox T, an RBox R is a finite set of assertions (or instances)

of three types: (i) concept assertions like 𝐶(𝑎); (ii) role assertions 𝑟(𝑎, 𝑏); (iii)

(in)equality assertions 𝑎 = 𝑏 (or 𝑎 ≠ 𝑏). An ontology O is an ordered tuple (T,R,A).

An interpretation I has a domain Δ𝐼 and an interpretation function .𝐼 that maps to

every 𝐴 ∈ 𝑁𝐶 a set A𝐼 ⊆ Δ𝐼; to every 𝑟 ∈ 𝑁𝑅 a relation 𝑟𝐼 ⊆ Δ𝐼 × Δ𝐼; and to every 𝑎 ∈ 𝑁𝑂

an element 𝑎𝐼 ∈ Δ𝐼. The function .𝐼 extends to concepts as depicted in Table 1.

Table 1. Syntax and semantics of 𝒜ℒ𝒞ℋ𝑄= constructors

Construct Syntax Semantics

atomic negation ¬𝐶 𝛥𝐼 / 𝐶𝐼

conjunction 𝐶 ⊓ 𝐷 𝐶𝐼 ∩ 𝐷𝐼

disjunction 𝐶 ⊔ 𝐷 𝐶𝐼 ∪ 𝐷𝐼

exist. restriction ∃𝑟. 𝐶 {𝑥 ∈ 𝛥𝐼 | 〈𝑥, 𝑦〉 ∈ 𝑟𝐼 ∧ 𝑦 ∈ 𝐶𝐼}

value restriction ∀𝑟. 𝐶 {𝑥 ∈ 𝛥𝐼 | 〈𝑥, 𝑦〉 ∈ 𝑟𝐼 → 𝑦 ∈ 𝐶𝐼}

(in)equality 𝑎 = 𝑏\≠ 𝑎𝐼 = 𝑏𝐼 \ 𝑎𝐼 ≠ 𝑏𝐼

qualified

number

restriction1

(for simple number

restrictions, drop

∧ 𝑦𝑖 ∈ 𝐶𝐼 from the

semantics)

≤ 𝑛 𝑟. 𝐶
{𝑥 ∈ 𝛥𝐼 |⋀〈𝑥, 𝑦𝑖〉 ∈ 𝑟𝐼 ∧ 𝑦𝑖 ∈ 𝐶𝐼 ⋀ 𝑦𝑖 ≠

𝑛

𝑖,𝑗=1,𝑖≠𝑗

𝑛+1

𝑖=1

𝑦𝑗

⋀𝑦𝑖 ≠ 𝑦𝑛+1 → 𝑦𝑛 = 𝑦𝑛+1

𝑛−1

𝑖=1

}

≥ 𝑛 𝑟. 𝐶
{𝑥 ∈ 𝛥𝐼 |⋀〈𝑥, 𝑦𝑖〉 ∈ 𝑟𝐼 ∧ 𝑦𝑖 ∈ 𝐶𝐼 ⋀ 𝑦𝑖 ≠

𝑛+1

𝑖,𝑗=1,𝑖≠𝑗

𝑛+1

𝑖=1

𝑦𝑗}

An interpretation I satisfies an axiom 𝛼 (𝐼 ⊨ 𝛼) iff all I axioms and 𝛼 are satisfied,

i.e., I satisfies C ⊑ D iff 𝐶𝐼⊆ 𝐷𝐼 , 𝐶(𝑎) iff 𝑎𝐼 ∈ 𝐶𝐼, 𝑟(𝑎, 𝑏) iff 〈𝑎, 𝑏〉 ∈ 𝑟𝐼 , 𝑟 ⊆ 𝑠 iff 𝑟𝐼 ⊆ 𝑠𝐼.

𝑂 entails 𝛼 (𝑂 ⊨ 𝛼) iff every model of 𝑂 is also a model of α. In this paper, variables

are denoted by x,y,z, possibly with subscripts. Terms are variables or individuals.

1 Note that we have relied on an unusual semantics for number restrictions, instead of

{𝑥 ∈ 𝛥𝐼 | #〈𝑥, 𝑦𝑖〉 ∈ 𝑟𝐼 ∧ 𝑦𝑖 ∈ 𝐶𝐼 ≤ | ≥ 𝑛}. The semantics presented here indeed consists of the

basis for the number restrictions rules (≤ | ≥-rules [1]) in tableaux calculi.

6

4 Normal Form and Matrix Representation for 𝓐𝓛𝓒𝓗𝑸=

Matrices with (qualified) number restrictions can be represented in two ways: the

abridged form, i.e., with the number restrictions explicit, and the expanded form, with

number restrictions substituted by axioms containing concepts, roles and

(in)equalities that correspond to the semantic definitions. Besides, to take on

(in)equalities, substitutivity axioms (e.g., ∀𝑥∀𝑦 (𝑥 = 𝑦) → (𝐸(𝑥) → 𝐸(𝑦)) for concept

names, and ∀𝑥∀𝑦∀𝑧∀𝑘 (𝑥 = 𝑧) ∧ (𝑦 = 𝑘) → (𝑟(𝑥, 𝑦) → 𝑟(𝑧, 𝑘)) for role names) are rep-

resented as clauses for every concept and role name in the query.
Next, the matrix is converted to a specific DNF, introduced here. This DNF, with

definitions concerning representation as matrices for the calculus, is presented below.

Definition 1 (𝓐𝓛𝓒𝓗𝑸= literal, formula, clause, matrix). 𝒜ℒ𝒞ℋ𝑄= literals are

atomic concepts or roles, possibly negated and/or instantiated, or (in)equalities. Liter-

als involved in universal or existential restrictions are underlined. In case a restriction

involves more than one clause, literals are indexed (in the top of the literal) with a

same new column index number. An 𝒜ℒ𝒞ℋ𝑄= formula in DNF is a disjunction of

conjunctions (like 𝐶1 ∨ … ∨ 𝐶𝑛), where each 𝐶𝑖 has the form 𝐿1 ∧ … ∧ 𝐿𝑚, with each

𝐿𝑖 being a literal. The matrix of an 𝒜ℒ𝒞ℋ𝑄= formula in DNF is a set {𝐶1, … , 𝐶𝑛},
where each clause 𝐶𝑖 has the form {𝐿1, … , 𝐿𝑚} with literals 𝐿𝑖.

Definition 2 (Substitutivity clauses, graphical matrix). 𝒜ℒ𝒞ℋ𝑄= matrices repre-

senting number restrictions also contain substitutivity clauses for every concept and

role name, in the forms {𝑥 ≠ 𝑦, 𝐸(𝑥), ¬𝐸(𝑦)} and {𝑥 ≠ 𝑧, 𝑦 ≠ 𝑘, 𝑟(𝑥, 𝑦), ¬𝑟(𝑧, 𝑘)}

with 𝐸 ∈ 𝑁𝐶 , 𝑟 ∈ 𝑁𝑅.

In the graphical matrix representation, clauses are represented as columns, and re-

strictions as lines; restrictions with indexes are horizontal; without are vertical (see

Example 3 – substitutivity axioms are not presented). Literals participating in a uni-

versal restriction in an axiom’s left-hand side (LHS) or in an existential restriction in

the right-hand side (RHS) are underlined; otherwise, they are sidelined.

Example 3 (Query, clause, 𝓐𝓛𝓒𝓗𝑸= matrix, abridged/expanded forms). Fig. 3

shows query 𝑂 = {> 1 hasPart.Wheel ⊑ Vehicle, Car ⊑ ≥ 3 hasPart.Wheel}, 𝛼 = Car ⊑

Vehicle in abridged form. The index marks clauses involved in a same restriction).

{{> 1hasPart, Wheel, ¬Vehicle}, {Car, < 3 ¬hasPart1}, {Car, ¬Wheel1}, {Vehicle(a)},
{¬Car(a)}}

[
> 1 hasPart Car Car ¬Car(a) Vehicle(a)

Wheel < 3 ¬hasPart ¬Wheel
¬Vehicle

]

Fig. 3. The query from Example 1 represented as an 𝒜ℒ𝒞ℋ𝑄= matrix in abridged form

The negations in literals < 3 ¬hasPart1 and ¬Wheel1 constitute merely a notational

convention that facilitates the connections. They reflect the transformation to the ex-

panded form, where these literals are converted into negated literals and equalities.

The number restriction expanded form, according to the semantics defined in Table

1, replaces > 1hasPart, Wheel by hasPart(x, y1) ⊓ Wheel(y1) ⊓ hasPart (x, y2) ⊓

7

Wheel(y2) ∧ y1 ≠ y2 and < 3 ¬hasPart1 by ⋀ hasPart(x, vi) ⊓ Wheel(vi)
3
i=1 ⊓ v1 ≠ v2 ⊓

v1 ≠ v3 → v2 = v3 before creating the matrix. The resulting matrix is depicted in Fig.

4. For the sake of space, substitutivity axioms are not shown.

{{hasPart,Wheel(y1), hasPart,Wheel(y2) , y1 ≠ y2,¬Vehicle}, {Car, ¬hasPart1 }, {Car,

 ¬Wheel(v1)
1}, {Car, ¬ hasPart2}, {Car, ¬Wheel(v2)

2}, {Car, ¬ hasPart3}, {Car,

 ¬Wheel(v3)
3}, {Car, v1 = v2}, {Car, v1 = v3}, {Car, v2 = v3}, {Vehicle(a)}, { ¬Car(a)}}

[

h C C C C C C C C C ¬C(a) V(a)

W(y1) ¬h ¬W(v1) ¬h ¬W(v2) ¬h ¬W(v3) v1 = v2 v1 = v3 v2 = v3

h
W(y2)

y1 ≠ y2

¬V]

Fig. 4. Same example in expanded form, showing the (in)equalities (again, literals are abridged,

i.e., C means Car, h means hasPart, etc)

Definition 3 (Impurity, pure conjunction/disjunction). Impurity in an 𝒜ℒ𝒞ℋ𝑄=

formula is a disjunction in a conjunction, or a conjunction in a disjunction. A pure

conjunction (PC) or disjunction (PD) does not contain impurities (see def. in [6]).

Example 4 (Impurity, pure conjunction / disjunction). (a) ∃𝑟. 𝐴 and ⋀ 𝐴𝑖
𝑛
𝑖=1 are PCs

if A and each 𝐴𝑖 are also PCs; (b) (∀𝑟. (𝐷0 ⊔ … ⊔ 𝐷𝑛 ⊔ (𝐸0 ⊓ … ⊓ 𝐸𝑚) ⊔ (𝐴0 ⊓ … ⊓

𝐴𝑝)) is not a PD, as it contains two impurities: (𝐸0 ⊓ … ⊓ 𝐸𝑚) and (𝐴0 ⊓ … ⊓ 𝐴𝑝).

Definition 4 (Two-lined disjunctive normal form). An 𝒜ℒ𝒞ℋ𝑄= axiom is in two-

lined DNF iff it is in DNF and in one of the following normal forms (NFs): (i) �̂� ⊑ �̌�;

(ii) 𝐸 ⊑ �̂�; (iii) �̌� ⊑ 𝐸, where E is a concept name2, 𝐸 ̂is a PC, and �̌� is a PD.

Example 5 (Two-lined disjunctive normal form). The axioms (i) �̂� ⊑ �̌�; (ii) 𝐸 ⊑

∃𝑟. �̂� and (iii) ∀𝑟. �̌� ⊑ 𝐸, where 𝐸 ̂ = ⋀ 𝐸𝑖
𝑛
𝑖=1 and �̌� = ⋁ 𝐷𝑗

𝑚
𝑗=1 .

𝑖) 1𝑁𝐹:

[

𝐸1

⋮
𝐸𝑛

¬𝐷1

⋮
¬𝐷𝑚]

 𝑖𝑖) 2𝑁𝐹: [
𝐸 ⋯ ⋯ 𝐸
¬𝑟 ¬𝐷1 ⋯ ¬𝐷𝑛

] 𝑖𝑖𝑖) 3𝑁𝐹: [
¬𝑟 𝐷1 ⋯ 𝐷𝑚

¬𝐸 ⋯ ⋯ ¬𝐸
]

Fig. 5. Examples of the three two-lined normal forms’ representations in 𝒜ℒ𝒞ℋ𝑄=

Definition 5 (Cycle, cyclic / acyclic ontologies and matrices). If A and B are atomic

concepts in an ontology O, A directly uses B, if B appears in the right-hand side of a

subsumption axiom whose left-hand side is A. Let the relation uses be the transitive

closure of directly uses. A cyclic ontology or matrix has a cycle when an atomic con-

cept uses itself; otherwise it is acyclic [1]; e.g., O = {A ⊑ ∃r.B, B ⊑ ∃s.A} is cyclic.

2 The symbols E and �̂� were chosen here to designate a concept name and a pure conjunction

rather than the usual C and �̂�, to avoid confusion with clauses, that are also denoted by C.

8

5 The 𝓐𝓛𝓒𝓗𝑸= 𝜽-Connection Calculus (𝓐𝓛𝓒𝓗𝑸= 𝜽-CM)

The 𝒜ℒ𝒞ℋ𝑄= 𝜃-Connection Method (henceforth 𝒜ℒ𝒞ℋ𝑄= 𝜃-CM) differs from the

FOL Connection Method (CM) by replacing Skolem functions and unification by 𝜃-
substitutions, and, just as typical DL systems, employs blocking to assure termination.

Besides, equality connections, proposed by Bibel [4], are needed here as a first at-

tempt to address (in)equalities, and thus (qualified) cardinality restrictions. The idea is

to include substitutivity axioms for each concept and role name, e.g., for concept P:
𝑥 = 𝑦 → (𝑃(𝑥) → 𝑃(𝑦)), represented as a single column {𝑥 = 𝑦, 𝑃(𝑥), ¬𝑃(𝑦)}.

Moreover, w.r.t. 𝒜ℒ𝒞 𝜃-CM, 𝒜ℒ𝒞ℋ𝑄= 𝜃-CM expands the notion of connection to

include equality, which is used to express number restrictions. An ontology represent-

ed as a matrix with the equalities is said to be in the expanded form and is explained

in the next section. The abridged form, with number restrictions without equalities, is

tackled in sub-section 4.2.

5.1 Expanded Form - Representation and Reasoning

Definition 6 (Path, connection, 𝜃-substitution, 𝜃-complementary connection). A

path through a matrix M contains exactly one literal from each clause/column in M. A
connection is a pair of literals in three forms: (i) {𝐸, ¬𝐸} with the same concept/role

name, instantiated with the same instance(s) or not; (ii) {𝑥 = 𝑦, 𝑥 ≠ 𝑦}, with 𝑥 and 𝑦
instantiated with the same instance or not. A 𝜃-substitution assigns each (possibly

omitted) variable an individual or another variable, in an 𝒜ℒ𝒞ℋ𝑄= literal. A 𝜃-
complementary connection is a pair of 𝒜ℒ𝒞ℋ𝑄= literals {𝐸(𝑥), ¬𝐸(𝑦)} or
{𝑝(𝑥, 𝑣), ¬𝑝(𝑦, 𝑢)}, with 𝜃(𝑥) = 𝜃(𝑦), 𝜃(𝑣) = 𝜃(𝑢). The complement �̅� of a literal 𝐿 is

𝐸 if = ¬𝐸, and it is ¬𝐸 if 𝐿 = 𝐸.

Remark 1 (𝜃-substitution). Simple term unification without Skolem functions is

used to calculate 𝜃-substitutions. The application of a 𝜃-substitution to a literal is an

application to its variables, i.e. 𝜃(𝐸) = 𝐸(𝜃(𝑥)), 𝑥 fresh, and 𝜃(𝑟) = 𝑟(𝜃(𝑥), 𝜃(𝑦)),
where 𝐸 is an atomic concept and 𝑟 is a role. For notation, 𝑥𝜃 = 𝜃(𝑥).

Definition 7 (Set of concepts). The set of concepts 𝜏(𝑥) of a term 𝑥 contains all con-

cept names instantiated by 𝑥 so far, defined as 𝜏(𝑥) ≝ {𝐸 ∈ 𝑁𝐶|𝐸(𝑥) ∈ 𝑃𝑎𝑡ℎ}.

Definition 8 (Skolem condition). The Skolem condition ensures that at most one

concept name is underlined for each term in the graphical matrix form. If i is an in-

dex, this condition is defined as ∀𝑎 | {𝐸𝑖 ∈ 𝑁𝐶 | 𝐸
𝑖(𝑎) ∈ 𝑃𝑎𝑡ℎ } | ≤ 1.

Definition 9 (𝓐𝓛𝓒𝓗𝑸= connection calculus). Figure 6 brings the formal 𝒜ℒ𝒞ℋ𝑄=
connection calculus (𝒜ℒ𝒞ℋ𝑄= 𝜃-CM), adapted from the FOL CM [11]. The rules of

the calculus are applied in an analytic, bottom-up way. The basic structure is the tuple

<C, M, Path>, where clause C is the open sub-goal, M the matrix corresponding to the

query O ⊨𝛼 (O is an 𝒜ℒ𝒞ℋ𝑄= ontology) and Path is the active path, i.e. the (sub-)

path being currently checked. The index 𝜇 ∈ ℕ of a clause 𝐶𝜇 denotes that 𝐶𝜇 is the

𝜇-th copy of clause C, increased when Cop is applied for that clause (the variable x in

𝐶𝜇 is denoted 𝑥𝜇) – see example of copied clauses in Figure 13𝑎. When Cop is ap-

9

plied, it is followed by the application of Ext or Red, to avoid non-determinism in the

rules’ application. The Blocking Condition states that, when a cycle finishes, the last

new individual 𝑥𝜇
𝜃 (if it is new, then 𝑥𝜇

𝜃 ∉ 𝑁𝑂, as in the condition) has a set of con-

cepts 𝜏(𝑥𝜇
𝜃) which is not a subset of the set of concepts of the previous copied indi-

vidual, i.e., 𝜏(𝑥𝜇
𝜃) ⊈ 𝜏(𝑥𝜇−1

𝜃) [14]. If this condition is not satisfied, blocking occurs.

𝐴𝑥𝑖𝑜𝑚 (𝐴𝑥)
{},𝑀, 𝑃𝑎𝑡ℎ

𝑆𝑡𝑎𝑟𝑡 𝑅𝑢𝑙𝑒 (𝑆𝑡)
𝐶1, 𝑀, {}

𝜀,𝑀, 𝜀
 𝑤𝑖𝑡ℎ 𝐶1 ∈ 𝛼

𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑅𝑢𝑙𝑒 (𝑅𝑒𝑑)
𝐶,𝑀, 𝑃𝑎𝑡ℎ ∪ {𝐿2}

𝐶 ∪ {𝐿1},𝑀, 𝑃𝑎𝑡ℎ ∪ {𝐿2}

𝑤𝑖𝑡ℎ 𝜃(𝐿1) = 𝜃(𝐿2
̅̅ ̅) 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑆𝑘𝑜𝑙𝑒𝑚 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 ℎ𝑜𝑙𝑑𝑠

𝐸𝑥𝑡𝑒𝑛𝑠𝑖𝑜𝑛 𝑅𝑢𝑙𝑒 (𝐸𝑥𝑡)
𝐶1\{𝐿2},𝑀, 𝑃𝑎𝑡ℎ ∪ {𝐿1} 𝐶,𝑀, 𝑃𝑎𝑡ℎ

𝐶 ∪ {𝐿1},𝑀, 𝑃𝑎𝑡ℎ

𝑤𝑖𝑡ℎ 𝐶1 ∈ 𝑀, 𝐿2 ∈ 𝐶1, 𝜃(𝐿1) = 𝜃(𝐿2
̅̅ ̅) 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑆𝑘𝑜𝑙𝑒𝑚 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 ℎ𝑜𝑙𝑑𝑠

𝐶𝑜𝑝𝑦 𝑅𝑢𝑙𝑒 (𝐶𝑜𝑝)
𝐶 ∪ {𝐿1},𝑀 ∪ {𝐶2

𝜇
}, 𝑃𝑎𝑡ℎ

𝐶 ∪ {𝐿1},𝑀, 𝑃𝑎𝑡ℎ

𝑤𝑖𝑡ℎ 𝐶2
𝜇
 𝑖𝑠 𝑎 𝑐𝑜𝑝𝑦 𝑜𝑓 𝐶1, 𝐿2 ∈ 𝐶2

𝜇
, 𝜃(𝐿1) = 𝜃(𝐿2

̅̅ ̅) 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑏𝑙𝑜𝑐𝑘𝑖𝑛𝑔 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 ℎ𝑜𝑙𝑑𝑠

Fig. 6. The connection calculus 𝒜ℒ𝒞ℋ𝑄= 𝜃-CM

Lemma 1 (Matrix characterization). A matrix M is valid iff there exist an index 𝜇, a

set of 𝜃-substitutions 〈𝜃𝑖〉 and a set of connections 𝑆, s.t. every path through 𝑀𝜇, the

matrix with copied clauses, contains a 𝜃-complementary connection {𝐿1
𝜃 , 𝐿2

𝜃} ∈ 𝑆 , i.e.

a connection with 𝜃(𝐿1) = 𝜃(𝐿2). The tuple 〈 𝜇, 〈𝜃𝑖〉, S 〉 is called a matrix proof.

Clause copying and its multiplicity 𝜇 already existed in the original CM, but nei-

ther a copy rule nor blocking were necessary, as FOL is semi-decidable. To regain

termination, the new Copy rule implements blocking [1], when no alternative connec-

tion is available and cyclic ontologies are being processed. The rule regulates the

creation of new individuals, blocking when infinite cycles are detected. The Skolem

condition solves the FOL cases where the combination of Skolemization and unifica-

tion correctly prevents connections (see Soundness Theorem in

cin.ufpe.br/~fred/RR.pdf).

In the Ext and Red rules, 𝜃-substitutions replace implicit variables by terms in the

current path. A restriction avoids the situation in FOL matrices, where unification is

tried with distinct Skolem functions: any individual 𝑥 can have in its set of concepts

𝜏(𝑥) at most a single concept name with a column index in the matrix, stated by the

condition ∀𝑎 | {𝐸𝑖 ∈ 𝑁𝐶 | 𝐸
𝑖(𝑎) ∈ 𝑃𝑎𝑡ℎ } | ≤ 1.

Example 6 (𝓐𝓛𝓒𝓗𝑸= connection calculus). Figures 7 and 8 show the proof of the

query from Example 1 using the matrix representation and the calculus, respectively.

10

1.

[

h C C C C C C C C C ¬C(a) V(a)

W(y1) ¬h ¬W(v1) ¬h ¬W(v2) ¬h ¬W(v3) v1 = v2 v1 = v3 v2 = v3

h
W(y2)

y1 ≠ y2 ⇐

¬V]

2.

[

h C C C C C C C ⇐ C C ¬C(a) V(a)

W(y1) ¬h ¬W(v1) ¬h ¬W(v2) ¬h ¬W(v3) v1 = v2 v1 = v3 v2 = v3

h
W(y2) ⇐

y1 ≠ y2

¬V]

3&4.

[

h C C C C ⇐ C C C C C ¬C(a) V(a)

W(y1) ¬h ¬W(v1) ¬h ¬W(v2) ¬h ¬W(v3) v1 = v2 v1 = v3 v2 = v3

h ⇐
W(y2)

y1 ≠ y2

¬V]

5 − 11.

[

h C C C C C C C C C ¬C(a) V(a)

W(y1) ¬h ¬W(v1) ¬h ¬W(v2) ¬h ¬W(v3) v1 = v2 v1 = v3 v2 = v3

h
W(y2)

y1 ≠ y2

¬V]

Fig. 7. The query’s proof in graphical matrix representation. Arcs are connections whose labels

are the names of the involved individual(s)/variable(s). Arrows indicate pending literals’ lists.

Fig. 8. The proof of the query using the calculus, where M is an abbreviation for {{h,W(y1),

h,W(y2), y1 ≠ y2, ¬V}, {C, ¬h1}}, {C, ¬W(v1)
1}, {C, ¬h2}}, {C, ¬W(v2)

2}, {C, ¬h3}},

{C, ¬W(v3)
3}, {C, v1 = v2}, {C, v1 = v3}, {C, v2 = v3}, {V(a)}, { ¬C(a)}}. The double-ended ar-

row just copies the proof part to save text space.

Furthermore, when equality between pairs of individuals are being dealt, equality

connections [4] with substitutivity axioms, in explicit or implicit form, can be relied

upon. One can solve, e.g., {𝑃(𝑎), 𝑎 = 𝑏} ⊨ 𝑃(𝑏), as portrayed in Figure 9. Figure 9(i)

displays the equality connections performed in the usual way, with the introduction of

the substitutivity axiom P: 𝑥 = 𝑦 → (𝑃(𝑥) → 𝑃(𝑦)) (represented as the column {𝑥 = 𝑦,

𝑃(𝑥), ¬𝑃(𝑦)}), while Figure 9(ii) presents the same connection in an abridged way.

a

(v1, v2)

a

a

(v1, v2)

a

v 2

a a a a a

(a, v1)

a

v1 (a, v2) v2

(v1, v2)

a

a

a

11

This subject naturally leads to the representation of number restrictions connec-

tions in the abridged form, deployed in the next subsection.

𝑖) [

𝑥 = 𝑦

𝑃(𝑥) ¬𝑃(𝑎) 𝑎 ≠ 𝑏 𝑃(𝑏)

¬𝑃(𝑦)

] 𝑖𝑖)[¬𝑃(𝑎) 𝑎 ≠ 𝑏 𝑃(𝑏)]

Fig. 9. 𝑖) A connection using the substitutivity axiom; 𝑖𝑖) an equality connection [4]

5.2 Abridged Form - Representation and Reasoning

(Qualified) number restrictions can be in abridged form (≥ | ≤ 𝑛 𝑟(. 𝐶) with 𝑛 ∈ ℕ∗). In

this case, one should note that ¬(≥ 𝑛 𝑟) = ≤ (𝑛 − 1) 𝑟 and ¬(≤ 𝑛 𝑟) = ≥ (𝑛 + 1) 𝑟.

Definition 10 (Number restriction literal). Number restriction literals are literals

representing (qualified) number restrictions. They can be negated and/or instantiated,

and/or under- or sidelined or with no line. In case a restriction involves more than one

clause, literals are top indexed with a same new column index number.

Definition 11 (Number restriction valid interval). Two number restrictions form a

valid interval iff their numerical restrictions share an intersection, e.g. > 5 𝑟, < 8 ¬𝑟.

Definition 12 (Number restriction 𝜃-substitution, 𝜃-complementary number re-

striction connection). Let 𝐴 and 𝐵 be two number restriction literals, ≤ | ≥ 𝑛 𝑟 and ≥

| ≤ 𝑚 ¬𝑟, instantiated or not, representing role instance sets 〈𝑟(𝑥, 𝑦1), … , 𝑟(𝑥, 𝑦𝑛)〉 and

〈𝑟(𝑧, 𝑤1),… , 𝑟(𝑧, 𝑤𝑚)〉, with a valid interval between them (𝑣𝑖). A number restriction 𝜃-

substitution for the pair is a mapping 𝜃, s.t. 𝜃(𝑥) = 𝜃(𝑦), 𝜃(𝑦𝑖) = θ(𝑤𝑖), with 𝑖 = 1 to

min(𝑣𝑖). A 𝜃-complementary number restriction connection is a pair of number re-

striction literals over a same role in the form { ≤ | ≥ 𝑛 𝑟, ≥ | ≤ 𝑚 ¬𝑟}, that, under a

number restriction 𝜃-substitution, share a valid interval 𝑣𝑖.

A connection represents a tautology, e.g. 𝐸 ⊔ ¬𝐸. For number restrictions, this

means a valid interval, as, for example, any individual possessing any number of role

instances (including 0) with r satisfies the restriction > 5 𝑟 ⊔ < 8 𝑟. If there is a “hole”,

for instance, > 8 𝑟 ⊔ < 5 𝑟, then individuals with 5 to 8 role instances of r would not

satisfy the restriction, and the latter cannot be a tautology. Recall that < 8 𝑟 is repre-

sented as < 8 ¬𝑟, only to facilitate the connections to be settled.

Example 6 (𝓐𝓛𝓒𝓗𝑸= connection calculus, abridged form). Figures 10 and 11

display the proof from Example 2 in the abridged form, using the graphical matrix

representation and the formal calculus. Note that min(> 1 hasPart,< 3 ¬hasPart) = 2.

The abridged form can easily accommodate number restrictions with role hierar-

chies, if connections between number restrictions and role axioms exist.

Example 7 (Number restrictions, role hierarchies). 𝑂 = {> 2 hasPart.Wheel ⊑ Car,

hasComponent ⊆ hasPart , Truck ⊑ ≥ 6 hasPart.Wheel} , 𝛼 = Truck ⊑ Car.

This query is represented by M = { { > 2 hasPart, Wheel, ¬Car }, { hasComponent ,

¬hasPart }, { Truck, < 5 ¬hasComponent1 }, { Truck, ¬Wheel1}, { ¬Truck(a)}, {Car(a)} }.

(a,b)
(a,b)

b

a

12

Figure 12 brings the proof for M, with min(> 2 hasPart,< 5 hasPart) = 3.

[
> 1 hasPart Car Car ¬Car(a) Vehicle(a)

Wheel < 3 ¬hasPart ¬Wheel
¬Vehicle

]

Fig. 10. Proof of Example 2 in the abridged form. 〈(𝑎, vi)〉, i = 1,2 is a set of two role instances

and 〈vi〉, i = 1,2 is a set of two instances (of concept Wheel).

{}, M, P3 = P2 ∪ {¬W〈vi〉
1} , i = 1,2

A
{},M, P′3 = P2 ∪ {¬C(a)}

A

{C}, M, P2
R

{W〈vi〉}, M, P2 = P1 ∪ {¬h〈(a, vi)〉
1} , i = 1,2

E
{}, M, {¬C(a)}

A
{}, M, {}

A

{C}, M, {¬V(a)}
E

{> 1 h,W},M, P1 = {¬V(a)}
E

{},M, {}
A

{V(a)},M, {}

ε, M, ε
S

Fig. 11. The proof of Example 2 using the calculus, with M = {{>1hasPart, Wheel, ¬Vehicle},

{Car, < 3 ¬hasPart1}, {Car, ¬Wheel1}, {Vehicle(a)}, {¬Car(a)} (literals are abbreviated)

[

> 2 hasPart hasComponent Truck Truck ¬Truck(a) Car(a)

Wheel ¬hasPart < 5 ¬hasComponent ¬Wheel

¬Car

]

Fig. 12. Proof with number restrictions and a role hierarchy axiom

6 Discussion

Matricial inference methods, such as the CM, presents a few advantages over other

methods, as well as some drawbacks. We will discuss our method, at first in the light

of memory handling and existent solutions to solve equality equations in the context

of FOL. Next, we briefly comment some recent comparative performance of our 𝒜ℒ𝒞

reasoner, RACCOON (ReAsoner based on the Connection Calculus Over ONtolo-

gies) against well-known DL reasoners [7], and existent solutions for number re-

strictions within the DL scenario, followed by a small discussion on next steps.

As for memory usage, in the CM, matrices require only a copy of the matrix and

data structures to store the current path, the pending clauses and literals, the unifier

and literal’s indices. It does not generate any intermediary results; this constitutes an

interesting benefit in terms of memory usage over generative methods such as resolu-

tion or tableaux, which create intermediary clauses and sub-formulae.

Indeed, dealing efficiently with memory with cyclic ontologies is crucial for a DL

reasoner, since a number of fragments (including 𝒜ℒ𝒞𝒩-Aboxes) have been proven

PSPACE-complete [1]. Our calculus processes cycles (thanks to the Copy rule), saving

memory due to keeping only one copy of the matrix in memory [3,4]. The other cop-

ies are virtual, i.e., only the index 𝜇 is created or incremented and stored, together

with the 𝜃-substitution and the current path. The next example portraits this case.

a a

〈(𝑎, vi)〉, i = 1…3
〈(𝑎, vi)〉, i = 1…3

〈vi〉, i = 1…3 a

〈vi〉, i = 1,2 a

〈(𝑎, vi)〉, i = 1,2 a a

13

Example 8 (Cycles). 𝑂 = {∃hasSon. (Dr ⊔ DrAncestor) ⊑ DrAncestor, hasSon(ZePadre,

Moises), hasSon (Moises, Luiz), hasSon (Luiz, Fred), Dr (Fred)}, 𝛼 = DrAncestor(ZePadre).

This cyclic query has its proof represented by both Figures 13𝑎 and 13𝑏.
Figure 13𝑎 brings an explicit copy of the second clause, needed for the proof. On

the other hand, Figure 13𝑏 incorporate indices to denote how the only copy was used

with different individuals and instantiations. At least in theory, such idea exists in the

CM, called implicit amplification [3]; we adopted it in RACCOON with the same

notation, and gain memory with its procedure.

𝑎)

[

¬DrA ¬DrA ¬DrA

hasS hasS hasS ¬hasS(ZP,Mo) ¬hasS(Mo, L) ¬hasS(L, F) ¬Dr(F) DrA(ZP)

Dr DrA DrA]

𝑏)

[

¬DrA ¬DrA

hasS hasS ¬hasS(ZP,Mo) ¬hasS(Mo, L) ¬hasS(L, F) ¬Dr(F) DrA(ZP)

Dr DrA]

Fig. 13. Proof representations of a cyclic query, with (𝑎) explicit and (𝑏) implicit copies

Clausal inference methods require normal forms, in which transformations apply

over formulae to produce clauses over which the method works. On the one hand,

clause manipulation accelerates reasoning in reasonably expressive logics, e.g., FOL.

On the other hand, the drawbacks are at least two-fold.

First, literals’ redundancy among clauses often constitutes an overhead in large

knowledge bases. In the CM, matrix representation minors the problem during reason-

ing, as the method is non-generative; anyway, it remains if, in an initial query repre-

sentation in DNF, clauses share too many literals. For the 𝒜ℒ𝒞ℋ𝑄= 𝜃-CM, the two-

lined normal form reduces this type of redundancy at the expense of introducing a

small number of new symbols. To sum up, the best solution consists in applying a

non-clausal connection method [12], where matrices can be nested.

Another problem for clausal calculi resides on adapting to an increasing set of con-

structs in DL: each new construct to be inserted into the calculi requires careful analy-

sis, and frequently changes in the existing rules. This problem also plagues equality

approaches in clausal systems. Consolidated solutions from saturation-based reason-

ing, such as paramodulation [13], are hard to be integrated, and the former is not

complete for the connection method [11]. Nevertheless, an equality approach based

on RUE (Resolution with Unification and Equality) [5] seems plausible for connec-

tion calculi but has not been tried yet. Our aim in formalizing our calculus with the Eq

system is paving the way for such more efficient solutions.

ZP

L Mo

(ZP,Mo)

(Mo,L) (L,F)

F

ZP

L 2 Mo

(ZP,Mo)

(Mo,L) (L,F)

F

1

14

Although the Eq system is not yet coded in RACCOON, the goal-oriented search

embodied by the connection calculus, together with its economical approach to

memory, made the reasoner display unexpected fair results for 𝒜ℒ𝒞 consistency,

compared to Hermit, FacT++ and Konclude. A summary of the benchmarking con-

ducted over the ORE 2014 and 2015 baselines is deployed in Figure 14 [7].

Fig. 14. Comparison of RACCOON and ORE competitors for consistency on the ORE 2014

and 2015 baselines (𝒜ℒ,𝒜ℒℰ and 𝒜ℒ𝒞 ontologies)

In the baselines, ontologies were ranked by size and expressivity. RACCOON ex-

hibited the fastest results (side by side with Konclude) in smaller and less complex

ontologies; however, against the larger and more complex set (the last ones), results

start to decay (in a graceful fashion), probably due to the lack of DL optimizations.

Furthermore, in the first experiment, RACCOON’s performance fell short in ontolo-

gies in the presence of a certain structure where cycles occur inside other cycles mas-

sively. Apart from that, the results seem promising, given the possibility of imple-

menting reductions built in other competitors.

When faced with number restrictions and their equalities, the idea is applying the

abridged form first, which demand less steps and memory; only in the cases it does

not suffice, the expanded form must be used (comparing two number restrictions has

a quadratic complexity in the simpler cases, not to talk about checking the ABox).

Besides, with the expanded form, hundreds of substitutivity axioms might need to be

added to the matrix. Thus, 𝒜ℒ𝒞ℋ𝑄= 𝜃-CM can only be competitive in this DL frag-

ment, when, e.g., solutions based on rewriting [2,10] can be devised and integrated,

i.e., a way to substitute equal individuals by their canonical representative is envis-

aged. Bibel already suggested term rewriting as a possible technique to solve equality

in the CM [4]. Integrating it with the 𝒜ℒ𝒞ℋ𝑄= 𝜃-CM represents a challenge for our

calculus to remain competitive as more expressive fragments are to be addressed.

7 Conclusions and Future Work

In the current work, 𝒜ℒ𝒞ℋ𝑄= 𝜃-CM is presented, a connection method that enhances

the 𝒜ℒ𝒞 𝜃-CM, by, mainly, introducing (in)equalities and, as a respective solution to

handle them, equality connections with equality predicate substitutivity axioms ex-

15

plicit or implicit, as defined by Bibel. Two new forms of representing number re-

strictions are also shown: the abridged and the expanded form. In the former, cardi-

nality restrictions are a new type of literals themselves, and this new notion of literal

together with its respective new connection type had to be defined. In the latter, num-

ber restrictions are replaced by literals and (in)equalities that correspond to the num-

ber restriction´s semantic definition.

As for theoretical future work, we aim to create more sophisticated blocking

schemes for dynamic and double blocking for DL constructs like inverses, union,

intersection and complement of roles [9], transitivity, role chains and value maps,

complex role axioms and dealing with nominals. As for practical future work, we

intend to enhance the fragment currently dealt by RACCOON to include 𝒜ℒ𝒞ℋ𝑄=, as

well as the future new solutions mentioned as theoretical future work.

Acknowledgements. This work was partially supported by the project Reconciling

Description Logics and Non-Monotonic Reasoning in the Legal Domain (PRC

CNRS–FACEPE France–Brazil) and the anonymous reviewers. Fred Freitas also

thanks Jens Otten, Evandro and Patty Travassos, for the personal support.

References

1. Baader, F., Calvanese, D. McGuinness, D, Nardi, D., Patel-Schneider, P. (Eds.): The De-

scription Logic Handbook. Cambridge University Press, (2003).

2. Bate, A., Motik, B., Cuenca Grau, B., Simancik, F., Horrocks, I.: Extending Consequence-

Based Reasoning to 𝒮ℋℐ𝒬. Workshop on Description Logics (DL), CEUR : 34–46 (2015).

3. Bibel, W.: Matings in Matrices. Communications of the ACM 26:844-852, (1983).

4. Bibel, W.: Deduction – Automated Logic. Academic Press, London, (1993).

5. Digricoli, V., Harrison, M.: Equality-based Binary Resolution,J.ACM,33(2):253-289,1986.

6. Freitas, F.: A Connection Calculus over the Description Logic 𝒜ℒ𝒞. Canadian Conf. on

Artificial Intelligence (AI), Victoria, Canada, (2016).

7. Freitas, F. Melo, D., Otten, J.: RACCOON: A Connection Reasoner for 𝒜ℒ𝒞. Proc. of Int.

Conf.on Logic for Programming, Artificial Intelligence and Reasoning (LPAR) (2017).

8. Glimm, B., Horrocks, I., Motik, B., Stoilos, G.,Wang, Z.: HermiT: An OWL 2 Reason-

er. Journal of Automated Reasoning 53(3): 245-269 (2014).

9. Horrocks, I., Sattler, U.: A Description Logic with Transitive and Inverse Roles and Role

Hierarchies. Journal of Logic and Computation 9(3):385–410 (1999).

10. Motik, B., Nenov, Y., Piro, R., Horrocks, I.:Combining Rewriting and Incremental Materi-

alisation Maintenance for Datalog Programs with Equality. IJCAI : 3127-3133 (2015).

11. Otten, J.:Restricting backtracking in connection calculi.AI Comm.,23(2-3):159-182, 2010.

12. Otten,J.: nanoCoP: Natural Non-clausal Theorem Proving. Proc. IJCAI: 4924-4928 (2017).

13. Robinson, G., Wos, L.: Paramodulation and Theorem Proving in First-Order Theories with

Equality, Machine Intelligence 4:135-150 (1969).

14. Schmidt, R., Tishkovsky, D.: Analysis of Blocking Mechanisms for Description Logics. In

Proceedings of the Workshop on Automated Reasoning (2007).

15. Steigmiller, A. Liebig, T., Glimm, B.: Konclude: System Description. Journal of Web Se-

mantics: Science, Services and Agents on the World Wide Web, 27(1):78-85 (2014).

16. Tsarkov, D., Horrocks, I.: FacT++ Description Logic Reasoner: System Description. Proc.

of Int. Joint Conference on Automated Reasoning (IJCAR), LNAI 4130:292-297 (2006).

http://www.cs.ox.ac.uk/people/andrew.bate/
http://www.cs.ox.ac.uk/boris.motik/
http://www.cs.ox.ac.uk/people/bernardo.cuencagrau/
http://www.cs.ox.ac.uk/ian.horrocks/
http://dblp.uni-trier.de/pers/hd/g/Glimm:Birte
http://dblp.uni-trier.de/pers/hd/h/Horrocks:Ian
http://dblp.uni-trier.de/pers/hd/s/Stoilos:Giorgos
http://dblp.uni-trier.de/db/journals/jar/jar53.html#GlimmHMSW14
https://dblp.org/pers/hd/m/Motik:Boris
https://dblp.org/pers/hd/n/Nenov:Yavor
https://dblp.org/pers/hd/h/Horrocks:Ian
https://dblp.org/db/conf/ijcai/ijcai2015.html#MotikNPH15

