Elaborating domain descriptions
(preliminary report)

Andreas Herzig Laurent Perrussel Ivan Varzinczak

IRIT — 118 route de Narbonne
31062 Toulouse Cedex — France

e-mail: {herzig,perrusse,ivan}@irit.fr
http://www.irit.fr/recherches/LILAC

Abstract

In this work we address the problem of elaborating domain descrip-
tions (alias action theories), in particular those that are expressed in
dynamic logic. We define a general method based on contraction of
formulas in a version of propositional dynamic logic with an incor-
porated solution to the frame problem. We present the semantics of
our theory change and define syntactical operators for contracting a
domain description. We establish soundness and completeness of the
operators w.r.t. the semantics for descriptions that satisfy a principle
of modularity that we have proposed elsewhere. We also investigate
an example of changing non-modular domain descriptions.
Keywords: Theory change, dynamic logic, modularity.

1 Introduction

Suppose a situation where an agent has always believed that if the light
switch is up, then there is light in the room. Suppose now that someday, she
observes that even if the switch is in the upper position, the light is off. In
such a case, the agent must change her beliefs about the relation between
the propositions “the switch is up” and “the light is on”. This example is an
instance of the problem of changing propositional belief bases and is largely
addressed in the literature about belief change [11] and belief update [25].

Next, let our agent believe that whenever the switch is down, after tog-
gling it, there is light in the room. This means that if the light is off, in
every state of the world that follows the execution of toggling the switch, the
room is lit up. Then, during a blackout, the agent toggles the switch and
surprisingly the room is still dark.

Imagine now that the agent never worried about the relation between
toggling the switch and the material it is made of, in the sense that she ever
believed that just toggling the switch does not break it. Nevertheless, in a
stressful day, she toggles the switch and then observes that she had broken it.

Completing the wayside cross our agent experiments in discovering the
world’s behavior, suppose she has believed that it is always possible to toggle
the switch, provided some conditions like being close enough to it, having a
free hand, the switch is not broken, etc, are satisfied. However, in a beautiful
April fool’s day, the agent discovers that someone has glued the switch and,
consequently, it is no longer possible to toggle it.

The last three examples illustrate situations where changing the beliefs
about the behavior of the action of toggling the switch is mandatory. In
the first one, toggling the switch, once believed to be deterministic, has now
to be seen as nondeterministic, or alternatively to have a different outcome
in a specific context (e.g. if the power station is overloaded). In the second
example, toggling the switch is known to have side-effects (ramifications)
one was not aware of. In the last example, the executability of the action
under concern is questioned in the light of new information showing a context
that was not known to preclude its execution. Carrying out modifications is
what we here call elaborating a domain description, which has to do with the
principle of elaboration tolerance [29].

Such cases of theory change are very important when one deals with
logical descriptions of dynamic domains: it may always happen that one
discovers that an action actually has a behavior that is different from that
one has always believed it had.

Up to now, theory change has been studied mainly for knowledge bases

in classical logics, both in terms of revision and update. Only in a few recent
works it has been considered in the realm of modal logics, viz. in epistemic
logic [13], and in action languages [8]. Recently, several works [35, 21] have
investigated revision of beliefs about facts of the world. In our examples, this
would concern e.g. the current status of the switch: the agent believes it is
up, but is wrong about this and might subsequently be forced to revise his
beliefs about the current state of affairs. Such belief revision operations do
not modify the agent’s beliefs about the action laws. In opposition to that,
here we are interested exactly in such modifications. The aim of this work is
to make a step toward that issue and propose a framework that deals with
the contraction of action theories.

Dynamic logic, more specifically propositional dynamic logic (PDL [14]),
has been extensively used in reasoning about actions in the last years [3,
4, 40, 9, 39]. It has shown to be a viable alternative to situation calculus
approaches because of its simplicity and existence of proof procedures for it.
In this work we investigate the elaboration of domain descriptions encoded
in such a logical formalism. We show how a theory expressed in terms of
static laws, effect laws and executability laws is elaborated: usually, a law
has to be changed due to its generality, i.e., the law is too strong and has to
be weakened. It follows that elaborating an action theory means contracting
it by static, effect or executability laws, before expanding the theory with
more specific laws.

The present text is organized as follows: in Section 2 we define the logical
framework we use throughout this work and show how action theories are en-
coded. Section 3 is devoted to our semantics of theory change and Section 4
to its syntactical counterpart. In Section 5 we establish soundness and com-
pleteness of our change operators w.r.t. the semantics, where completeness
is conditioned by a notion of modularity that we have proposed in previ-
ous work. We then analyse an example of correcting a non-modular theory
(Section 6). Before concluding, we address related work on the field (Sec-
tion 7) and discuss on how elaboration tolerant the framework here proposed
is (Section 8).

2 Background

Following the tradition in the reasoning about actions community, action the-
ories are going to be collections of statements that have the particular form:
“Uf context, then effect after every execution of action” (effect laws); and “if
precondition, then action executable” (executability laws). Statements men-
tioning no action at all represent laws about the world (static laws). Besides

3

that, statements of the form “if contezt, then effect after some execution of
action” will be used as a causal notion to solve the frame and the ramification
problems.

2.1 Logical preliminaries

Let Act = {ay, as,...} be the set of all atomic action constants of a given
domain. An example of atomic action is toggle. To each atomic action a
there is associated a modal operator [a.

PBrop = {py, Py, ..} denotes the set of all propositional constants, also
called fluents or atoms. Examples of those are light (“the light is on”) and
up (“the switch is up”). The set of all literals is £it = {}, b, ...}, where each
l; is either p or —p, for some p € Prop. If [= —p, then we identify -/ with p.

We use small Greek letters ¢,1,... to denote classical formulas. They
are recursively defined in the usual way:

o i=p|T|IL]l¢|leAY |V |lo—=y|pet

Sml is the set of all classical formulas. An example of a classical formula
is up — light. By wal(¢) we denote the set of valuations making ¢ true.
We view a valuation as a maximally-consistent set of literals. For PBrop =
{light, up}, there are four valuations: {light,up}, {light,-up}, {-light, up}
and {—light, ~up}. Given a set of formulas ¥, by lit(3) we denote the set of
all literals appearing in formulas of .

We denote complex formulas (with modal operators) by @,¥,... They
are recursively defined in the following way:

G =g |[dP| D | PAT | BVT || S W
{a) is the dual operator of [a], defined as {(a)® =g —[a]=P. An example of a
complex formula is ~up — [toggle]up.
The semantics is that of multimodal logic K [31].
Definition 2.1 A PDL-model is a tuple .# = (W, R) where W is a set

of maximally-consistent sets of literals, and R maps action constants a to
accessibility relations R, C W x W.

Definition 2.2 Given a PDL-model .# = (W, R),

p (p is true at world w of model .#) if p € w;

[a]@ if for every w' such that wR,w',):Z P;

’)

S—H—§ S—H—§

4

e truth conditions for the other connectives are as usual.

Definition 2.3 .# is a model of @ (noted):// @) if and ouly if for all w € W,

):f . A is a model of a set of formulas ¥ (noted):// ¥) if and only if):/// 7
for every @ € ¥. A formula @ is a consequence of the set of global axioms
{®1,...,9,} in the class of all PDL-models (noted @,,...,®, |5, @) if and

only if for every PDL-model .Z, if):/// &; for every &;, then):// P.

2.2 Describing the behavior of actions in PDL

Given a domain, we are interested in theories whose statements describe the
behavior of actions. PDL allows for the representation of such statements,
that we call action laws. Here we distinguish several types of them. The first
kind of statement represents the static laws, which are formulas that must
hold in every possible state of the world.

Definition 2.4 A static law is a formula ¢ € gml.

An example of a static law is up — light, saying that if the switch is up, then
the light is on. The set of all static laws of a domain is denoted by & C Fml.

The second kind of action law we consider is given by the effect laws.
These are formulas relating an action to its effects, which can be conditional.

Definition 2.5 An effect law for action a is of the form ¢ — [a]y), where
v, € Fml, with ¢ classically consistent.

‘Classically consistent’ is a shorthand for ‘consistent in classical propositional
logic’. The consequent 1 is the effect which always obtains when action a is
executed in a state where the antecedent ¢ holds. If ¢ is a nondeterministic
action, then the consequent v is typically a disjunction. The set of effect
laws of a domain is denoted by £. An example of an effect law is —up —
[toggle]light, saying that whenever the switch is down, after toggling it, the
room is lit up. If ¢ is inconsistent, we have a special kind of effect law that
we call an inezecutability law. For example, broken — [toggle] L expresses
that toggle cannot be executed if the switch is broken.

Finally, we also define ezxecutability laws, which stipulate the context
where an action is guaranteed to be executable. In PDL, the operator (a) is
used to express executability. (a)T thus reads “the execution of a is possible”.

Definition 2.6 An ezecutability law for action a is of the form ¢ — (a)T,
where ¢ € §ml is classically consistent.

For instance, -broken — (toggle) T says that toggling can be executed when-
ever the switch is not broken. The set of all executability laws of a given
domain is denoted by X.

The rest of this work is devoted to the elaboration of action models and
theories.

3 Models of contraction

When an action theory has to be changed, the basic operation is that of
contraction. (In belief-base update [37, 25] it has also been called erasure.)
In this section we define its semantics.

In general we might contract by any formula @. Here we focus on con-
traction by one of the three kinds of laws. We therefore suppose that & is
either ¢, where ¢ is classical, or ¢ — [a]y), or @ — (a)T.

For the case of contracting static laws we resort to existing approaches
in order to change the set of static laws. In the following, we consider any
belief change operator such as Forbus’ update method [10], or the possible
models approach [37, 38], or WSS [15] or MPMA [7].

Contraction by ¢ corresponds to adding new possible worlds to W. Let &
be a contraction operator for classical logic.

Definition 3.1 Let (W, R) be a PDL-model and ¢ a classical formula. The
set of models resulting from contracting by ¢ is the singleton (W, R); =
{{W',R)} such that W' = W& val(yp).

Action theories being defined in terms of effect and executability laws,
elaborating an action theory will mainly involve changing one of these two
sets of laws. Let us consider now both these cases.

Suppose the knowledge engineer acquires new information regarding the
effect of action a. Then it means that the law under consideration is probably
too strong, i.e., the expected effect may not occur and thus the law has to
be weakened. Consider e.g. —up — [toggle]light, and suppose it has to be
weakened to the more specific (mup A —=blackout) — [toggle]light.' Tn order
to carry out such a weakening, first the designer has to contract the set of
effect laws and second to expand the resulting set with the weakened law.

!The other possibility of weakening the law, i.e., replacing it by —up — [toggle](light V
—light) looks silly. We were not able to find examples where changing the consequent
could give a more intuitive result. In this sense, we prefer to always weaken a given law
by strengthening its antecedent.

Contraction by ¢ — [a]t) amounts to adding some ‘counterexample’ ar-
rows from ¢-worlds to —-worlds. To ease such a task, we need a definition.
Let PI(¢) denote the set of prime implicates of ¢.

Definition 3.2 Let ¢y, 9o € Fml. NewConsy, (v2) = PI{p1 A @2) \ Pl(p)
computes the new consequences of py w.r.t. 1: the set of strongest clauses
that follow from ¢; A @9, but do not follow from ¢; alone (cf. e.g. [20]).

For example, the set of prime implicates of p, is just {p, }, that of the formula
Py A (5py Vopy) A (=py Vops Vopy) is {py, Py, p3 V 04}, hence we have that
NewConsy, ((=py V p2) A (7py V p3 V py)) = {Pa, P3 V P4t

Definition 3.3 Let (W, R) be a PDL-model and ¢ — [a]y an effect law. The
models resulting from contracting by ¢ — [a]y is (W, R)_ ., = {{W, R U

R)): R, C {(w,w') :):f;/V’R> ©,):LI;V’M =) and w'\w C lit(NewConss(—1)) } }.

In our context, lit(NewConss(—1))) corresponds to all the ramifications that
action a can produce.

Suppose now the knowledge engineer learns new information about the
executability of a. This usually occurs when there are executability laws that
are too strong, i.e., the condition in the theory guaranteeing the executability
of a is too weak and has to be made more restrictive. Let e.g. (toggle) T be
the law to be contracted, and suppose it has to be weakened to the more
specific =broken — (toggle) T. To implement such a weakening, the designer
has to first contract the set of executability laws and then to expand the
resulting set with the weakened law.

Contraction by ¢ — (a)T corresponds to removing some arrows leaving
worlds where ¢ holds. Removing such arrows has as consequence that a is
no longer always executable in context .

Definition 3.4 Let (W, R) be a PDL-model and ¢ — (a) T an executability
law. The set of models that result from the contraction by ¢ — (a)T is

(W, R><;~>(a>T ={(W,R"): R = R\ R,,R] C {(w,w') : wRjw" and):fUW’R>
¢t}

In the next section we make a step toward syntactical operators that
reflect the semantic foundations for contraction.

4 Contracting an action theory

Having established the semantics of action theory contraction, we can turn
to its syntactical counterpart. Nevertheless, before doing that we have to
consider an important issue. As the reader might have expected, the logical
formalism of PDL alone does not solve the frame problem. For instance,

{ up — light, =up — [toggle]up,

up — [toggle|—up, (toggle) T } Fop, Droken — [toggle]broken.

Thus, we need a consequence relation powerful enough to deal with the frame
and ramification problems. This means that the deductive power of PDL has
to be augmented in order to ensure that the relevant frame axioms follow from
the theory. Following the logical framework developed in [3], we consider
metalogical information given in the form of a dependence relation:

Definition 4.1 (Dependence relation [3]) A dependence relation is a bi-
nary relation ~C ¢t x Lit.

The expression a ~» [denotes that the execution of action a may change
the truth value of the literal /. On the other hand, (a,) ¢ ~» (written a7)
means that [can never be caused by a. In our example we have toggle ~» light
and toggle ~» —light, which means that action toggle may cause a change in
literals light and —light. We do not have toggle ~» —broken, for toggling the
switch never repairs it.

We assume ~» is finite.

Definition 4.2 A model of a dependence relation ~ is a PDL-model .# such
that =7 {~1— [a]~1: a-t 1.

Given a dependence relation ~», the associated consequence relation in
the set of models for ~+ is noted |= . For our example we obtain

up — light, =up — [toggle]up,
{ up — [toggld—~up, (toggle) T = broken — [toggle]broken.

We have toggle +4> —broken, i.e., =broken is never caused by toggle. Therefore
in all contexts where broken is true, after every execution of toggle, broken
still remains true. The consequence of this independence is that the frame
axiom broken — [toggle]broken is valid in the models of ~.

Such a dependence-based approach has been shown [6] to subsume Reiter’s
solution to the frame problem [32] and moreover treats the ramification prob-
lem, even when actions with both indeterminate and indirect effects are in-
volved [4, 16].

Definition 4.3 An action theory is a tuple of the form (S, &, X, ~).
In our running example, the corresponding action theory is

S = {up — light}, € = {—up — [toggle]up, up — [toggle]—up}

B | (toggle, light), (toggle, —light),
= hoggle) T, ~ = { (toggle, up), (toggle, ~up)
And we have §, €, X = —up — [toggle]light. (For parsimony’s sake, we write
S,&, X instead of SUE U X.)

Let (S, €&, X',~) be an action theory and @ a PDL-formula. (S,&, X ,~) 3
is the action theory resulting from the contraction of (S, &, X,~) by @.

Contracting a theory by a static law ¢ amounts to using any existing
contraction operator for classical logic. Let & be such an operator. Moreover,
based on [19], we also need to guarantee that ¢ does not follow from &, X
and ~» (cf. Section 6). We define contraction of a domain description by a
static law as follows:

Definition 4.4 (S,S,X,v)yj =(§,&,X ,~), where ST = S§6 ¢ and
X ={(piNp) = ()T 1 ¢; = () T € X'}

We now consider the case of contracting an action theory by an executabil-
ity law. For every executability in &X', we ensure that action a is executable
only in contexts where — is the case. The following operator does the job.

Definition 4.5 (S,S,X,M>;_><G>T = (§,&, X7 ,~), where X~ = {(¢; A
) > {a)T 1y = (@) T € X}.

For instance, contracting glued — (toggle) T in our example would give us
X~ = {—glued — (toggle) T }.

Finally, to contract a theory by ¢ — [a]t, for every effect law in &, we
first ensure that « still has effect v whenever ¢ does not hold, second we
enforce that @ has no effect in context —p except on those literals that are
consequences of 1. Combining this with the new dependence relation also
linking a to literals involved by —, we have that a may now produce —) as
outcome. In other words, the effect law has been contracted. The operator
below formalizes this:

Definition 4.6 (S,S,X,M);_)[a]w =(S5,&,X,~
I € lit(NewConss(—))} and €~ = {(¢; A —p)
EYU{(mp A=l = [a=l: (e, l) € (7 \)]

For instance, contracting the law blackout — [toggle|light from our theory
would give us £~ = {(—up A =blackout) — [togglelup, (up A —blackout) —
[toggle]up}.

~), with ~"=~ U{{(a,) :
= [ay © i = [dv €

5 Results

In this section we present the main results that follow from our framework.
These require the action theory under consideration to be modular [19]. In
our framework, an action theory is said to be modular if a formula of a
given type entailed by the whole theory can also be derived solely from its
respective module (the set of formulas of the same type) together with the
static laws S. As shown in [19], to make a domain description satisfy such a
property it is enough to guarantee that there is no classical formula entailed
by the theory that is not entailed by the static laws alone.

Definition 5.1 ¢ € §mlis an implicit static law of (S, &€, X, ~) if and only
if $,£,X = ¢and S~ .

A theory is modular if it has no implicit static laws. Our concept of
modularity of theories was originally defined in [19], but similar concepts
have also been addressed in the literature [5, 1, 39, 26, 18]. A modularity-
based approach for narrative reasoning about actions is given in [23].

To witness how implicit static laws can show up, consider the quite simple
action theory below, depicting the walking turkey scenario [36]:
_ , , _ [tease|walking,
§ = {walking = alive}, & = { loaded — [shoot]—alive

tease) T, shoot, =loaded), {shoot, —alive),
X = ~ =
| (shoot) T [7 | (shoot, ~walking), (tease, walking)

With this domain description we have S,&, X = alive: first, {walking —
alive, [teaselwalking} = [tease]alive, second = —alive — [tease]—alive (from
the independence tease 7> alive), and then S,& = —alive — [tease] L. As
long as §,&, X = (tease)T, we must have S,&, X |= alive. As S = alive,
the formula alive is an implicit static law of (S,E, X', ~).

Modular theories have several advantages [17]. For example, consistency
of a modular action theory can be checked by just checking consistency of S:
if (S,&, X,~) is modular, then S,€, X = L if and only if S = L. Deduc-
tion of an effect of a sequence of actions a;. .. ; a, (prediction) does not need
to take into account the effect laws for actions other than aq,...,a,. This
applies in particular to plan validation when deciding whether (a;;...; a,)p
is the case.

Throughout this work we have used PDL. For an assessment of the mod-
ularity principle in the Situation Calculus, see [18].

10

Here we establish that our operators are correct w.r.t. the semantics.
Our first theorem establishes that the semantical contraction of the models
of (S8,&,X,~) by ¢ produces models of (S,€, X,~),.

Theorem 5.1 Let (W, R) be a model of (S, &, X, ~), and let @ be a formula
that has the form of one of the three laws. For all models .Z, if # €
(W,R)g, then . is a model of (S,&, X, ~)5.

It remains to prove that the other way round, the models of (S, &, X', ~),
result from the semantical contraction of models of (S, &, X ,~») by @. This
does not hold in general, as shown by the following example: suppose there
is only one atom p and one action a, and consider the theory (S,&, X, ~)
such that S = 0, £ = {p — [a]L}, X = {{&)T}, and ~= (. The only
model of that action theory is .# = ({{—-p}},{({—-p},{-p})}). By defini-
tlon, A", \7 = {A#}. On the other hand, <S787X7M>;;—><a>"r = (0, {p —
[a] L}, {—p — (a@)T} 0). The contracted theory has two models: .# and
A = ({{p}, {-p}}, {—p}, {-p})). While —=p is valid in the contraction of
the models of (S, &, X,~), it is invalid in the models of (S, &, X7M>;—><a>T'

Fortunately, we can establish a result for those action theories that are
modular. The proof requires three lemmas. The first one says that for a
modular theory we can restrict our attention to its ‘big’ models.

Lemma 5.1 Let (5,&,&,~+) be modular. Then §,&,&X = @ if and only
if):<W’R> ¢ for every model (W, R) of (S,&, X ,~») such that W= val(S).

Note that the lemma does not hold for non-modular theories (because the
set {(W, R) : W= val(S)} is empty then).

The second lemma says that modularity is preserved under contraction.

Lemma 5.2 Let (S,&,X,~) be modular, and let @ be a formula of the
form of one of the three laws. Then (S,€&, X', ~), is modular.

The third one establishes the required link between the contraction oper-
ators and contraction of ‘big’ models.

Lemma 5.3 Let (S, &, X, ~) be modular, and let @ be a formula of the form
of one of the three laws. If .#Z" = (val(S), R') is a model of (S,&, X, ~),,
then there is a model .# of (S,&, X' ,~>) such that 4" € # .

Putting the three above lemmas together we get:

11

Theorem 5.2 Let (S,&, X ,~) be modular, ¢ be a formula of the form of
one of the three laws, and (S,€7, X ,~7) be (S,&, X ,~),. If it holds
that S, &7, X~ |= _ ¥, then for every model .# of (S,£, X, ~) and every

M' € M it holds that £ 7.
Our two theorems together establish correctness of the operators:

Corollary 5.1 Let (S,€,X,~) be modular, @ be a formula of the form
of one of the three laws, and (S, , X ,~") be (§,£,X,~),. Then
S,E7,X" | _ ¥ if and only if for every model .# of (S,&,X,~+) and

every .#' € My it holds that):// v.
We also give a necessary condition for the success of a contraction.

Theorem 5.3 Let @ be an effect or an inexecutability law such that S %PDL

@, and let (S ,E7,X7,~7) be (S§,&,X,~),. If (§,&,X,~) is modular,
then 7,6, X" }£ _ &,

6 Contracting implicit static laws

There can be many reasons why a theory should be changed. Following [17,
19], here we focus on the case where it has some classical consequence ¢ the
designer is not aware of.

If ¢ is taken as intuitive, then, normally, no change has to be done at all,
unless we want to keep abide on the modularity principle and thus make ¢
explicit by adding it to S. In the scenario example of Section 4, if the
knowledge engineer’s universe has immortal turkeys, then she would add the
static law alive to S.

The other way round, if ¢ is not intuitive, as long as ¢ is entailed by
(S,E,X,~), the goal is to avoid such an entailment, i.e., what we want
is S7,E7, X7 £ o, where (§7,E7, X7, ~7) is (S5,&,X,~);. In the
mentioned scenario, the knowledge engineer considers that having immortal
turkeys is not reasonable and thus decides to change the domain description
to (87,7, X7, ~7) so that 7,7, X~ [~ _ alive.

This means that action theories that are not modular need to be changed,
too. Such a changing process is driven by the problematic part of the theory
detected by the algorithm defined in [17] and improved in [19].

The algorithm works as follows: for each executability law ¢ — (a)T
in the theory, construct from & and ~ a set of inexecutabilities {p; —
la]L,..., ¢, — [a]L} that potentially conflict with ¢ — (a)T. For each i,

12

1 <i < n,if pAyp; is satisfiable w.r.t. S, mark =(¢ A ¢;) as an implicit static
law. Incrementally repeat this procedure (adding all the =(p A ¢;) that were
caught to &) until no implicit static law is obtained.

For an example of the execution of the algorithm, consider (S, &, X', ~) as
above. For the action tease, we have the executability (fease) T. Now, from
&, and ~ we try to build an inexecutability for tease. We take [tease|walking
and compute then all indirect effects of tease w.r.t. S. From walking — alive,
we get that alive is an indirect effect of tease, giving us [tease]alive. But
(tease, alive) ¢~», which means the frame axiom —alive — [tease]—alive holds.
Together with [tease]alive, this gives us the inexecutability —alive — [tease] L.
As S U {T,—alive} is satisfiable (T is the antecedent of the executability
(tease)T), we get the implicit static law alive. For this example no other
inexecutability for tease can be derived, so the computation stops.

It seems that in general implicit static laws are not intuitive. Therefore
their contraction is more likely to happen than their addition.? In the ex-
ample above, the action theory has to be contracted by alive.* In order to
contract the action theory, the designer has several choices:

1) Contract the set S. (In this case, such an operation is not enough, since
alive is a consequence of the rest of the theory.)

2) Weaken the effect law [tease]walking to alive — [tease]walking, since the
original effect law is too strong. This means that in a first stage the designer
has to contract the theory and in a second one expand the effect laws with
the weaker law. The designer will usually choose this option if she focuses
on the preconditions of the effects of actions.

3) Weaken the executability law (tease) T by rephrasing it as alive — (tease) T:
first the executability is contracted and then the weaker one is added to the
resulting set of executability laws. The designer will choose this option if she
focuses on preconditions for action execution.

The analysis of this example shows that the choice of what change has to
be carried out is up to the knowledge engineer. Such a task can get more com-
plicated when ramifications are involved. To witness, suppose our scenario
has been formalized as follows: S = {walking — alive}, € = {[shoot]|-alive},
X = {{(shoot) T}, and ~»= {(shoot, ~alive)}. From this action theory we can
derive the inexecutability walking — [shoot] L and thus the implicit static

2Tn all the examples in which we have found implicit static laws that are intuitive they
are so evident that the only explanation for not having them explicitly stated is that they
have been forgotten by the theory’s designer.

3Here the change operation is a revision-based operation rather than an update-based
operation since we mainly “fix” the theory.

13

law —walking. In this case we have to change the theory by contracting the
frame axiom walking — [shoot|walking (which amounts to adding the missing
indirect dependence shoot ~» —walking).

7 Related work

Following [27, 28], Eiter et al. [8] have investigated update of action domain
descriptions. They define a version of action theory update in an action
language and give complexity results showing how hard such a task can be.

Update of action descriptions in their sense is always relative to some con-
ditions (interpreted as knowledge possibly obtained from earlier observations
and that should be kept). This characterizes a constraint-based update. In
the example they give, change must be carried out preserving the assumption
that pushing the button of the remote control is always executable. Actually,
the method is more subtle, as new effect laws are added constrained by the
addition of viz. an executability law for the new action under concern. In
the example, the constraint (executability of push) was not in the original
action description and must figure in the updated theory.

They describe domains of actions in a fragment of the action language
C [12]. However they do not specify which fragment, so it is not clear whether
the claimed advantages C has over A really transfer to their framework. At
one hand, their approach deals with indirect effects, but they do not talk
about updating a theory by a law with a nondeterministic action. Anyway,
except for concurrency, their account can be translated into ours, as shown
in [3].

Eiter et al. consider an action theory 7 as comprising two main com-
ponents: 7,, the part of the theory that must remain unchanged, and 7,
the part concerning the statements that are allowed to change. The crucial
information to the associated solution to the frame problem is always in 7.

Given an action theory 7 =7, U7T,,, (T,UT,,),T',C) is the problem of
updating 7 by 7' C SU £ warranting the result satisfies all constraints in
CCSUX.

Even though they do not explicitly state postulates for their kind of theory
update, they establish conditions for the update operator to be successful.
Basically, they claim for consistency of the resulting theory; maintenance of
the new knowledge and the invariable part of the description; satisfaction of
the constraints in C'; and minimal change.

In some examples that they develop, the illustrated “partial solution”
does not satisfy C' due to the existence of implicit laws (cf. Example 1, where
there is an implicit inexecutability law). To achieve a solution, while keeping

14

C, some other laws must be dropped (in the example, the agent gives up a
static law).!

Just to see the link between update by subsumed laws and addition of
implicit static laws, we note that Proposition 1 is the same as Theorem 14
in [19]: every implicit static law in Herzig and Varzinczak’s sense is trivially
a subsumed law in Eiter et al.’s sense.

With their method we can also contract by a static and an effect law.
Contraction of executabilities are not explicitly addressed, and weakening
(replacing a law by a weaker one) is left as future work.

A main difference between the approach in [8] and ours is that we do
not need to add new fluents at every elaboration stage: we still work on the
same set of fluents, refining their behavior w.r.t. an action a. in Eiter et al.’s
proposal an update forces changing all the variable rules appearing in the
action theory by adding to each one a new update fluent. This is a constraint
when elaborating action theories.

8 Elaboration tolerance

The principle of elaboration tolerance has been proposed by McCarthy [29].
Roughly, it states that the effort required to add new information to a given
representation (new laws or entities) should be proportional to the complex-
ity of the information being added, i.e., it should not require the complete
reconstruction of the old theory [34].

Since then many formalisms in the reasoning about actions field claim,
in a more or less tacit way, to satisfy such a principle. However, for all this
time there has been a lack of good formal criteria allowing for the evaluation
of theory change difficulty and, consequently, comparisons between different
frameworks are carried out in a subjective way.

The proposal by Amir [2] made the first steps in formally answering what
difficulty of changing a theory means by formalizing one aspect of elaboration
tolerance. The basic idea is as follows: let 7, be the original theory and
let 7, and 7, be two equivalent (and different) theories such that each one
results from 7, by the application of some sequence of operations (additions
and/or deletions of formulas). The resulting theory whose transformation
from 7, has the shortest length (number of operations) is taken as the most
elaboration tolerant.

Nevertheless, in the referred work only addition/deletion of azioms is con-
sidered, i.e., changes in the logical language or contraction of consequences of

4This does not mean however that the updated theory will necessarily contain no
implicit law.

15

the theory not explicitly stated in the original set of axioms are not taken into
account. This means that even the formal setting given in [2] is not enough
to evaluate the complexity of theory change in a broad sense. Hence the
community still needs formal criteria that allow for the comparison between
more complex changes carried out by frameworks like ours and Eiter et al.’s,
for example.

Of course, how elaboration tolerant a given update/revision method is
strongly depends on its underlying formalism for reasoning about actions, i.e.,
its logical background, the solution to the frame problem it implements, the
hypothesis it relies on, etc. In what follows we discuss how the dependence-
based approach here used behaves when expansion is considered. Most of
the comments concerning consequences of expansion can also be stated for
contraction. We do that with respect to some of the qualitative criteria given
in [30]. In all that follows we suppose that the resulting theory is consistent.

Adding effect laws In the dependence-based framework, adding the new
effect law ¢ — [a]y) to the theory demands a change in the dependence mod-
ule ~». In that case, the maximum number of statements added to ~» is
[{l: 1€ lit{ NewConss(1))}| (dependences for all indirect effects have to be
stated, too). This is due to the explanation closure nature of the reasoning
behind dependence (for more details, see [3]). Because of this, according to
Shanahan [34], explanation closure approaches are not elaboration tolerant
when dealing with the ramification problem. In order to achieve that, the
framework should have a mechanism behaving like circumscription that au-
tomatically deals with ramifications. This raises the question: “if we had an
automatic (or even semi-automatic) procedure to do the job of generating the
indirect dependences, could we say the framework is elaboration tolerant?”.
We think we can answer positively to such a question, and, supported by
Reiter [33], we are working on a semi-automatic procedure for generating the
dependence relation from a set of effect laws.

Adding executability laws Such a task demands only a change in the
set X of executabilities, possibly introducing implicit static laws as a side
effect.

Adding static laws Besides expanding the set S, adding new (indirect)
dependences may be required (see above).

Adding frame axioms If the frame axiom —/ — [a|—[has to be valid in
the resulting theory, expunging the dependence a ~» [should do the job.

16

Adding a new action name Without loss of generality we can assume
the action in question was already in the language. In that case, we expect
just to add effect or executability laws for it. For the former, at most |Lit|
dependences will be added to ~». (We point out nevertheless that the re-
quirement made in [30] that the addition of an action irrelevant for a given
plan in the old theory should not preclude it in the resulting theory is too
strong. Indeed, it is not difficult to imagine a new action forcing an implicit
static law from which an inexecutability for some action in the plan can be
derived. The same holds for the item below.)

Adding a new fluent name In the same way, we can suppose the fluent
was already in the language. Such a task amounts thus to one or more of the
above expansions. There will be at most 2 x |2ct| new elements added to ~.

9 Concluding remarks

In this work we have presented a general method for changing a domain
description (alias action theory) given any formula we want to contract.

We have defined a semantics for theory contraction and also presented
its syntactical counterpart through contraction operators. Soundness and
completeness of such operators with respect to the semantics have been es-
tablished (Corollary 5.1).

We have also shown that modularity is a necessary condition for a con-
traction to be successful (Theorem 5.3). This gives further evidence that the
notion of modularity is fruitful.

We have analysed an example of contraction of a non-modular theory by
an implicit static law that is unintended.

Because of forcing formulas to be explicitly stated in their respective
modules (and thus possibly making them inferable in independently dif-
ferent ways), intuitively modularity could be seen to diminish elaboration
tolerance. For instance, when contracting a classical formula ¢ from a non-
modular theory, it seems reasonable to expect not to change the set of static
laws S, while the theory being modular surely forces changing such a mod-
ule. However it is not difficult to conceive non-modular theories in which
contraction of a formula ¢ may demand a change in § as well. To witness,
suppose § = {1 — @2} in an action theory from whose dynamic part we
(implicitly) infer —p,. In this case, a contraction of =y keeping =, would
necessarily ask for a change in S. We point out nevertheless that in both
cases (modular and non-modular) the extra work in changing other modules

17

stays in the mechanical level, i.e., in the machinery that carries out the mod-
ification, and does not augment in a significant way the amount of work the
knowledge engineer is expected to do.

What is the status of the AGM-postulates for contraction in our frame-
work? First, contraction of static laws satisfies all the postulates, as soon as
the underlying classical contraction operation & satisfies all of them.

In the general case, however, our constructions do not satisfy the central
postulate of preservation (S,&, X ,~+), = (S5,&,X,~) if §,, X = &. In-
deed, suppose we have a language with only one atom p, and a model .#
with two worlds w = {p} and w’ = {-p} such that wR,w', w' R,w, and
w' R,w'. Then):// p — [aJ-p and Fé// [a]—p, i.e., A is a model of the ef-
fect law p — [a]—p, but not of [a]-p. Now the contraction .#, _, yields the

model .#' such that R, = W x W. Then bé%, p — [a]-p, ie., the effect law
p — [a]=p is not preserved. Our contraction operation thus behaves rather
like an update operation.

Now let us focus on the other postulates. Since our operator has a be-
havior which is close to the update postulate, we focus on the following basic
erasure postulates introduced in [24]. Let Cn(7) be the set of all logical
consequences of a theory T .

KM1 Cn((S,€,X,~)5) C Cn((S, €, X,~))

Postulate KIM1 does not always hold because it is possible to make the
formula ¢ — [a]L valid in the resulting theory by removing elements of R,
(cf. Definition 3.4).

KM2 & ¢ On((S,&,X,~)3)
Under the condition that (S, &, X', ~») is modular, Postulate KM2 is satisfied
(cf. Theorem 5.3).
KM3 If On({(Sy, &, Xj,~)) = Cn((Sa, &y, Xy, ~)) and = D1 <> Py,
then Cn((S1, &y, X, ~)g,) = On((S2, &gy Xy, ~) g)
Theorem 9.1 If (S),&,, X,~) and (S, &,, X,,~) are modular and the

propositional contraction operator © satisfies Postulate KM3, then Pos-
tulate KM3 is satisfied for every @, ®, € Fml.

Here we have presented the case for contraction, but our definitions can
be extended to revision, too. Our results can also be generalized to the case
where learning new actions or fluents is involved. This means in general that
more than one simple formula should be added to the belief base and must
fit together with the rest of the theory with as little side-effects as possible.
We are currently defining algorithms based on our operators to achieve that.

18

Acknowledgments

Ivan Varzinczak has been supported by a fellowship from the government of
the FEDERATIVE REPUBLIC OF BrAzIL. Grant: CAPES BEX 1389/01-7.

References

1]

E. Amir. (De)composition of situation calculus theories. In Proc.
17th Nat. Conf. on Artificial Intelligence (AAAI’2000), pages 456-463,
Austin, 2000. AAAT Press/MIT Press.

E. Amir. Toward a formalization of elaboration tolerance: Adding and
deleting axioms. In M.-A. Williams and H. Rott, editors, Frontiers of
Belief Revision. Kluwer, 2000.

M. A. Castilho, O. Gasquet, and A. Herzig. Formalizing action and
change in modal logic I: the frame problem. J. of Logic and Computation,
9(5):701-735, 1999.

M. A. Castilho, A. Herzig, and 1. J. Varzinczak. Tt depends on the con-
text! a decidable logic of actions and plans based on a ternary depen-
dence relation. In S. Benferhat and E. Giunchiglia, editors, Workshop on
Non-Monotonic Reasoning (NMR’02), pages 343-348, Toulouse, 2002.

L. Cholvy. Checking regulation consistency by using SOL-resolution. In
Proc. 7th Int. Conf. on Al and Law, pages 73-79, Oslo, 1999.

R. Demolombe, A. Herzig, and 1. Varzinczak. Regression in modal logic.
J. of Applied Non-Classical Logics (JANCL), 13(2):165-185, 2003.

P. Doherty, W. Lukaszewicz, and E. Madalinska-Bugaj. The PMA and
relativizing change for action update. In A. G. Cohn, L. Schubert, and
S. C. Shapiro, editors, Proc. 6th Int. Conf. on Knowledge Represen-
tation and Reasoning (KR’98), pages 258-269, Trento, 1998. Morgan
Kaufmann Publishers.

T. Eiter, E. Erdem, M. Fink, and J. Senko. Updating action domain
descriptions. In Kaelbling and Saffiotti [22], pages 418-423.

N. Y. Foo and D. Zhang. Dealing with the ramification problem in
the extended propositional dynamic logic. In F. Wolter, Wansing. H.,
M. de Rijke, and M. Zakharyaschev, editors, Advances in Modal Logic,
volume 3, pages 173-191. World Scientific, 2002.

19

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[20]

K. D. Forbus. Introducing actions into qualitative simulation. In N. S.
Sridharan, editor, Proc. 11th Int. Joint Conf. on Artificial Intelligence
(IJCAI’89), pages 1273-1278, Detroit, 1989. Morgan Kaufmann Pub-
lishers.

P. Gardenfors. Knowledge in Flux: Modeling the Dynamics of Epistemic
States. MIT Press, 1988.

M. Gelfond and V. Lifschitz. Action languages. Electronic Transactions
on Artificial Intelligence, 2(3-4):193-210, 1998.

S. O. Hansson. A Textbook of Belief Dynamics: Theory Change and
Database Updating. Kluwer Academic Publishers, 1999.

D. Harel. Dynamic logic. In D. M. Gabbay and F. Giinthner, editors,
Handbook of Philosophical Logic, volume II, pages 497-604. D. Reidel,
Dordrecht, 1984.

A. Herzig and O. Rifi. Propositional belief base update and minimal
change. Artificial Intelligence, 115(1):107-138, 1999.

A. Herzig and 1. Varzinczak. An assessment of actions with indetermi-
nate and indirect effects in some causal approaches. Technical Report
2004-08-R, Institut de recherche en informatique de Toulouse (IRIT),
Université Paul Sabatier, May 2004. http://www.irit.fr/ACTIVITES/
LILaC/.

A. Herzig and 1. Varzinczak. Domain descriptions should be modular.
In R. Lopez de Mantaras and L. Saitta, editors, Proc. 16th Eur. Conf.
on Artificial Intelligence (ECAI’04), pages 348-352, Valencia, 2004. 10S
Press.

A. Herzig and 1. Varzinczak. Cohesion, coupling and the meta-theory of
actions. In Kaelbling and Saffiotti [22], pages 442-447.

A. Herzig and I. Varzinczak. On the modularity of theories. In
R. Schmidt, 1. Pratt-Hartmann, M. Reynolds, and H. Wansing, edi-
tors, Advances in Modal Logic, volume 5, pages 93-109. King’s College
Publications, 2005. Selected papers of AIML 2004 (also available at
http://www.aiml.net/volumes/volume5).

K. Inoue. Linear resolution for consequence finding. Artificial Intelli-
gence, 56(2-3):301-353, 1992.

20

[21]

[22]

23]

Y. Jin and M. Thielscher. Tterated belief revision, revised. In Kaelbling
and Saffiotti [22], pages 478-483.

L. Kaelbling and A. Saffiotti, editors. Proc. 19th Int. Joint Conf. on
Artificial Intelligence (IJCAI’05), Edinburgh, 2005. Morgan Kaufmann
Publishers.

A. Kakas, L. Michael, and R. Miller. Modular-£: an elaboration tol-
erant approach to the ramification and qualification problems - prelim-
inary report. Proc. of the 7th Int. Symp. on Logical Formalizations of
Commonsense Reasoning. Corfu, Greece, 2005.

H. Katsuno and A. O. Mendelzon. Propositional knowledge base revision
and minimal change. Artificial Intelligence, 52(3):263-294, 1991.

H. Katsuno and A. O. Mendelzon. On the difference between updating a
knowledge base and revising it. In P. Gardenfors, editor, Belief revision,
pages 183-203. Cambridge University Press, 1992.

J. Lang, F. Lin, and P. Marquis. Causal theories of action — a compu-
tational core. In V. Sorge, S. Colton, M. Fisher, and J. Gow, editors,
Proc. 18th Int. Joint Conf. on Artificial Intelligence (IJCAI'03), pages
1073-1078, Acapulco, 2003. Morgan Kaufmann Publishers.

R. Li and L.M. Pereira. What is believed is what is explained. In
H. Shrobe and T. Senator, editors, Proc. 13th Nat. Conf. on Artificial In-
telligence (AAAI’96), pages 550-555, Portland, 1996. AAAT Press/MIT
Press.

P. Liberatore. A framework for belief update. In Proc. 7th Eur. Work-
shop on Logics in AI (JELIA 2000), pages 361-375, 2000.

J. McCarthy. Mathematical logic in artificial intelligence. Daedalus,
1988.

J. McCarthy. Elaboration tolerance. In Proc. Common Sense’98,
London, 1998. Available at http://www-formal.stanford.edu/jmc/
elaboration.html.

S. Popkorn. First Steps in Modal Logic. Cambridge University Press,
1994.

R. Reiter. The frame problem in the situation calculus: A simple so-
lution (sometimes) and a completeness result for goal regression. In

21

[34]

[35]

[36]

[38]

[39]

[40]

V. Lifschitz, editor, Artificial Intelligence and Mathematical Theory of
Computation: Papers in Honor of John McCarthy, pages 359-380. Aca-
demic Press, San Diego, 1991.

R. Reiter. Knowledge in Action: Logical Foundations for Specifying and
Implementing Dynamical Systems. MIT Press, Cambridge, MA, 2001.

M. Shanahan. Solving the frame problem: a mathematical investigation
of the common sense law of inertia. MIT Press, Cambridge, MA, 1997.

S. Shapiro, M. Pagnucco, Y. Lespérance, and H. J. Levesque. Tterated
belief change in the situation calculus. In T. Cohn, F. Giunchiglia, and
B. Selman, editors, Proc. 7th Int. Conf. on Knowledge Representation
and Reasoning (KR’2000), pages 527538, Breckenridge, 2000. Morgan
Kaufmann Publishers.

M. Thielscher. Computing ramifications by postprocessing. In C. Mel-
lish, editor, Proc. 14th Int. Joint Conf. on Artificial Intelligence (IJ-
CAI’95), pages 1994-2000, Montreal, 1995. Morgan Kaufmann Publish-
ers.

M.-A. Winslett. Reasoning about action using a possible models ap-
proach. In R. G. Smith and T. M. Mitchell, editors, Proc. 7th Nat.
Conf. on Artificial Intelligence (AAAI’88), pages 89-93, St. Paul, 1988.
Morgan Kaufmann Publishers.

M.-A. Winslett. Updating logical databases. In D. M. Gabbay, C. J.
Hogger, and J. A. Robinson, editors, Handbook of Logic in Artificial
Intelligence and Logic Programming, volume 4, pages 133-174. Oxford
University Press, 1995.

D. Zhang, S. Chopra, and N. Y. Foo. Consistency of action descriptions.
In PRICAI’02, Topics in Artificial Intelligence. Springer-Verlag, 2002.

D. Zhang and N. Y. Foo. EPDL: A logic for causal reasoning. In
B. Nebel, editor, Proc. 17th Int. Joint Conf. on Artificial Intelligence
(IJCAI’01), pages 131-138, Seattle, 2001. Morgan Kaufmann Publish-
ers.

22

