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Curitiba – Brazil

Andreas Herzig†

IRIT
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Abstract

In this paper we argue for a weak form of
causality in terms of a dependence relation
involving actions, atoms and formulae in or-
der to deal with the frame and ramification
problems. This relation allows the atoms to
change their value without forcing or causing
it. Once integrated in the framework of the
Logic of Actions and Plans LAP, it gives us
a simple and powerful formalism to reason-
ing about actions and a decision procedure
in terms of tableau methods. We also show
how to deal with scenarios involving indeter-
minate and indirect effects which no other
causal framework can handle. Keywords:
Reasoning about actions, causality, depen-
dence relation, context.

1 INTRODUCTION

The reasoning about actions field has gained a very
powerful framework to deal with the frame and ram-
ification problems with the logic of actions and plans
LAP [Castilho et al., 1999].

LAP is a simple multimodal logic where formulae are
constructed in the following way: We use an S4 oper-
ator 2 to represent laws (static or dynamic ones) and
a collection of K operators [α], one for each action α,
in order to state the behavior of actions.

Given α an action and A,A′ classical propositional for-
mulae, the formula 2〈α〉> is read as “α is executable”.
2(A′ → [α]A) as “if A′, then after α A”. 2[α]A is an
abbreviation for 2(> → [α]A). For example, in the
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Yale shooting scenario (YSS) [Hanks and McDermott,
1986], the formula 2(Loaded → [shoot ]¬Alive) states
that, in every Kripke world, shooting will kill the vic-
tim if the gun is loaded. For the same scenario, the
formula 2(Walking → Alive) is a static law saying
that it is always true that someone who is walking
must also be alive.

In LAP, every action α has the modal logic K, and
the modal operator 2 has logic S4. Actions and the 2

operator are linked by an axiom I(2, [α]) stating that
2A→ [α]A.

In order to solve the frame problem, in [Castilho et al.,
1999] LAP was augmented with a weak causal con-
nection denoted by a dependence relation ; between
actions and literals, giving the base logic LAP;. In
that work, it was also proposed a sound and complete
inference engine based on semantic tableau systems
[Fitting, 1983], constituting a complete solution to rep-
resentation and inference tasks. With LAP;, we can
reason about actions without having to write down all
the frame axioms and in a way not subjected to the
same counter-examples that have invalidated most of
the approaches in the literature along the history.

Nevertheless, even though with that formalism we do
not have to write all the domain specific frame axioms,
we are obliged to write down conditional frame axioms
[Castilho et al., 1999]. As an example, the formula
below is needed for correctly dealing with the YSS:

2((¬Loaded ∧Alive)→ [shoot ]Alive) (1)

Formulae of the type of (1) establish that if a given
condition is true, then some literal persists along the
execution of a given action. Without considering such
conditional frame axioms, it is not possible to derive
the intended conclusions in LAP;.

This point has constituted a criticism from the commu-
nity, since a satisfactory solution to the frame problem



is presumed not to have any kind of such axioms. In-
stead, it is desired to leave such information about per-
sistence implicit in the domain description, although
this is generally done by hiding this information in very
complex semantics, whose consequence is the lack of
real theorem provers for them.

Other causal approaches have been proposed in the lit-
erature in the last decade, in particular Thielscher’s in-
fluence relation [Thielscher, 1995], Lin’s Caused pred-
icate [Lin, 1995] and McCain and Turner’s causal laws
[McCain and Turner, 1995]. However, as pointed out
in [Castilho et al., 2000], there are some subtleties that
cannot be captured by these approaches without stat-
ing non-change information in the domain description.

More recently, Zhang and Foo [2001] have proposed
a base logic similar to ours, but they define causality
in terms of modal operators, instead of meta-logical
information, like we do. In this way, despite the fact
that they can deal with ramifications, their approach
do not treat the frame problem and fails in deriving
implicit qualifications [Ginsberg and Smith, 1988].

In this sense, we propose here a new dependence rela-
tion that does not oblige us to write down any kind of
non-change statement in the domain description. We
do this by adding a parameter to each tuple of the de-
pendence relation with the aim of denoting the context
(a particular condition) in which an action may influ-
ence a given atom. This makes the dependence rela-
tion more informative, eliminating the need for stating
conditional frame axioms in the description of the do-
main. Once having done this, we augment the base
logic LAP with the new dependence relation, giving a
new approach to the frame and ramification problems.

The resulting logic LAPD can treat the same class of
scenarios for which LAP; does, but it is simpler than
the latter in the elaboration of domain descriptions.
The advantage of using modal logic appears in the
proof procedure, for it is straightforward to adapt the
tableau system of LAP to LAPD.

The present paper is organized as follows: in Section 2,
we introduce our new contextual dependence relation.
In Section 3, we incorporate this new causal notion
into the base logic LAP, obtaining a new dependence-
based formalism, and give its semantics. In Section 4,
we show why conditional frame axioms are useless
within our approach. In Section 5 we define its ax-
iomatics, discuss its computational properties and also
sketch our proof procedure. In Section 6, in order to
show the use of our framework, we apply it to some
scenarios in reasoning about actions. In the final sec-
tion, we give some conclusions and future work.

2 CONTEXTUAL DEPENDENCE

In this section, we present a new dependence relation
that is capable of capturing the contexts in which ac-
tions are executed.

Basically, we define a ternary dependence relation in-
volving actions, atomic formulae and formulae1. The
role of the latter formulae is to characterize the partic-
ular circumstance in which the actions may influence
the truth values of the atomic formulae.

Saying that an atom P depends on a certain action
α in a given context C means that if C is true, then,
after the execution of α, P may have its truth value
changed. We shall say that α may change P in the
context C and this concept will be represented by the
expression α influences P if C.

In order to better illustrate these ideas, consider the
action shoot , the atom Alive and the formula Loaded∧
Alive. As the action shoot may change the truth value
of Alive if Loaded and Alive are both true, then the
expression

shoot influences Alive if Loaded ∧Alive

must be in our contextual dependence relation.

An important point to be highlighted here is the fact
that the notion of dependence so introduced only per-
mits change, and does not necessarily cause it. This
can be better seen in non-deterministic domains, like
the Russian turkey scenario [Sandewall, 1994], where,
after shooting, the victim might die, and might as well
keep on being alive.

We define ACT = {α, β, . . .} as the set of actions,
like shoot , load , etc. ATM = {P,Q, . . .} is the set
of atomic formulae, or atoms, for short. Examples of
atoms are Loaded and Alive. LIT = ATM∪{¬P : P ∈
ATM} is the set of literals. If L is a literal, then |L|
will be used to denote its associated atom. The set
of all formulae of Classical Propositional Logic will be
denoted by PFOR.

Definition 2.1 A contextual dependence relation is a
ternary relation D ⊆ ACT×ATM× PFOR.

The triples (α, P,C) will be written α influences P if C
and represent the fact that “α may change P in the
context C”. In other words, this means that “the ex-
ecution of action α may change the truth value of the
atom P , as long as the formula C is true”.

1Formulae of Classical Propositional Logic, without
modal operators.



3 A NEW LOGIC OF ACTIONS
AND PLANS

In a similar way as done with the binary dependence
relation ;, we can combine the logic of actions and
plans LAP with the information represented by the
new dependence relation D defined so far, obtaining
the new base formalism LAPD. In this sense, the
LAP-models must satisfy the condition that whenever
all the contexts in which an action may influence a
given atom P are false, then the truth value of P must
be preserved along the execution of that action.

As an example, consider the action shoot and the atom
Alive in the YSS. We have that the only way of shoot
affecting Alive is when Loaded ∧ Alive is true. Thus,
in a circumstance in which we have ¬Loaded , the per-
sistence of Alive will be guaranteed by the falsehood
of the context Loaded ∧Alive.

For the same scenario, considering the action wait
and the literal Loaded , as wait does not affect
Loaded , it does not matter the circumstance, there
will not be in D any expression of the form
wait influences Loaded if C, whatever the context C
is. In this case, we guarantee the persistence of Loaded
through the execution of wait .

With this dependence-based condition, one eliminates
the LAP-models in which non-intuitive changes occur
in the following way: suppose that we are in a partic-
ular situation (a possible world in our Kripke seman-
tics) w in which the atom P is false. First, imagine
that the only element of D involving both α and P is
α influences P if C. Thus, as long as C is true, the ex-
ecution of α may change, or not, the truth value of P ,
since our causal notion only allows change, not forcing
it. But surely α will not change the value of P if C is
false. Suppose now that there is no C ∈ PFOR such
that α influences P if C ∈ D. Then, the execution of
α may never make P true, and hence P will still be
false after α.

Definition 3.1 Let D be a ternary dependence re-
lation. A model for LAPD is a LAP-model
µ = 〈W, {Rα : α ∈ ACT}, R2, τ〉, such that whenever
wRαw

′ then for every α and for every P ∈ ATM, if, for
all C ∈ PFOR such that α influences P if C, w 6|= C,
then w ∈ τ(P ) if and only if w′ ∈ τ(P ).

Given a contextual dependence relation D, we say
that a formula A is true in a LAPD-model µ =
〈W, {Rα : α ∈ ACT}, R2, τ〉 if w |= A for every w ∈
W . A is LAPD-valid (noted |=LAPDA) if A is true in
all LAPD-models.

4 INFERRING CONDITIONAL
FRAME AXIOMS

Once defined our contextual dependence relation, we
immediately have an alternative to conditional frame
axioms. This will be shown in this section. Due to
space limitations, all the proofs of the results were om-
mited. For more details, refer to [Varzinczak, 2002].

Definition 4.1 Let α ∈ ACT, P ∈ ATM and D a
contextual dependence relation. We define

PreD(α, P ) =
∨

(α influences P if C)∈D

C

In other words, PreD(α, P ) is the disjunction of all
contexts in which α may affect the truth value of atom
P , given a dependence relation D.

Theorem 4.1 2((¬PreD(α, |L|) ∧ L) → [α]L) is
LAPD-valid.

With this result, we can see that in a domain descrip-
tion using a dependence relation D there is no need for
a set of conditional frame axioms, since all the conclu-
sions that are obtained with the aid of the latter can
also be inferred with the former.

As an example, consider the action shoot , the atom
Alive and the literal ¬Loaded , and suppose

D = {shoot influences Alive if Loaded ∧Alive}

Then, we have that the conditional frame axiom (1) is
LAPD-valid. In other words, the persistence of Alive
follows from the dependence information in D, mak-
ing completely unnecessary, thus, the statement of the
conditional frame axiom (1).

5 PROOF THEORY

5.1 AXIOMATICS AND COMPLEXITY

Given a ternary dependence relation D, we axiomatize
the class of LAPD-models in the same way as done for
LAP in [Castilho et al., 1999, Section 4.2], adding an
axiom scheme founded on the dependence relation:

• Persist([α]) : ¬PreD(α, |L|) ∧ L → [α]L, if
α influences |L| if C is in D, C ∈ PFOR.

In order to show the soundness and completeness of
LAPD with respect to its semantics, we have the fol-
lowing result:



Theorem 5.1 For all contextual dependence relation
D, the axiomatics of LAPD is sound and complete
with respect to the class of LAPD-models.

The theorem below shows that the complexity of
LAPD is the same as that of LAP.

Theorem 5.2 LAPD is decidable, and the satisfia-
bility problem in LAPD is EXPTIME-complete.

This theorem guarantees that the inclusion of the
ternary dependence relation D in LAP does not in-
crease the computational complexity of the base logic.

5.2 PROOF PROCEDURE

In this section, we briefly sketch the tableau-based
proof method for LAPD. Here, we can assume w.l.o.g.
that the context C is a set of literals. In essence,
we replace the rules (SF ) and (SB), which have to
do with the binary dependence, in the method pro-
posed in [Castilho et al., 1999] by the following tableau
rules in order to capture the semantical aspect of the
dependence-based condition stated in Section 3 (w :: L
means “the literal L is true at world w”, and w

α→ w′

reads “w′ is accessible from w by an execution of α”):

(RP)

w :: L; w
α→ w′ and C 6⊆ w

for all α influences |L| if C ∈ D
w′ :: L

(RB)

w′ :: L; w
α→ w′ and C 6⊆ w

for all α influences |L| if C ∈ D
w :: L

We call (RP) the rule of persistence and it captures
the intuitive meaning of the semantics of dependence:
all literals in a node of a tableau that depend on the
execution of a given action α in a context that does
not verify must be propagated to the node following
the execution of that action.

Rule (RB) is the rule of back-propagation and ex-
presses that if a given literal L is true in a node but it
was not caused to change its truth value, then L must
also be true in the antecedent node. This kind of rule
is needed only to guarantee the completeness of the
method, as shown in [Castilho et al., 1999].

In order to get soundness, we have to define a partic-
ular strategy where rules (RP) and (RB) are applied
at the end. Thus, the tableau can be proved sound
and complete [Varzinczak, 2002]. Following the work
in [Heuerding et al., 1996], we can also show that it is
a decision procedure. Moreover, its implementation is

straightforward in Lotrec System [Fariñas del Cerro et
al., 2001].

6 SOME SCENARIOS IN LAPD

In this section, we use LAPD as the base formalism
for modeling and inferring in some typical scenarios.
It is worthy noting that in none of the scenario de-
scriptions that follow there is the need for stating con-
ditional frame axioms, since their semantical aspects
have already been implicitly captured by means of the
contextual dependence relation D.

In all scenario descriptions below, KB represents the
set of observations and LAW that of static, effect and
executability laws in LAPD.

Example 6.1
(Forcing a door [Castilho et al., 1999]) Consider a
door that can be closed or barricaded (by a cupboard,
for example), and two actions: open, that opens a door
if it is not barricaded, and force, that is stronger and
unconditionally opens it. In LAPD it is as follows:

LAW =

 2(Barricaded → Closed),
2[open]¬Closed ,
2[force]¬Closed


D =

 open influences Closed if Closed ,
force influences Closed if Closed ,

force influences Barricaded if Barricaded


KB = {Closed ,Barricaded}

With this modeling, we can conclude that the formula

(KB ∧ LAW)→ [force](¬Closed ∧ ¬Barricaded)

is LAPD-valid, which means that in LAPD, like in
LAP;, it is possible to derive the indirect effect of
action force. Notice, however, that as with LAP;,
we also have to write down the indirect dependence
between force and Barricaded . Nevertheless, we argue
that all existing approaches that do not do things this
way fail in solving this example.

Another important conclusion one can obtain with our
approach is the implicit qualification [Ginsberg and
Smith, 1988] for action open, that is, such action can-
not be executed if the door is barricaded:

|=LAPD(KB ∧ LAW)→ [open]⊥

Remark 6.1 We consider that for a given ef-
fect law 2(A → [α]L) it is reasonable to have
α influences |L| if A ∧ ¬L in D, otherwise it would
seem a bit strange. So, we assume that every effect
law has a corresponding element in the dependence
relation.



Example 6.2
(Toulouse suitcase [Castilho et al., 1999]) Con-
sider an extension of Lin’s suitcase [Lin, 1995] where
we want to express that if both of its locks are linked
(by a rigid metal bar, for example), then they are al-
ways in the same position. The representation of this
situation in LAPD is given below (i = 1, 2):

LAW =


2〈toggle1〉>,
2(Linked → (Up1 ↔ Up2)),
2((Up1 ∧Up2)→ Opened),
2(¬Upi → [togglei]Upi,
2(Upi → [togglei]¬Upi



D =


togglei influences Upi if >,

toggle1 influences Up2 if Linked ,
toggle2 influences Up1 if Linked ,

toggle1 influences Opened if Up2 ∧ ¬Opened ,
toggle2 influences Opened if Up1 ∧ ¬Opened


This example is problematic for causal approaches that
are not action indexed.

More generally, we claim that all the existing ap-
proaches fail to handle scenarios having actions with
both indeterminate and indirect effects, as exemplified
in the following scenario:

Example 6.3
(The Mailboxes scenario) Suppose Mbox 1 means
“the message is in mailbox 1”, and Mbox 2 “the mes-
sage is in mailbox 2”, and consider the actions save1

and save2, that always save an email message in Mbox 1

and in Mbox 2, respectively. Suppose too we have a
non-deterministic save action that saves the email in
one of the two mailboxes or in both. We represent the
fact that the email is saved in Mbox 1 or in Mbox 2 or
in both by the atom Saved . The representation of this
scenario in LAPD is as follows (i = 1, 2):

LAW =


2〈save〉>,2〈savei〉>,
2(Saved ↔ Mbox 1 ∨Mbox 2),
2[save]Saved ,
2[savei]Mbox i


D =


save influences Saved if ¬Saved ,
save influences Mbox i if ¬Mbox i,
savei influences Mbox i if ¬Mbox i,
savei influences Saved if ¬Saved


KB = {¬Saved ,¬Mbox 1,¬Mbox 2}

From this representation, we can conclude

|=LAPD(KB ∧ LAW)→ [save](Mbox 1 ∨Mbox 2)

It seems to us that this example is problematic for
all the existing proposals (i.e. approaches allowing the

representation of actions with indirect and indetermi-
nate effects). We think that the problem is the follow-
ing: if we have indirect nondeterministic effects, then

1. we must exempt these effects from minimization
of change (in order to avoid exclusive interpreta-
tion of inclusive disjunctions, cf. Reiter’s “drop-
ping a coin on a chess-board” example);

2. as the effect is indirect, this exemption must be
specified indirectly: mentioning the context where
it applies, but without mentioning the action.

Then it is difficult to exclude that another action ap-
plies in exactly the same context, but without the indi-
rection. As an example, in Lin’s approach [Lin, 1996],
in order to obtain the intended conclusions, we are
obliged to state the formula

Poss(save1, s)→ Caused(Mbox 2, false, do(save1, s)),

which is unintuitive.

7 CONCLUSIONS AND FURTHER
WORK

In this work, we have presented a new causal depen-
dence that combined with the logic of actions and
plans LAP results in a powerful framework to rea-
soning about actions.

In essence, our method is a modification of that in
[Castilho et al., 1999], which defines a binary relation
between actions and literals as a way of expressing
causal information. In our approach, however, we con-
sider a ternary one, since we argue that with it we
can get a more intuitive domain description. In this
sense, we have seen that our definition of a contextual
dependence allows a more economic representation of
the domain under consideration, for the presence of
contexts establishes a more informative causal notion,
eliminating the need for stating conditional frame ax-
ioms in the set of action laws.

We have also briefly sketched our tableau method, that
constitutes a decision procedure. This gives to our
formalism a higher degree of practical applicability and
makes it a more complete solution compared to other
approaches in the literature.

We have made an analysis of typical scenarios con-
stituting good instances of the frame and ramification
problems. In our approach we can treat them in a more
economic way than using LAP;, without increasing
the complexity of the solution. In fact, LAP; deals



with the same class of problems than LAPD, but at
the price of writing conditional frame axioms.

We have also investigated the behavior of a ternary
dependence in scenarios involving actions with indi-
rect effects and our solution permits us to obtain the
desired conclusions. In this sense, we believe our ap-
proach unifies a more robust solution to the frame and
ramification problems with a higher degree of repre-
sentational parsimony [Shanahan, 1997].

In the forcing a door scenario, we were able to capture
implicit qualifications. However, in the same way as
with LAP;, we have to state indirect dependences in
D. An argument in response to possible criticisms is
the fact that there is no approach capable of solving
the forcing a door scenario without explicitly stating in
one way or another the relation between the action and
the indirect effects — which is what these approaches
would like to avoid.

With respect to situations involving non-determinism,
our method applies too, as shown in the mailboxes
scenario. In this case, it suffices to state in D the
correct dependences relating an action and each atom
it can affect. In the same way, as long as we concern,
there is no approach in the literature capable of solving
this example in a better way.

We plan to pursue our work by extending our solu-
tion by an account of sensing and communication ac-
tions. This will be done by integrating the approach
in [Herzig et al., 2000a, Herzig et al., 2000b], the long-
term aim being a unified logic of actions and beliefs.
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