
Elaborating domain descriptions
(preliminary report)

Andreas Herzig Laurent Perrussel Ivan Varzinczak
IRIT { 118 route de Narbonne31062 Toulouse Cedex { France

e-mail: {herzig,perrusse,ivan}@irit.frhttp://www.irit.fr/recherches/LILAC
Abstract

In this work we address the problem of elaborating domain descrip-tions (alias action theories), in particular those that are expressed indynamic logic. We de�ne a general method based on contraction offormulas in a version of propositional dynamic logic with an incor-porated solution to the frame problem. We present the semantics ofour theory change and de�ne syntactical operators for contracting adomain description. We establish soundness and completeness of theoperators w.r.t. the semantics for descriptions that satisfy a principleof modularity that we have proposed elsewhere. We also investigatean example of changing non-modular domain descriptions.Keywords: Theory change, dynamic logic, modularity.

1

1 Introduction
Suppose a situation where an agent has always believed that if the lightswitch is up, then there is light in the room. Suppose now that someday, sheobserves that even if the switch is in the upper position, the light is o�. Insuch a case, the agent must change her beliefs about the relation betweenthe propositions \the switch is up" and \the light is on". This example is aninstance of the problem of changing propositional belief bases and is largelyaddressed in the literature about belief change [11] and belief update [25].Next, let our agent believe that whenever the switch is down, after tog-gling it, there is light in the room. This means that if the light is o�, inevery state of the world that follows the execution of toggling the switch, theroom is lit up. Then, during a blackout, the agent toggles the switch andsurprisingly the room is still dark.Imagine now that the agent never worried about the relation betweentoggling the switch and the material it is made of, in the sense that she everbelieved that just toggling the switch does not break it. Nevertheless, in astressful day, she toggles the switch and then observes that she had broken it.Completing the wayside cross our agent experiments in discovering theworld's behavior, suppose she has believed that it is always possible to togglethe switch, provided some conditions like being close enough to it, having afree hand, the switch is not broken, etc, are satis�ed. However, in a beautifulApril fool's day, the agent discovers that someone has glued the switch and,consequently, it is no longer possible to toggle it.

The last three examples illustrate situations where changing the beliefsabout the behavior of the action of toggling the switch is mandatory. Inthe �rst one, toggling the switch, once believed to be deterministic, has nowto be seen as nondeterministic, or alternatively to have a di�erent outcomein a speci�c context (e.g. if the power station is overloaded). In the secondexample, toggling the switch is known to have side-e�ects (rami�cations)one was not aware of. In the last example, the executability of the actionunder concern is questioned in the light of new information showing a contextthat was not known to preclude its execution. Carrying out modi�cations iswhat we here call elaborating a domain description, which has to do with theprinciple of elaboration tolerance [29].Such cases of theory change are very important when one deals withlogical descriptions of dynamic domains: it may always happen that onediscovers that an action actually has a behavior that is di�erent from thatone has always believed it had.
Up to now, theory change has been studied mainly for knowledge bases

2

in classical logics, both in terms of revision and update. Only in a few recentworks it has been considered in the realm of modal logics, viz. in epistemiclogic [13], and in action languages [8]. Recently, several works [35, 21] haveinvestigated revision of beliefs about facts of the world. In our examples, thiswould concern e.g. the current status of the switch: the agent believes it isup, but is wrong about this and might subsequently be forced to revise hisbeliefs about the current state of a�airs. Such belief revision operations donot modify the agent's beliefs about the action laws. In opposition to that,here we are interested exactly in such modi�cations. The aim of this work isto make a step toward that issue and propose a framework that deals withthe contraction of action theories.Dynamic logic, more speci�cally propositional dynamic logic (PDL [14]),has been extensively used in reasoning about actions in the last years [3,4, 40, 9, 39]. It has shown to be a viable alternative to situation calculusapproaches because of its simplicity and existence of proof procedures for it.In this work we investigate the elaboration of domain descriptions encodedin such a logical formalism. We show how a theory expressed in terms ofstatic laws, e�ect laws and executability laws is elaborated: usually, a lawhas to be changed due to its generality, i.e., the law is too strong and has tobe weakened. It follows that elaborating an action theory means contractingit by static, e�ect or executability laws, before expanding the theory withmore speci�c laws.
The present text is organized as follows: in Section 2 we de�ne the logicalframework we use throughout this work and show how action theories are en-coded. Section 3 is devoted to our semantics of theory change and Section 4to its syntactical counterpart. In Section 5 we establish soundness and com-pleteness of our change operators w.r.t. the semantics, where completenessis conditioned by a notion of modularity that we have proposed in previ-ous work. We then analyse an example of correcting a non-modular theory(Section 6). Before concluding, we address related work on the �eld (Sec-tion 7) and discuss on how elaboration tolerant the framework here proposedis (Section 8).

2 Background
Following the tradition in the reasoning about actions community, action the-ories are going to be collections of statements that have the particular form:\if context, then e�ect after every execution of action" (e�ect laws); and \ifprecondition, then action executable" (executability laws). Statements men-tioning no action at all represent laws about the world (static laws). Besides

3

that, statements of the form \if context, then e�ect after some execution ofaction" will be used as a causal notion to solve the frame and the rami�cationproblems.
2.1 Logical preliminaries
Let Act = fa1; a2; : : :g be the set of all atomic action constants of a givendomain. An example of atomic action is toggle. To each atomic action athere is associated a modal operator [a].Prop = fp1; p2; : : :g denotes the set of all propositional constants, alsocalled uents or atoms. Examples of those are light (\the light is on") andup (\the switch is up"). The set of all literals is Lit = fl1; l2; : : :g, where eachli is either p or :p, for some p 2 Prop. If l = :p, then we identify :l with p.We use small Greek letters '; ; : : : to denote classical formulas. Theyare recursively de�ned in the usual way:

' ::= p j > j ? j :' j ' ^ j ' _ j '! j '$
Fml is the set of all classical formulas. An example of a classical formulais up ! light. By val(') we denote the set of valuations making ' true.We view a valuation as a maximally-consistent set of literals. For Prop =flight; upg, there are four valuations: flight; upg, flight;:upg, f:light; upgand f:light;:upg. Given a set of formulas �, by lit(�) we denote the set ofall literals appearing in formulas of �.We denote complex formulas (with modal operators) by �; 	; : : : Theyare recursively de�ned in the following way:

� ::= ' j [a]� j :� j � ^ 	 j � _ 	 j �! 	 j �$ 	
hai is the dual operator of [a], de�ned as hai� =def :[a]:�. An example of acomplex formula is :up! [toggle]up.

The semantics is that of multimodal logic K [31].
De�nition 2.1 A PDL-model is a tuple M = hW;Ri where W is a setof maximally-consistent sets of literals, and R maps action constants a toaccessibility relations Ra �W�W.
De�nition 2.2 Given a PDL-model M = hW;Ri,

� j=Mw p (p is true at world w of model M) if p 2 w;
� j=Mw [a]� if for every w0 such that wRaw0, j=Mw0 �;

4

� truth conditions for the other connectives are as usual.
De�nition 2.3 M is a model of � (noted j=M �) if and only if for all w 2W,j=Mw �. M is a model of a set of formulas � (noted j=M �) if and only if j=M �for every � 2 �. A formula � is a consequence of the set of global axiomsf�1; : : : ; �ng in the class of all PDL-models (noted �1; : : : ; �n j=PDL �) if andonly if for every PDL-model M , if j=M �i for every �i, then j=M �.
2.2 Describing the behavior of actions in PDL
Given a domain, we are interested in theories whose statements describe thebehavior of actions. PDL allows for the representation of such statements,that we call action laws. Here we distinguish several types of them. The �rstkind of statement represents the static laws, which are formulas that musthold in every possible state of the world.
De�nition 2.4 A static law is a formula ' 2 Fml.
An example of a static law is up! light, saying that if the switch is up, thenthe light is on. The set of all static laws of a domain is denoted by S � Fml.The second kind of action law we consider is given by the e�ect laws.These are formulas relating an action to its e�ects, which can be conditional.
De�nition 2.5 An e�ect law for action a is of the form ' ! [a] , where'; 2 Fml, with ' classically consistent.
`Classically consistent' is a shorthand for `consistent in classical propositionallogic'. The consequent is the e�ect which always obtains when action a isexecuted in a state where the antecedent ' holds. If a is a nondeterministicaction, then the consequent is typically a disjunction. The set of e�ectlaws of a domain is denoted by E . An example of an e�ect law is :up ![toggle]light, saying that whenever the switch is down, after toggling it, theroom is lit up. If is inconsistent, we have a special kind of e�ect law thatwe call an inexecutability law. For example, broken ! [toggle]? expressesthat toggle cannot be executed if the switch is broken.Finally, we also de�ne executability laws, which stipulate the contextwhere an action is guaranteed to be executable. In PDL, the operator hai isused to express executability. hai> thus reads \the execution of a is possible".
De�nition 2.6 An executability law for action a is of the form ' ! hai>,where ' 2 Fml is classically consistent.

5

For instance, :broken! htogglei> says that toggling can be executed when-ever the switch is not broken. The set of all executability laws of a givendomain is denoted by X .
The rest of this work is devoted to the elaboration of action models andtheories.

3 Models of contraction
When an action theory has to be changed, the basic operation is that ofcontraction. (In belief-base update [37, 25] it has also been called erasure.)In this section we de�ne its semantics.In general we might contract by any formula �. Here we focus on con-traction by one of the three kinds of laws. We therefore suppose that � iseither ', where ' is classical, or '! [a] , or '! hai>.

For the case of contracting static laws we resort to existing approachesin order to change the set of static laws. In the following, we consider anybelief change operator such as Forbus' update method [10], or the possiblemodels approach [37, 38], or WSS [15] or MPMA [7].Contraction by ' corresponds to adding new possible worlds to W. Let 	be a contraction operator for classical logic.
De�nition 3.1 Let hW;Ri be a PDL-model and ' a classical formula. Theset of models resulting from contracting by ' is the singleton hW;Ri�' =fhW0;Rig such that W0 = W	 val(').

Action theories being de�ned in terms of e�ect and executability laws,elaborating an action theory will mainly involve changing one of these twosets of laws. Let us consider now both these cases.Suppose the knowledge engineer acquires new information regarding thee�ect of action a. Then it means that the law under consideration is probablytoo strong, i.e., the expected e�ect may not occur and thus the law has tobe weakened. Consider e.g. :up ! [toggle]light, and suppose it has to beweakened to the more speci�c (:up ^ :blackout) ! [toggle]light.1 In orderto carry out such a weakening, �rst the designer has to contract the set ofe�ect laws and second to expand the resulting set with the weakened law.1The other possibility of weakening the law, i.e., replacing it by :up! [toggle](light _:light) looks silly. We were not able to �nd examples where changing the consequentcould give a more intuitive result. In this sense, we prefer to always weaken a given lawby strengthening its antecedent.
6

Contraction by ' ! [a] amounts to adding some `counterexample' ar-rows from '-worlds to : -worlds. To ease such a task, we need a de�nition.Let PI(') denote the set of prime implicates of '.
De�nition 3.2 Let '1; '2 2 Fml. NewCons'1('2) = PI('1 ^ '2) n PI('1)computes the new consequences of '2 w.r.t. '1: the set of strongest clausesthat follow from '1 ^ '2, but do not follow from '1 alone (cf. e.g. [20]).
For example, the set of prime implicates of p1 is just fp1g, that of the formulap1 ^ (:p1 _ p2) ^ (:p1 _ p3 _ p4) is fp1; p2; p3 _ p4g, hence we have thatNewConsp1((:p1 _ p2) ^ (:p1 _ p3 _ p4)) = fp2; p3 _ p4g.
De�nition 3.3 Let hW;Ri be a PDL-model and '! [a] an e�ect law. Themodels resulting from contracting by ' ! [a] is hW;Ri�'![a] = fhW;R [
R0ai : R0a � f(w;w0) :j=hW;Riw '; j=hW;Riw0 : and w0nw � lit(NewConsS(:))gg.
In our context, lit(NewConsS(:)) corresponds to all the rami�cations thataction a can produce.

Suppose now the knowledge engineer learns new information about theexecutability of a. This usually occurs when there are executability laws thatare too strong, i.e., the condition in the theory guaranteeing the executabilityof a is too weak and has to be made more restrictive. Let e.g. htogglei> bethe law to be contracted, and suppose it has to be weakened to the morespeci�c :broken! htogglei>. To implement such a weakening, the designerhas to �rst contract the set of executability laws and then to expand theresulting set with the weakened law.Contraction by ' ! hai> corresponds to removing some arrows leavingworlds where ' holds. Removing such arrows has as consequence that a isno longer always executable in context '.
De�nition 3.4 Let hW;Ri be a PDL-model and '! hai> an executabilitylaw. The set of models that result from the contraction by ' ! hai> ishW;Ri�'!hai> = fhW;R0i : R0 = R n R00a;R00a � f(w;w0) : wR00aw0 and j=hW;Riw'gg.

In the next section we make a step toward syntactical operators thatreect the semantic foundations for contraction.

7

4 Contracting an action theory
Having established the semantics of action theory contraction, we can turnto its syntactical counterpart. Nevertheless, before doing that we have toconsider an important issue. As the reader might have expected, the logicalformalism of PDL alone does not solve the frame problem. For instance,� up! light;:up! [toggle]up;up! [toggle]:up; htogglei>

� 6j=PDL broken! [toggle]broken:
Thus, we need a consequence relation powerful enough to deal with the frameand rami�cation problems. This means that the deductive power of PDL hasto be augmented in order to ensure that the relevant frame axioms follow fromthe theory. Following the logical framework developed in [3], we considermetalogical information given in the form of a dependence relation:
De�nition 4.1 (Dependence relation [3]) A dependence relation is a bi-nary relation ;� Act� Lit.

The expression a; l denotes that the execution of action a may changethe truth value of the literal l. On the other hand, ha; li =2; (written a 6; l)means that l can never be caused by a. In our example we have toggle; lightand toggle ; :light, which means that action toggle may cause a change inliterals light and :light. We do not have toggle ; :broken, for toggling theswitch never repairs it.We assume ; is �nite.
De�nition 4.2 A model of a dependence relation; is a PDL-modelM suchthat j=M f:l! [a]:l : a 6; lg.

Given a dependence relation ;, the associated consequence relation inthe set of models for ; is noted j=; . For our example we obtain� up! light;:up! [toggle]up;up! [toggle]:up; htogglei>
� j=; broken! [toggle]broken:

We have toggle 6; :broken, i.e., :broken is never caused by toggle. Thereforein all contexts where broken is true, after every execution of toggle, brokenstill remains true. The consequence of this independence is that the frameaxiom broken! [toggle]broken is valid in the models of ;.Such a dependence-based approach has been shown [6] to subsume Reiter'ssolution to the frame problem [32] and moreover treats the rami�cation prob-lem, even when actions with both indeterminate and indirect e�ects are in-volved [4, 16].
8

De�nition 4.3 An action theory is a tuple of the form hS; E ;X ;;i.
In our running example, the corresponding action theory is

S = fup! lightg; E = f:up! [toggle]up; up! [toggle]:upg
X = fhtogglei>g; ; = � htoggle; lighti; htoggle;:lighti;htoggle; upi; htoggle;:upi

�
And we have S; E ;X j=; :up! [toggle]light. (For parsimony's sake, we writeS; E ;X instead of S [E [X .)Let hS; E ;X ;;i be an action theory and � a PDL-formula. hS; E ;X ;;i��is the action theory resulting from the contraction of hS; E ;X ;;i by �.Contracting a theory by a static law ' amounts to using any existingcontraction operator for classical logic. Let 	 be such an operator. Moreover,based on [19], we also need to guarantee that ' does not follow from E , Xand ; (cf. Section 6). We de�ne contraction of a domain description by astatic law as follows:
De�nition 4.4 hS; E ;X ;;i�' = hS�; E ;X�;;i, where S� = S 	 ' andX� = f('i ^ ') ! hai> : 'i ! hai> 2 X g.

We now consider the case of contracting an action theory by an executabil-ity law. For every executability in X , we ensure that action a is executableonly in contexts where :' is the case. The following operator does the job.
De�nition 4.5 hS; E ;X ;;i�'!hai> = hS; E ;X�;;i, where X� = f('i ^:') ! hai> : 'i ! hai> 2 X g.
For instance, contracting glued ! htogglei> in our example would give usX� = f:glued! htogglei>g.Finally, to contract a theory by ' ! [a] , for every e�ect law in E , we�rst ensure that a still has e�ect whenever ' does not hold, second weenforce that a has no e�ect in context :' except on those literals that areconsequences of : . Combining this with the new dependence relation alsolinking a to literals involved by : , we have that a may now produce : asoutcome. In other words, the e�ect law has been contracted. The operatorbelow formalizes this:
De�nition 4.6 hS; E ;X ;;i�'![a] = hS; E�;X ;;�i, with;�=; [fha; li :l 2 lit(NewConsS(:))g and E� = f('i ^ :') ! [a] : 'i ! [a] 2Eg [f(:' ^ :l) ! [a]:l : ha; li 2 (;� n;)g.
For instance, contracting the law blackout ! [toggle]light from our theorywould give us E� = f(:up ^ :blackout) ! [toggle]up; (up ^ :blackout) ![toggle]:upg.

9

5 Results
In this section we present the main results that follow from our framework.These require the action theory under consideration to be modular [19]. Inour framework, an action theory is said to be modular if a formula of agiven type entailed by the whole theory can also be derived solely from itsrespective module (the set of formulas of the same type) together with thestatic laws S. As shown in [19], to make a domain description satisfy such aproperty it is enough to guarantee that there is no classical formula entailedby the theory that is not entailed by the static laws alone.
De�nition 5.1 ' 2 Fml is an implicit static law of hS; E ;X ;;i if and onlyif S; E ;X j=; ' and S 6j= '.

A theory is modular if it has no implicit static laws. Our concept ofmodularity of theories was originally de�ned in [19], but similar conceptshave also been addressed in the literature [5, 1, 39, 26, 18]. A modularity-based approach for narrative reasoning about actions is given in [23].
To witness how implicit static laws can show up, consider the quite simpleaction theory below, depicting the walking turkey scenario [36]:

S = fwalking! aliveg; E = � [tease]walking;loaded! [shoot]:alive
�

X = � hteasei>;hshooti>
� ; ; = � hshoot;:loadedi; hshoot;:alivei;hshoot;:walkingi; htease;walkingi

�
With this domain description we have S; E ;X j=; alive: �rst, fwalking !alive; [tease]walkingg j=; [tease]alive, second j=; :alive! [tease]:alive (fromthe independence tease 6; alive), and then S; E j=; :alive ! [tease]?. Aslong as S; E ;X j=; hteasei>, we must have S; E ;X j=; alive. As S 6j= alive,the formula alive is an implicit static law of hS; E ;X ;;i.

Modular theories have several advantages [17]. For example, consistencyof a modular action theory can be checked by just checking consistency of S:if hS; E ;X ;;i is modular, then S; E ;X j=; ? if and only if S j= ?. Deduc-tion of an e�ect of a sequence of actions a1; : : : ; an (prediction) does not needto take into account the e�ect laws for actions other than a1; : : : ; an. Thisapplies in particular to plan validation when deciding whether ha1; : : : ; ani'is the case.Throughout this work we have used PDL. For an assessment of the mod-ularity principle in the Situation Calculus, see [18].
10

Here we establish that our operators are correct w.r.t. the semantics.Our �rst theorem establishes that the semantical contraction of the modelsof hS; E ;X ;;i by � produces models of hS; E ;X ;;i�� .
Theorem 5.1 Let hW;Ri be a model of hS; E ;X ;;i, and let � be a formulathat has the form of one of the three laws. For all models M , if M 2hW;Ri�� , then M is a model of hS; E ;X ;;i�� .

It remains to prove that the other way round, the models of hS; E ;X ;;i��result from the semantical contraction of models of hS; E ;X ;;i by �. Thisdoes not hold in general, as shown by the following example: suppose thereis only one atom p and one action a, and consider the theory hS; E ;X ;;isuch that S = ;, E = fp ! [a]?g, X = fhai>g, and ;= ;. The onlymodel of that action theory is M = hff:pgg; f(f:pg; f:pg)gi. By de�ni-tion, M�p!hai> = fM g. On the other hand, hS; E ;X ;;i�p!hai> = h;; fp ![a]?g; f:p ! hai>g; ;i. The contracted theory has two models: M andM 0 = hffpg; f:pgg; (f:pg; f:pg)i. While :p is valid in the contraction ofthe models of hS; E ;X ;;i, it is invalid in the models of hS; E ;X ;;i�p!hai>.
Fortunately, we can establish a result for those action theories that aremodular. The proof requires three lemmas. The �rst one says that for amodular theory we can restrict our attention to its `big' models.

Lemma 5.1 Let hS; E ;X ;;i be modular. Then S; E ;X j=; � if and onlyif j=hW;Ri � for every model hW;Ri of hS; E ;X ;;i such that W = val(S).
Note that the lemma does not hold for non-modular theories (because theset fhW;Ri : W = val(S)g is empty then).

The second lemma says that modularity is preserved under contraction.
Lemma 5.2 Let hS; E ;X ;;i be modular, and let � be a formula of theform of one of the three laws. Then hS; E ;X ;;i�� is modular.

The third one establishes the required link between the contraction oper-ators and contraction of `big' models.
Lemma 5.3 Let hS; E ;X ;;i be modular, and let � be a formula of the formof one of the three laws. If M 0 = hval(S);R0i is a model of hS; E ;X ;;i�� ,then there is a model M of hS; E ;X ;;i such that M 0 2M�� .

Putting the three above lemmas together we get:
11

Theorem 5.2 Let hS; E ;X ;;i be modular, � be a formula of the form ofone of the three laws, and hS�; E�;X�;;�i be hS; E ;X ;;i�� . If it holdsthat S�; E�;X� j=;� 	 , then for every model M of hS; E ;X ;;i and every
M 0 2M�� it holds that j=M 0 	 .

Our two theorems together establish correctness of the operators:
Corollary 5.1 Let hS; E ;X ;;i be modular, � be a formula of the formof one of the three laws, and hS�; E�;X�;;�i be hS; E ;X ;;i�� . ThenS�; E�;X� j=;� 	 if and only if for every model M of hS; E ;X ;;i andevery M 0 2M�� it holds that j=M 0 	 .

We also give a necessary condition for the success of a contraction.
Theorem 5.3 Let � be an e�ect or an inexecutability law such that S 6j=PDL�, and let hS�; E�;X�;;�i be hS; E ;X ;;i�� . If hS; E ;X ;;i is modular,then S�; E�;X� 6j=;� �.
6 Contracting implicit static laws
There can be many reasons why a theory should be changed. Following [17,19], here we focus on the case where it has some classical consequence ' thedesigner is not aware of.If ' is taken as intuitive, then, normally, no change has to be done at all,unless we want to keep abide on the modularity principle and thus make 'explicit by adding it to S. In the scenario example of Section 4, if theknowledge engineer's universe has immortal turkeys, then she would add thestatic law alive to S.The other way round, if ' is not intuitive, as long as ' is entailed byhS; E ;X ;;i, the goal is to avoid such an entailment, i.e., what we wantis S�; E�;X� 6j=;� ', where hS�; E�;X�;;�i is hS; E ;X ;;i�� . In thementioned scenario, the knowledge engineer considers that having immortalturkeys is not reasonable and thus decides to change the domain descriptionto hS�; E�;X�;;�i so that S�; E�;X� 6j=;� alive.This means that action theories that are not modular need to be changed,too. Such a changing process is driven by the problematic part of the theorydetected by the algorithm de�ned in [17] and improved in [19].The algorithm works as follows: for each executability law ' ! hai>in the theory, construct from E and ; a set of inexecutabilities f'1 ![a]?; : : : ; 'n ! [a]?g that potentially conict with ' ! hai>. For each i,

12

1 � i � n, if '^'i is satis�able w.r.t. S, mark :('^'i) as an implicit staticlaw. Incrementally repeat this procedure (adding all the :('^'i) that werecaught to S) until no implicit static law is obtained.For an example of the execution of the algorithm, consider hS; E ;X ;;i asabove. For the action tease, we have the executability hteasei>. Now, fromE , and; we try to build an inexecutability for tease. We take [tease]walkingand compute then all indirect e�ects of tease w.r.t. S. From walking! alive,we get that alive is an indirect e�ect of tease, giving us [tease]alive. Buthtease; alivei =2;, which means the frame axiom :alive! [tease]:alive holds.Together with [tease]alive, this gives us the inexecutability :alive! [tease]?.As S [f>;:aliveg is satis�able (> is the antecedent of the executabilityhteasei>), we get the implicit static law alive. For this example no otherinexecutability for tease can be derived, so the computation stops.
It seems that in general implicit static laws are not intuitive. Thereforetheir contraction is more likely to happen than their addition.2 In the ex-ample above, the action theory has to be contracted by alive.3 In order tocontract the action theory, the designer has several choices:

1) Contract the set S. (In this case, such an operation is not enough, sincealive is a consequence of the rest of the theory.)
2) Weaken the e�ect law [tease]walking to alive ! [tease]walking, since theoriginal e�ect law is too strong. This means that in a �rst stage the designerhas to contract the theory and in a second one expand the e�ect laws withthe weaker law. The designer will usually choose this option if she focuseson the preconditions of the e�ects of actions.
3) Weaken the executability law hteasei> by rephrasing it as alive! hteasei>:�rst the executability is contracted and then the weaker one is added to theresulting set of executability laws. The designer will choose this option if shefocuses on preconditions for action execution.

The analysis of this example shows that the choice of what change has tobe carried out is up to the knowledge engineer. Such a task can get more com-plicated when rami�cations are involved. To witness, suppose our scenariohas been formalized as follows: S = fwalking! aliveg, E = f[shoot]:aliveg,X = fhshooti>g, and ;= fhshoot;:aliveig. From this action theory we canderive the inexecutability walking ! [shoot]? and thus the implicit static
2In all the examples in which we have found implicit static laws that are intuitive theyare so evident that the only explanation for not having them explicitly stated is that theyhave been forgotten by the theory's designer.3Here the change operation is a revision-based operation rather than an update-basedoperation since we mainly \�x" the theory.

13

law :walking. In this case we have to change the theory by contracting theframe axiom walking! [shoot]walking (which amounts to adding the missingindirect dependence shoot; :walking).
7 Related work
Following [27, 28], Eiter et al. [8] have investigated update of action domaindescriptions. They de�ne a version of action theory update in an actionlanguage and give complexity results showing how hard such a task can be.Update of action descriptions in their sense is always relative to some con-ditions (interpreted as knowledge possibly obtained from earlier observationsand that should be kept). This characterizes a constraint-based update. Inthe example they give, change must be carried out preserving the assumptionthat pushing the button of the remote control is always executable. Actually,the method is more subtle, as new e�ect laws are added constrained by theaddition of viz. an executability law for the new action under concern. Inthe example, the constraint (executability of push) was not in the originalaction description and must �gure in the updated theory.They describe domains of actions in a fragment of the action languageC [12]. However they do not specify which fragment, so it is not clear whetherthe claimed advantages C has over A really transfer to their framework. Atone hand, their approach deals with indirect e�ects, but they do not talkabout updating a theory by a law with a nondeterministic action. Anyway,except for concurrency, their account can be translated into ours, as shownin [3].Eiter et al. consider an action theory T as comprising two main com-ponents: Tu, the part of the theory that must remain unchanged, and Tm,the part concerning the statements that are allowed to change. The crucialinformation to the associated solution to the frame problem is always in Tu.Given an action theory T = Tu [Tm, ((Tu [Tm); T 0; C) is the problem ofupdating T by T 0 � S [E warranting the result satis�es all constraints inC � S [X .Even though they do not explicitly state postulates for their kind of theoryupdate, they establish conditions for the update operator to be successful.Basically, they claim for consistency of the resulting theory; maintenance ofthe new knowledge and the invariable part of the description; satisfaction ofthe constraints in C; and minimal change.In some examples that they develop, the illustrated \partial solution"does not satisfy C due to the existence of implicit laws (cf. Example 1, wherethere is an implicit inexecutability law). To achieve a solution, while keeping

14

C, some other laws must be dropped (in the example, the agent gives up astatic law).4Just to see the link between update by subsumed laws and addition ofimplicit static laws, we note that Proposition 1 is the same as Theorem 14in [19]: every implicit static law in Herzig and Varzinczak's sense is triviallya subsumed law in Eiter et al.'s sense.With their method we can also contract by a static and an e�ect law.Contraction of executabilities are not explicitly addressed, and weakening(replacing a law by a weaker one) is left as future work.A main di�erence between the approach in [8] and ours is that we donot need to add new uents at every elaboration stage: we still work on thesame set of uents, re�ning their behavior w.r.t. an action a. in Eiter et al.'sproposal an update forces changing all the variable rules appearing in theaction theory by adding to each one a new update uent. This is a constraintwhen elaborating action theories.
8 Elaboration tolerance
The principle of elaboration tolerance has been proposed by McCarthy [29].Roughly, it states that the e�ort required to add new information to a givenrepresentation (new laws or entities) should be proportional to the complex-ity of the information being added, i.e., it should not require the completereconstruction of the old theory [34].Since then many formalisms in the reasoning about actions �eld claim,in a more or less tacit way, to satisfy such a principle. However, for all thistime there has been a lack of good formal criteria allowing for the evaluationof theory change di�culty and, consequently, comparisons between di�erentframeworks are carried out in a subjective way.The proposal by Amir [2] made the �rst steps in formally answering whatdi�culty of changing a theory means by formalizing one aspect of elaborationtolerance. The basic idea is as follows: let T0 be the original theory andlet T1 and T2 be two equivalent (and di�erent) theories such that each oneresults from T0 by the application of some sequence of operations (additionsand/or deletions of formulas). The resulting theory whose transformationfrom T0 has the shortest length (number of operations) is taken as the mostelaboration tolerant.Nevertheless, in the referred work only addition/deletion of axioms is con-sidered, i.e., changes in the logical language or contraction of consequences of4This does not mean however that the updated theory will necessarily contain noimplicit law.

15

the theory not explicitly stated in the original set of axioms are not taken intoaccount. This means that even the formal setting given in [2] is not enoughto evaluate the complexity of theory change in a broad sense. Hence thecommunity still needs formal criteria that allow for the comparison betweenmore complex changes carried out by frameworks like ours and Eiter et al.'s,for example.Of course, how elaboration tolerant a given update/revision method isstrongly depends on its underlying formalism for reasoning about actions, i.e.,its logical background, the solution to the frame problem it implements, thehypothesis it relies on, etc. In what follows we discuss how the dependence-based approach here used behaves when expansion is considered. Most ofthe comments concerning consequences of expansion can also be stated forcontraction. We do that with respect to some of the qualitative criteria givenin [30]. In all that follows we suppose that the resulting theory is consistent.
Adding e�ect laws In the dependence-based framework, adding the newe�ect law '! [a] to the theory demands a change in the dependence mod-ule ;. In that case, the maximum number of statements added to ; isjfl : l 2 lit(NewConsS())gj (dependences for all indirect e�ects have to bestated, too). This is due to the explanation closure nature of the reasoningbehind dependence (for more details, see [3]). Because of this, according toShanahan [34], explanation closure approaches are not elaboration tolerantwhen dealing with the rami�cation problem. In order to achieve that, theframework should have a mechanism behaving like circumscription that au-tomatically deals with rami�cations. This raises the question: \if we had anautomatic (or even semi-automatic) procedure to do the job of generating theindirect dependences, could we say the framework is elaboration tolerant?".We think we can answer positively to such a question, and, supported byReiter [33], we are working on a semi-automatic procedure for generating thedependence relation from a set of e�ect laws.
Adding executability laws Such a task demands only a change in theset X of executabilities, possibly introducing implicit static laws as a sidee�ect.
Adding static laws Besides expanding the set S, adding new (indirect)dependences may be required (see above).
Adding frame axioms If the frame axiom :l ! [a]:l has to be valid inthe resulting theory, expunging the dependence a; l should do the job.

16

Adding a new action name Without loss of generality we can assumethe action in question was already in the language. In that case, we expectjust to add e�ect or executability laws for it. For the former, at most jLitjdependences will be added to ;. (We point out nevertheless that the re-quirement made in [30] that the addition of an action irrelevant for a givenplan in the old theory should not preclude it in the resulting theory is toostrong. Indeed, it is not di�cult to imagine a new action forcing an implicitstatic law from which an inexecutability for some action in the plan can bederived. The same holds for the item below.)
Adding a new uent name In the same way, we can suppose the uentwas already in the language. Such a task amounts thus to one or more of theabove expansions. There will be at most 2�jActj new elements added to;.
9 Concluding remarks
In this work we have presented a general method for changing a domaindescription (alias action theory) given any formula we want to contract.We have de�ned a semantics for theory contraction and also presentedits syntactical counterpart through contraction operators. Soundness andcompleteness of such operators with respect to the semantics have been es-tablished (Corollary 5.1).We have also shown that modularity is a necessary condition for a con-traction to be successful (Theorem 5.3). This gives further evidence that thenotion of modularity is fruitful.We have analysed an example of contraction of a non-modular theory byan implicit static law that is unintended.

Because of forcing formulas to be explicitly stated in their respectivemodules (and thus possibly making them inferable in independently dif-ferent ways), intuitively modularity could be seen to diminish elaborationtolerance. For instance, when contracting a classical formula ' from a non-modular theory, it seems reasonable to expect not to change the set of staticlaws S, while the theory being modular surely forces changing such a mod-ule. However it is not di�cult to conceive non-modular theories in whichcontraction of a formula ' may demand a change in S as well. To witness,suppose S = f'1 ! '2g in an action theory from whose dynamic part we(implicitly) infer :'2. In this case, a contraction of :'1 keeping :'2 wouldnecessarily ask for a change in S. We point out nevertheless that in bothcases (modular and non-modular) the extra work in changing other modules
17

stays in the mechanical level, i.e., in the machinery that carries out the mod-i�cation, and does not augment in a signi�cant way the amount of work theknowledge engineer is expected to do.What is the status of the AGM-postulates for contraction in our frame-work? First, contraction of static laws satis�es all the postulates, as soon asthe underlying classical contraction operation 	 satis�es all of them.In the general case, however, our constructions do not satisfy the centralpostulate of preservation hS; E ;X ;;i�� = hS; E ;X ;;i if S; E ;X 6j=; �. In-deed, suppose we have a language with only one atom p, and a model Mwith two worlds w = fpg and w0 = f:pg such that wRaw0, w0Raw, andw0Raw0. Then j=M p ! [a]:p and 6j=M [a]:p, i.e., M is a model of the ef-fect law p ! [a]:p, but not of [a]:p. Now the contraction M�[a]:p yields themodel M 0 such that Ra = W�W. Then 6j=M 0 p! [a]:p, i.e., the e�ect lawp ! [a]:p is not preserved. Our contraction operation thus behaves ratherlike an update operation.Now let us focus on the other postulates. Since our operator has a be-havior which is close to the update postulate, we focus on the following basicerasure postulates introduced in [24]. Let Cn(T) be the set of all logicalconsequences of a theory T .
KM1 Cn(hS; E ;X ;;i��) � Cn(hS; E ;X ;;i)Postulate KM1 does not always hold because it is possible to make theformula ' ! [a]? valid in the resulting theory by removing elements of Ra(cf. De�nition 3.4).
KM2 � =2 Cn(hS; E ;X ;;i��)Under the condition that hS; E ;X ;;i is modular, Postulate KM2 is satis�ed(cf. Theorem 5.3).
KM3 If Cn(hS1; E1;X1;;i) = Cn(hS2; E2;X2;;i) and j=PDL �1 $ �2,then Cn(hS1; E1;X1;;i��2) = Cn(hS2; E2;X2;;i��1).Theorem 9.1 If hS1; E1;X1;;i and hS2; E2;X2;;i are modular and thepropositional contraction operator 	 satis�es Postulate KM3, then Pos-tulate KM3 is satis�ed for every �1; �2 2 Fml.

Here we have presented the case for contraction, but our de�nitions canbe extended to revision, too. Our results can also be generalized to the casewhere learning new actions or uents is involved. This means in general thatmore than one simple formula should be added to the belief base and must�t together with the rest of the theory with as little side-e�ects as possible.We are currently de�ning algorithms based on our operators to achieve that.
18

Acknowledgments
Ivan Varzinczak has been supported by a fellowship from the government ofthe Federative Republic of Brazil. Grant: CAPES BEX 1389/01-7.
References
[1] E. Amir. (De)composition of situation calculus theories. In Proc.17th Nat. Conf. on Arti�cial Intelligence (AAAI'2000), pages 456{463,Austin, 2000. AAAI Press/MIT Press.
[2] E. Amir. Toward a formalization of elaboration tolerance: Adding anddeleting axioms. In M.-A. Williams and H. Rott, editors, Frontiers ofBelief Revision. Kluwer, 2000.
[3] M. A. Castilho, O. Gasquet, and A. Herzig. Formalizing action andchange in modal logic I: the frame problem. J. of Logic and Computation,9(5):701{735, 1999.
[4] M. A. Castilho, A. Herzig, and I. J. Varzinczak. It depends on the con-text! a decidable logic of actions and plans based on a ternary depen-dence relation. In S. Benferhat and E. Giunchiglia, editors, Workshop onNon-Monotonic Reasoning (NMR'02), pages 343{348, Toulouse, 2002.
[5] L. Cholvy. Checking regulation consistency by using SOL-resolution. InProc. 7th Int. Conf. on AI and Law, pages 73{79, Oslo, 1999.
[6] R. Demolombe, A. Herzig, and I. Varzinczak. Regression in modal logic.J. of Applied Non-Classical Logics (JANCL), 13(2):165{185, 2003.
[7] P. Doherty, W. Lukaszewicz, and E. Madalinska-Bugaj. The PMA andrelativizing change for action update. In A. G. Cohn, L. Schubert, andS. C. Shapiro, editors, Proc. 6th Int. Conf. on Knowledge Represen-tation and Reasoning (KR'98), pages 258{269, Trento, 1998. MorganKaufmann Publishers.
[8] T. Eiter, E. Erdem, M. Fink, and J. Senko. Updating action domaindescriptions. In Kaelbling and Sa�otti [22], pages 418{423.
[9] N. Y. Foo and D. Zhang. Dealing with the rami�cation problem inthe extended propositional dynamic logic. In F. Wolter, Wansing. H.,M. de Rijke, and M. Zakharyaschev, editors, Advances in Modal Logic,volume 3, pages 173{191. World Scienti�c, 2002.

19

[10] K. D. Forbus. Introducing actions into qualitative simulation. In N. S.Sridharan, editor, Proc. 11th Int. Joint Conf. on Arti�cial Intelligence(IJCAI'89), pages 1273{1278, Detroit, 1989. Morgan Kaufmann Pub-lishers.
[11] P. G�ardenfors. Knowledge in Flux: Modeling the Dynamics of EpistemicStates. MIT Press, 1988.
[12] M. Gelfond and V. Lifschitz. Action languages. Electronic Transactionson Arti�cial Intelligence, 2(3{4):193{210, 1998.
[13] S. O. Hansson. A Textbook of Belief Dynamics: Theory Change andDatabase Updating. Kluwer Academic Publishers, 1999.
[14] D. Harel. Dynamic logic. In D. M. Gabbay and F. G�unthner, editors,Handbook of Philosophical Logic, volume II, pages 497{604. D. Reidel,Dordrecht, 1984.
[15] A. Herzig and O. Ri�. Propositional belief base update and minimalchange. Arti�cial Intelligence, 115(1):107{138, 1999.
[16] A. Herzig and I. Varzinczak. An assessment of actions with indetermi-nate and indirect e�ects in some causal approaches. Technical Report2004{08{R, Institut de recherche en informatique de Toulouse (IRIT),Universit�e Paul Sabatier, May 2004. http://www.irit.fr/ACTIVITES/

LILaC/.
[17] A. Herzig and I. Varzinczak. Domain descriptions should be modular.In R. L�opez de M�antaras and L. Saitta, editors, Proc. 16th Eur. Conf.on Arti�cial Intelligence (ECAI'04), pages 348{352, Valencia, 2004. IOSPress.
[18] A. Herzig and I. Varzinczak. Cohesion, coupling and the meta-theory ofactions. In Kaelbling and Sa�otti [22], pages 442{447.
[19] A. Herzig and I. Varzinczak. On the modularity of theories. InR. Schmidt, I. Pratt-Hartmann, M. Reynolds, and H. Wansing, edi-tors, Advances in Modal Logic, volume 5, pages 93{109. King's CollegePublications, 2005. Selected papers of AiML 2004 (also available at

http://www.aiml.net/volumes/volume5).
[20] K. Inoue. Linear resolution for consequence �nding. Arti�cial Intelli-gence, 56(2{3):301{353, 1992.

20

[21] Y. Jin and M. Thielscher. Iterated belief revision, revised. In Kaelblingand Sa�otti [22], pages 478{483.
[22] L. Kaelbling and A. Sa�otti, editors. Proc. 19th Int. Joint Conf. onArti�cial Intelligence (IJCAI'05), Edinburgh, 2005. Morgan KaufmannPublishers.
[23] A. Kakas, L. Michael, and R. Miller. Modular-E : an elaboration tol-erant approach to the rami�cation and quali�cation problems - prelim-inary report. Proc. of the 7th Int. Symp. on Logical Formalizations ofCommonsense Reasoning. Corfu, Greece, 2005.
[24] H. Katsuno and A. O. Mendelzon. Propositional knowledge base revisionand minimal change. Arti�cial Intelligence, 52(3):263{294, 1991.
[25] H. Katsuno and A. O. Mendelzon. On the di�erence between updating aknowledge base and revising it. In P. G�ardenfors, editor, Belief revision,pages 183{203. Cambridge University Press, 1992.
[26] J. Lang, F. Lin, and P. Marquis. Causal theories of action { a compu-tational core. In V. Sorge, S. Colton, M. Fisher, and J. Gow, editors,Proc. 18th Int. Joint Conf. on Arti�cial Intelligence (IJCAI'03), pages1073{1078, Acapulco, 2003. Morgan Kaufmann Publishers.
[27] R. Li and L.M. Pereira. What is believed is what is explained. InH. Shrobe and T. Senator, editors, Proc. 13th Nat. Conf. on Arti�cial In-telligence (AAAI'96), pages 550{555, Portland, 1996. AAAI Press/MITPress.
[28] P. Liberatore. A framework for belief update. In Proc. 7th Eur. Work-shop on Logics in AI (JELIA 2000), pages 361{375, 2000.
[29] J. McCarthy. Mathematical logic in arti�cial intelligence. Daedalus,1988.
[30] J. McCarthy. Elaboration tolerance. In Proc. Common Sense'98,London, 1998. Available at http://www-formal.stanford.edu/jmc/

elaboration.html.
[31] S. Popkorn. First Steps in Modal Logic. Cambridge University Press,1994.
[32] R. Reiter. The frame problem in the situation calculus: A simple so-lution (sometimes) and a completeness result for goal regression. In

21

V. Lifschitz, editor, Arti�cial Intelligence and Mathematical Theory ofComputation: Papers in Honor of John McCarthy, pages 359{380. Aca-demic Press, San Diego, 1991.
[33] R. Reiter. Knowledge in Action: Logical Foundations for Specifying andImplementing Dynamical Systems. MIT Press, Cambridge, MA, 2001.
[34] M. Shanahan. Solving the frame problem: a mathematical investigationof the common sense law of inertia. MIT Press, Cambridge, MA, 1997.
[35] S. Shapiro, M. Pagnucco, Y. Lesp�erance, and H. J. Levesque. Iteratedbelief change in the situation calculus. In T. Cohn, F. Giunchiglia, andB. Selman, editors, Proc. 7th Int. Conf. on Knowledge Representationand Reasoning (KR'2000), pages 527{538, Breckenridge, 2000. MorganKaufmann Publishers.
[36] M. Thielscher. Computing rami�cations by postprocessing. In C. Mel-lish, editor, Proc. 14th Int. Joint Conf. on Arti�cial Intelligence (IJ-CAI'95), pages 1994{2000, Montreal, 1995. Morgan Kaufmann Publish-ers.
[37] M.-A. Winslett. Reasoning about action using a possible models ap-proach. In R. G. Smith and T. M. Mitchell, editors, Proc. 7th Nat.Conf. on Arti�cial Intelligence (AAAI'88), pages 89{93, St. Paul, 1988.Morgan Kaufmann Publishers.
[38] M.-A. Winslett. Updating logical databases. In D. M. Gabbay, C. J.Hogger, and J. A. Robinson, editors, Handbook of Logic in Arti�cialIntelligence and Logic Programming, volume 4, pages 133{174. OxfordUniversity Press, 1995.
[39] D. Zhang, S. Chopra, and N. Y. Foo. Consistency of action descriptions.In PRICAI'02, Topics in Arti�cial Intelligence. Springer-Verlag, 2002.
[40] D. Zhang and N. Y. Foo. EPDL: A logic for causal reasoning. InB. Nebel, editor, Proc. 17th Int. Joint Conf. on Arti�cial Intelligence(IJCAI'01), pages 131{138, Seattle, 2001. Morgan Kaufmann Publish-ers.

22

