Root Justifications for Ontology Repair

Kodylan Moodley!?, Thomas Meyer' 2, and Ivan José Varzinczak!?

1 CSIR Meraka Institute, Pretoria, South Africa
{kmoodley, tmeyer, ivarzinczak} Qcsir.co.za
2 School of Computer Science, University of KwaZulu-Natal, South Africa

1 Introduction

An ontology (also referred to as a terminology, knowledge base) is an entity used
to represent some domain (field of knowledge). Usually the building blocks of an
ontology include categories (concepts), relations (roles) and objects (individuals).

Description Logics (DLs) are an appropriate class of knowledge representa-
tion languages to formalize and reason about ontologies [1]. The reasoning pro-
cess is carried out by a chosen DL reasoner. We don’t provide a comprehensive
introduction to DLs, but point the reader to the book by Baader et al. [1].

For our purposes a DL T'Boz consists of a finite set of azioms specifying the
terminological part of an ontology. The Thox includes (but need not be limited
to) subsumption statements of the form E T F where E and F are (possibly
complex) concept descriptions, built up from basic concepts. The semantics of
DLs is based on the classical model theory for first-order logic. A DL interpre-
tation I contains a non-empty domain A’ of elements and a mapping which
interprets a basic concept A as a subset A of A. For purposes of illustration
we shall assume that complex concepts can be constructed using negation (—FE)
and conjunction (E M F), where —F is interpreted as A’ \ B!, and ETF is
interpreted as E' N F!. However, the inclusion of negation and conjunction is
not a requirement. There may be other ways of constructing complex concepts.

An interpretation I is a model of a Thox axiom E C F if and only if BT C FI.
Given a Thox I', a subsumption statement E C F', and a basic concept A, (i) I'
is A-unsatisfiable if and only if for all models I of I'; A =, and (i) EC F is
a consequence of I' if and only if every model of all axioms in I" is also a model
of EC F.

Quite often during the development of ontologies, ontology developers make
modelling errors. These errors can introduce unwanted consequences in the on-
tology. The process of identifying, explaining and eliminating these unwanted
consequences is known as ontology debugging and repair or simply ontology re-
pair.

In this paper, we focus on the Black-bozx approach to ontology repair which
treats the reasoner as a “black-box” which basically answers ‘yes’ or ‘no’ to the
question: does consequence « follow from the ontology? We extend the principles
introduced in a previous work [6]. We present an improved implementation of
the repair method discussed there and we also provide some experimental results
comparing the performance of our approach to that of the standard Black-box

approach to ontology repair. The standard approach has been applied mostly
to the specific ontology errors called unsatisfiable concepts but have not been
extended for other errors.

2 Ontology Debugging and Repair

In this section we discuss the standard Black-box technique for eliminating errors
in the ontology based on existing work.

2.1 Debugging

Explanation is a service which focuses on explaining why selected consequences
follow from an ontology. Given an ontology O with some axiom « such that
O E a, there exists an explanation which indicates why this is the case. The
most widely used explanation is a set of justifications (also known as minAs (2]
and MUPSes [10]) for the consequence. A justification for O |= « is a minimal
subset of O from which « logically follows [10].

Ezample 1. Consider the following ontology:

O={1.CCA2.CC-A3.FCCNn-A4.FCC}

We represent O as the set {1,2, 3,4} with the understanding that each num-
ber represents an axiom in @. One can see that O is F-unsatisfiable: O = F C L.
Two justifications for this entailment are {1,3} and {1,2,4} O

Justifications are useful because they allow for the pinpointing of the causes
of modelling errors. In Example 1 they show that Axioms 1 and 3 may not both
occur in O without O being F-unsatisfiable. Similarly, for Axioms 1, 2, and 4.

An example of a basic Black-box algorithm for computing a justification for
an ontology consequence is the naive pruning algorithm [11]. It works by remov-
ing axioms from the ontology, one at a time, and monitoring how this affects the
entailment under consideration. For details of this algorithm the reader should
consult the provided reference.

In order to obtain a complete explanation for the unsatisfiability of a concept
one has to determine all its justifications. The most well known method to do
this is a variant of Reiter’s [9] hitting set algorithm. This variant algorithm [7]
generates a justification tree for the unsatisfiability of the concept w.r.t. O. For
details of this method the reader should consult the reference provided.

2.2 Repair

Recall Example 1. One can consider justifications {1,3} and {1,2,4} as reasons
for the F-unsatisfiability of O. To eliminate the unsatisfiability, one has to nullify
all its reasons. A common strategy to do this is to remove a single axiom from
each justification for the unsatisfiability [4].

Therefore, if we remove the set {2,3} from O then the unsatisfiability of
F is eliminated. The resulting ontology O\{2,3} is a repair [6] for the F-
unsatisfiability of O and the set {2, 3} is a diagnosis [9] for the F-unsatisfiability
of O. A key requirement of computing repairs (diagnoses) is to find mazimal
repairs (minimal diagnoses).

In the case of a set of unsatisfiable concepts, C, in some ontology O, the goal
is to repair O by replacing it with an ontology O’ which is C-satisfiable for every
CecC.

Kalyanpur et al. [5] discuss an approach for eliminating this set of unsatisfi-
able concepts in the ontology. This approach separates the unsatisfiable concepts
into root unsatisfiable concepts and derived unsatisfiable concepts. Intuitively, a
root unsatisfiable concept is a concept whose unsatisfiability is not caused by
that of another concept in the ontology. A derived unsatisfiable concept is one
which is not root unsatisfiable.

A useful property of a root unsatisfiable concept, C, is that if one repairs the
unsatisfiability of C' then all other concepts in the ontology whose unsatisfiability
is caused by that of C' are automatically repaired [5]. Using this property, one
can resolve a set of unsatisfiable concepts in some ontology as follows. Initially
one identifies all the root unsatisfiable concepts in the set. The unsatisfiabilities
of these concepts are then eliminated by removing an axiom from each of their
justifications from the ontology. After this, one has to re-compute/re-identify
which of the remaining concepts in the set are root unsatisfiable (some concepts
which were derived unsatisfiable may become root unsatisfiable after the initial
repair).

This process has to be repeated until there are no more unsatisfiable con-
cepts in the set. The drawbacks to this repair strategy are that (i) it is only
applicable to one type of ontology error (unsatisfiable concepts) and (i) it does
not eliminate the entire set of unsatisfiable concepts simultaneously. Rather, it
uses an iterative approach as described above.

3 Repair using Root Justifications

In this section, we discuss our approach to ontology repair. This approach can
be applied to a set of unwanted arioms. We start by observing that the most
prominent types of ontology error (unsatisfiable concepts and ontology inconsis-
tency) can be generalized to some unwanted axiom [7]. Thus, the key differences
from the method discussed in the previous section are (i) We are dealing with
other types of errors as well, not just unsatisfiable concepts and (i) We are
eliminating a set of such errors simultaneously.

We first define some terminology that will be used in the remainder of this
section. Given an ontology O and and some unwanted axiom ayy, a justification
J for O = ay is a ay-justification for O. The set of all ay-justifications for O
is denoted by Jo(ay). Given an ontology O and a set of unwanted axioms U,
the set Jo(U) = U,, cis Jo(ar). Using this terminology we characterize a root
justification as follows.

Definition 1 (U-root justification). Given an ontology O and a set of un-
wanted arioms U, a set RJ is a U-root justification for O if and only if it is
a ay-justification for O for some ay € U (i.e. RJ € Jo(U)), and there is no
J € Jo(U) such that J C RJ. We denote the set of all U-root justifications for
O by RIoUU).

In the work by Kalyanpur et al. [5] on root and derived unsatisfiable con-
cepts, root justifications are used (implicitly) as a means to identify the root and
derived unsatisfiable concepts. For our approach to ontology repair, the notion
of a root justification is central and thus we highlight this principle here.

Ezample 2. For Example 1,let i = {F C L,C C L}. We have already seen that
Jo(F T 1) = {{1,3},{1,2,4}}. It is easy to see that Jo(C C 1) = {{1,2}}
and therefore that Jo(U) = {{1,3},{1,2,4},{1,2}}. Therefore, according to
Definition 1, the set of U-root justifications for O is RJT o (U) = {{1,2},{1,3}}.
O

The following algorithm demonstrates the computation of a single root jus-
tification RJ € RJ o (U):

Algorithm 1: (Single root justification)

Input: Ontology O, unwanted axiom set U (|U| > 1)
Output: U-root justification, RJ, for O
Uses: entailedAxioms(O, U), which returns {a € U | O = o}
RJ = O;
foreach o € RJ do

if |entailedAzioms(RJ\{a}, U)| > 1 then

| RJ:= RJ\{a};

end
end
return RJ;

B =R B N VUR VI

The key difference between Algorithm 1 and the naive pruning algorithm is
that we are now considering the entailment of all unwanted axioms in a set (in
procedure entailedAxioms(.)), rather than just a single axiom. It is clear that
Algorithm 1 terminates for all finite inputs of O and U. This follows from Line
2 of the algorithm which shows that the loop only considers the axioms in the
finite set RJ.

Algorithm 1 is computationally intensive because we only consider a single
axiom at a time in the ontology and for each consideration we require between
1 and |U| entailment tests. We use a more optimized version of this algorithm in
practice (based on a sliding window technique [4]). Details of this algorithm [7]
can be found in the reference provided.

In order to ensure that we are able to generate all the repairs for an unwanted
axiom set in an ontology, it is necessary to know all the root justifications for

the unwanted axiom set. We have given a brief description of a variant of Re-
iter’s Hitting Set Algorithm which computes all the “regular” justifications for a
single entailment [4]. This variant algorithm can also be used (with some slight
modifications) to compute all root justifications for a set of unwanted axioms.
The algorithm [7] can be found in the reference provided. The significance of
root justifications is that they can be used to generate precisely the U-repairs
for O.

Definition 2 (U-repair). A subset R of O is a U-repair for O if and only if
RE ay for every ay € U, and for every R’ for which R C R' C O, R' F ay for
some ay €U.

We denote the set of U-repairs for O by Reo(U). For Example 1 it can be
verified that R7o({C T L,F C 1}) = {{1,3},{1,2}} and thus Ro({C C
1,FC 1}) = {{2,3,4},{1,4}}. The above U-repairs can be generated from
U-diagnoses.

Definition 3 (U-diagnosis). A subset D of O is a U-diagnosis for O if and
only if DNRJ # 0 for every RJ € RToU). D is a minimal U-diagnosis for O
if and only if there is no U-diagnosis D' (for O) such that D' C D.

4 Implementation and Evaluation

We have implemented a Protégé 4 plugin ? for computing root justifications for
sets of unwanted axioms. We have extended it to also compute the U-repairs.
We have performed some preliminary experiments to compare this approach for
ontology repair with the naive sequential approach described in Sect. 2.2.

We use three sample ontologies (The Tambis [3], Travel + and Pizza [8] ontolo-
gies) of varying size, structure, and application. These ontologies are expressed
in the DLs SHZIN, SOIN (D) and SHOZN respectively. There are three test
cases, one for each ontology and in each case we select four different unwanted
axiom sets from the ontology. Each test case has four experiments (one for each
unwanted axiom set). In each experiment, we perform a control computation.
This control computation uses the naive approach to identify all regular justifi-
cations for each axiom in the unwanted axiom list. We then use our approach
to identify all root justifications for the unwanted axiom set. The performance
of these two approaches is then compared. For details about the results of these
experiments [7] the reader should consult the given reference.

To summarize these results, the performance of OntoRepair depends on the
kinds of axioms contained in the unwanted axiom set. This is because the specific
axioms in the set influence the justifications which are computed and thus also
the number of root justifications for the set versus the number of regular justifi-
cations for each unwanted axiom in the set. Nine out of twelve of our experiments

3 http://krr.meraka.org.za/software/ontorepair
* http://protege.cim3.net/file/pub/ontologies/travel/travel.owl

http://krr.meraka.org.za/software/ontorepair
http://protege.cim3.net/file/pub/ontologies/travel/travel.owl

show instances where the number of root justifications is less than the number
of regular justifications. This frequency justifies the use of OntoRepair which
provides improved performance (over the naive approach) in all these instances.
However, there is scope for optimizing the computation of root justifications in
OntoRepair to be comparable to the performance of the naive approach, for those
cases in which the number of root and regular justifications are equal. Finally, it
is important to mention that since the empirical analysis was conducted on the
basis of just three examples, the results are unlikely to be statistically significant
and conclusive.

5 Conclusion

We have presented an alternative approach for ontology repair using the notion
of root justifications. We have implemented a Protégé 4 plugin, OntoRepair,
to demonstrate this repair strategy. Some preliminary experiments show overall
better performance than a naive approach to ontology repair. However, there
are some special cases in which the naive approach performs far better than
our approach and vice versa. More experiments will be performed to character-
ize the circumstances in which our approach gains a clear advantage. Various
performance optimizations for the OntoRepair tool are also in the pipeline.

References

[1] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider, edi-
tors. The Description Logic Handbook. Cambridge, 2 edition, 2007.

[2] F. Baader, R. Penaloza, and B. Suntisrivaraporn. Pinpointing in the Description
Logic £L£. In Proc. KI. Springer, 2007.

[3] P. G. Baker, C. A. Goble, S. Bechhofer, N. W. Paton, R. Stevens, and A. Brass.
An ontology for bioinformatics applications. Bioinformatics, 15(6):510-520, 1999.

[4] A. Kalyanpur. Debugging and repair of OWL ontologies. PhD thesis, University
of Maryland, 2006.

[5] A. Kalyanpur, B. Parsia, E. Sirin, and J. Hendler. Debugging unsatisfiable classes
in OWL ontologies. Web Semantics: Science, Services and Agents on the World
Wide Web, 3(4):268-293, 2005.

[6] T. Meyer, K. Moodley, and I. Varzinczak. First steps in the computation of root
justifications. In Proc. ARCOE, 2010.

[7] K. Moodley. Debugging and repair of Description Logic ontologies. Master’s
thesis, University of KwaZulu-Natal, 2011.

[8] A. Rector, N. Drummond, M. Horridge, J. Rogers, H. Knublauch, R. Stevens,
H. Wang, and C. Wroe. OWL Pizzas: Practical Experience of Teaching OWL-
DL: Common Errors & Common Patterns. In Engineering Knowledge in the Age
of the Semantic Web, volume 3257. 2004.

[9] R. Reiter. A theory of diagnosis from first principles. Artificial Intelligence,
32(1):57-95, 1987.

[10] S. Schlobach and R. Cornet. Non-standard reasoning services for the debugging
of description logic terminologies. In Proc. IJCAI, 2003.

[11] B. Suntisrivaraporn, G. Qi, Q. Ji, and P. Haase. A modularization-based approach
to finding all justifications for OWL DL entailments. In Proc. ASWC, 2008.

	Root Justifications for Ontology Repair
	Introduction
	Ontology Debugging and Repair
	Debugging
	Repair

	Repair using Root Justifications
	Implementation and Evaluation
	Conclusion

