
On the Modularity of Theories

Andreas Herzig and Ivan Varzinczak

abstract. In this paper we give the notion of modularity of a

theory and analyze some of its properties, especially for the case of

action theories in reasoning about actions. We propose algorithms to

check whether a given action theory is modular and that also make

it modular, if needed. Completeness, correctness and termination

results are demonstrated.

1 Introduction

In many cases knowledge is represented by logical theories containing multi-
ple modalities α1, α2, . . . Then it is often the case that we have modularity,
in the sense that our theory T can be partitioned into a union of theories

T = T ∅ ∪ T α1 ∪ T α2 ∪ . . .

such that

• T ∅ contains no modal operators, and

• the only modality of T αi is αi.

We call these subtheories modules (some modules might by empty). Exam-
ples of such theories can be found in reasoning about actions, where each
T αi contains descriptions of the atomic action αi in terms of preconditions
and effects, and T ∅ is the set of static laws (alias domain constraints, alias
integrity constraints), i.e., those formulas that hold in every possible state
of a dynamic system, and are thus global axioms.

For example, consider the following theory:

T marry =

{

¬Married → 〈marry〉>,
[marry]Married

}

T ∅ = {¬(Married ∧ Bachelor)}

Such a theory is composed of two subtheories, one for expressing the dy-
namic part of the theory, T marry, and one to formalize the constraints of

Advances in Modal Logic, Volume 5. c© 2005, Andreas Herzig and Ivan Varzinczak.



2 Andreas Herzig and Ivan Varzinczak

the domain, T ∅. T marry formalizes the behavior of the action of getting
married, in this case the precondition for executing marry (viz. ¬Married)
and the effect that obtains after its execution (viz. Married). T ∅ formalizes
the domain constraint according to which it is not possible to be married
and bachelor at the same time.

Another example is when mental attitudes such as knowledge, beliefs or
goals of several independent agents are represented: then each T αi contains
the respective mental attitude of agent αi.

1

Let the underlying multimodal logic be independently axiomatized (i.e.,
the logic is a fusion and there is no interaction between the modal operators),
and suppose we want to know whether T |= ϕ, i.e., whether a formula ϕ
follows from the theory T . Then it is natural to expect that we only have to
consider those elements of T which concern the modal operators occurring
in ϕ. For instance the proof of some consequences of action α1 should
not involve laws for other actions α2; querying the belief base of agent α1

should not require bothering with that of agent α2. Moreover, intensional
information in any T αi should not influence information about the laws of
the world (encoded in T ∅). Note that this is not the case if the logic is
not independently axiomatized, and there are interaction axioms such as
[α1]ϕ → [α2]ϕ.

Similar modularity principles can also be found in structural and object-
oriented programming: a commonly used guideline in software development
is to divide the software into modules, based on their functionality or on the
similarity of the information they handle. This means that instead of having
a “jack of all trades” program, it is preferable to split it up into specialized
subprograms. For instance, a program made of a module for querying a
database and a module for checking its integrity is more modular than a
single module that does these two tasks at the same time.

The major benefits of modular systems are reusability, scalability and
better management of complexity.2 Among the criteria commonly used for
evaluating how modular a piece of software is are the notions of cohesion

and coupling [15, 17]. Roughly, cohesion is about how well defined a module
is, while coupling is about how modules are interdependent. A common
sense maxim in object-oriented design is maximize cohesion of modules and
diminish their coupling, and this paradigm can also be applied to reasoning
about actions [1, 4, 5].

1Here we should assume more generally that [αi] is the only outermost modal operator
of T αi ; we think that this case could be analyzed in a way that is similar to ours.

2Observe that this is closely related to the concept of elaboration tolerance [12] in
reasoning about actions.
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In this work we pursue the following plan: after some logical preliminar-
ies (Section 2) we formalize the concepts of modularity to be used through-
out the paper (Sections 3 and 4). In Section 5 we focus then in a particular
kind of theories that are commonly used in reasoning about actions and
discuss how to decide (Section 6) and guarantee (Section 7) its modular
property. We finish by addressing related work in the field and making
some concluding remarks.

2 Preliminaries

Let MOD = {α1, α2, . . .} be the set of modal operators. Formulas are
constructed in the standard way from these and the set of atomic formulas
ATM. They are denoted by ϕ, ψ, . . . Formulas without modal operators
(propositional formulas) are denoted by PFOR = {A,B,C, . . .}.

Let mod(ϕ) return the set of modal operators occurring in formula ϕ,
and let mod(T ) =

⋃

ψ∈T mod(ψ). For instance mod([α1](p → [α2]q)) =
{α1, α2}. If M ⊆ MOD is a nonempty set of modalities, then we define

T M = {ϕ ∈ T : mod(ϕ) ∩ M 6= ∅}

For M = ∅, we define

T ∅ = {ϕ ∈ T : mod(ϕ) = ∅}

For example, if

T =







¬(Married ∧ Bachelor),
¬Married → 〈marry〉>, [marry]Married,

Married → 〈divorce〉>, [divorce]¬Married







then
T {divorce} = {Married → 〈divorce〉>, [divorce]¬Married}

and
T ∅ = {¬(Married ∧ Bachelor)}

We write T α instead of T {α}.
We suppose from now on that T is partitioned, in the sense that {T ∅} ∪

{T αi : αi ∈ MOD} is a partition of T . We thus exclude T αi containing
more than one modal operator.

Models of the logic under concern are of the form M = 〈W,R, V 〉, where
W is a set of possible worlds, R : MOD −→W×W associates an accessibility
relation to every modality, and V : W −→ 2ATM associates a valuation to
every possible world.
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Satisfaction of a formula ϕ in world w of model M (M,w |= ϕ) and truth
of a formula ϕ in M (denoted M |= ϕ) are defined as usual. Truth of a set
of formulas T in M (denoted M |= T ) is defined by: M |= T if and only if
M |= ψ for every ψ ∈ T . T has global consequence ϕ (denoted T |= ϕ) if
and only if (M |= T implies M |= ϕ). Note that the underlying logic is an
extension of classical propositional logic: if A is a logical consequence of T
in classical propositional logic, then T |= A.

We suppose that the logic under consideration is compact.

Given these fundamental concepts, we are able to formally define modu-
larity of a theory.

3 Modularity

We make the following hypothesis:

{T ∅} ∪ {T αi : αi ∈ MOD} partitions T 3 (H)

We are interested in the following principle of modularity:

DEFINITION 1 A theory T is modular if and only if for every formula ϕ,

T |= ϕ implies T mod(ϕ) ∪ T ∅ |= ϕ

Modularity means that when investigating whether ϕ is a consequence of T ,
the only formulas of T that are relevant are those whose modal operators
occur in ϕ and the classical formulas in T ∅.

This is reminiscent of interpolation, which more or less4 says:

DEFINITION 2 A theory T has the interpolation property if and only if for
every formula ϕ, if T |= ϕ, then there is a theory Tϕ such that

• mod(Tϕ) ⊆ mod(T ) ∩ mod(ϕ)

• T |= ψ for every ψ ∈ Tϕ

• Tϕ |= ϕ

Our definition of modularity is a strengthening of interpolation because it
requires Tϕ to be a subset of T .

3{T ∅} ∪ {T αi : αi ∈ MOD} partitions T if and only if T = T ∅ ∪
⋃

αi∈MOD T αi , and

T ∅ ∩ T αi = ∅, and T αi ∩ T αj = ∅, if αi 6= αj . Note that T ∅ and T αi might be empty.
4We here present a version in terms of global consequence, as opposed to local con-

sequence or material implication versions that can be found in the literature [6, 7]. We
were unable to find such global versions in the literature.
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Contrary to interpolation, modularity does not generally hold. Clearly if
(H) is not satisfied, then modularity fails. To witness, consider

T = {p→ [α][β]q, [α][β]q → r}

Then T |= p→ r, but T ∅ 6|= p→ r.
Nevertheless even under our hypothesis modularity may fail to hold. For

example, let

T = {p ∨ [α]⊥, p ∨ ¬[α]⊥}

Then T ∅ = ∅, and T α = T . Now T |= p, but clearly T ∅ 6|= p.

Being modular is a useful feature of theories: beyond being a reason-
able principle of design that helps avoiding mistakes, it clearly restricts the
search space, and thus makes reasoning easier. To witness, if T is modu-
lar then consistency of T amounts to consistency (in classical logic) of its
propositional part T ∅. This is what we address in the following section.

4 Propositional modularity

How can we know whether a given theory T is modular? The following
criterion is simpler:

DEFINITION 3 A theory T is propositionally modular if and only if for
every propositional formula A,

T |= A implies T ∅ |= A

And it will suffice to guarantee modularity:

THEOREM 4 Let the underlying logic be a fusion, and let T be a parti-
tioned theory. If T is propositionally modular, then T is modular.

Proof. Let T be propositionally modular. Suppose T mod(ϕ) ∪ T ∅ 6|= ϕ.
Hence there is a model M = 〈W,R, V 〉 such that M |= T mod(ϕ) ∪ T ∅, and
there is some w in M such that M,w 6|= ϕ. We prove that T 6|= ϕ by
constructing from M a model M ′ such that M ′ |= T and M ′, w 6|= ϕ.

First, as we have supposed that our logic is an extension of classical
propositional logic and that it is compact, propositional modularity implies
that for every propositional valuation val ⊆ 2ATM which is a model of
T ∅ there is a possible worlds model Mval = 〈Wval, Rval, Vval〉 such that
Mval |= T , and there is some w in Mval such that Vval(w) = val. In other
words, for every propositional model of T ∅ there is a model of T containing
that propositional model.
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Second, taking the disjoint union of all these models we obtain a ‘big
model’ Mbig such that Mbig |= T , and for every propositional model val ⊆
2ATM of T ∅ there is a possible world w in Mbig such that V (w) = val.

Now we can use the big model to adjust those accessibility relations R(α)
of M whose α does not appear in ϕ, in a way such that the resulting model
satisfies the rest of the theory T \ T mod(ϕ): let M ′ = 〈W ′, R′, V ′〉 be such
that

• W ′ = {uv : u ∈W, v ∈ Wbig , and V (u) = Vbig(v)}

• if α ∈ mod(ϕ), then uvR
′(α)u′v′ if and only if uR(α)u′

• if α 6∈ mod(ϕ), then uvR
′(α)u′v′ if and only if vR(α)v′

• V ′(uv) = V (u) = Vbig(v)

W ′ is nonempty because M |= T ∅. M ′ is a model of the underlying logic
because the latter is a fusion. Then for the sublanguage constructed from
mod(ϕ) it can be proved by structural induction that for every formula ψ
of the sublanguage and every u ∈W and v ∈Wbig , M,u |= ψ if and only if
M ′, uv |= ψ. The same can be proved for the sublanguage constructed from
MOD \ mod(ϕ). As, by hypothesis, T is partitioned, T ∅ and each of our
modules T α are in at least one of these sublanguages, thus we have proved
that M ′ |= T , and M ′, wv 6|= ϕ for every v. �

In the rest of the paper we investigate how it can be automatically checked
whether a given theory T is modular or not, and how to make it modular,
if needed. We do this for a particular kind of theories commonly used in
reasoning about actions. First of all we say what an action theory is.

5 Action theories

We suppose that the underlying logic is multimodal K. (Note that this is a
fusion and that it is compact.)

Every formalization of a dynamic domain contains a representation of
action effects. We call effect laws formulas relating an action to its effects.
Executability laws in turn stipulate the context where an action is guaran-
teed to be executable. Finally, static laws are formulas that do not mention
actions and express constraints that must hold in every possible state. These
are our four ingredients that we introduce more formally in the sequel.

Static laws Frameworks which allow for indirect effects make use of logical
formulas that link invariant propositions about the world. Such formulas
characterize the set of possible states. They do not refer to actions, and we
suppose they are formulas of classical propositional logic A,B, . . . ∈ PFOR.
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A static law5 is a formula A ∈ PFOR that is consistent. An example
is Walking → Alive, saying that if a turkey is walking, then it must be
alive [19]. In our action theories T , static laws correspond to T ∅.

Effect laws To speak about action effects we use the syntax of proposi-
tional dynamic logic (PDL) [3]. The formula [α]A expresses that A is true
after every possible execution of α.

An effect law6 for α is of the form A→ [α]C, where A,C ∈ PFOR. The
consequent C is the effect which obtains when α is executed in a state where
the antecedent A holds. An example is Loaded → [shoot]¬Alive, saying that
whenever the gun is loaded, after shooting the turkey is dead. Another one
is [tease]Walking: in every circumstance, the result of teasing is that the
turkey starts walking.

A particular case of effect laws are inexecutability laws of the form A →
[α]⊥. For example ¬HasGun → [shoot]⊥ expresses that shoot cannot be
executed if the agent has no gun.

Executability laws With only static and effect laws one cannot guarantee
that shoot is executable if the agent has a gun.7 In dynamic logic the dual
〈α〉A, defined as ¬[α]¬A, can be used to express executability. 〈α〉> thus
reads “the execution of action α is possible”.

An executability law8 for α is of the form A → 〈α〉>, where A ∈ PFOR.
For instance HasGun → 〈shoot〉> says that shooting can be executed when-
ever the agent has a gun, and 〈tease〉> says that the turkey can always be
teased.

Action theories S ⊆ PFOR denotes the set of all static laws of a domain.
For a given action α ∈ MOD, Eα is the set of its effect laws, and Xα is the set
of its executability laws. We define E =

⋃

α∈MOD Eα, and X =
⋃

α∈MOD Xα.
An action theory is a tuple of the form 〈S, E ,X〉. We suppose that S, E and
X are finite.

5Static laws are often called domain constraints, but the different laws for actions that
we shall introduce in the sequel could in principle also be called like that.

6Effect laws are often called action laws, but we prefer not to use that term here
because it would also apply to executability laws that are to be introduced in the sequel.

7Some authors [16, 2, 11, 19] more or less tacitly consider that executability laws
should not be made explicit, but rather inferred by the reasoning mechanism. Others
[10, 21] have executability laws as first class objects one can reason about. It seems a
matter of debate whether one can always do without, but we think that in several domains
one wants to explicitly state under which conditions a given action is guaranteed to be
executable, e.g., that a robot should never get stuck and should always be able to execute
a move action. In any case, allowing for executability laws gives us more flexibility and
expressive power.

8Some approaches (most prominently Reiter’s) use biconditionals A ↔ 〈α〉>, called
precondition axioms. This is equivalent to ¬A ↔ [α]⊥, such laws thus merge information
about inexecutability with information about executability.
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EXAMPLE 5 Consider the following formalization of a transaction domain:

S = {¬Adult → ¬OblgPay}

E =

{

[order]OblgPay,

¬Adult → [order]¬Adult

}

X = {〈order〉>}

Observe that by the fact that S, E ,X |= ¬Adult → [order]⊥ we have
S, E ,X |= Adult. But S 6|= Adult, hence 〈S, E ,X〉 is also an example of
an action theory that is not modular.

Our central hypothesis here is that the different types of laws in an action
theory should be neatly separated and only interfere in one sense: static
laws together with action laws for α may have consequences that do not
follow from the action laws for α alone. The other way round, action laws
should not allow to infer new static laws. That is what modularity of action
theories establishes and we develop it in the sequel.

6 Deciding modularity

How can we check whether a given action theory T = 〈S, E ,X〉 is modular?
Following Theorem 4, it is enough to check for propositional modularity.

DEFINITION 6 A ∈ PFOR is an implicit static law of an action theory
〈S, E ,X〉 if and only if S, E ,X |= A and S 6|= A.

In Example 5, Adult is an example of an implicit static law.

Theorem 4 tells us that an action theory is modular if and only if it has
no implicit static law. Hence, checking the existence of such laws provides
us a way to decide modularity of a given action theory. Assuming T is
finite, the algorithm below does the job:

ALGORITHM 7 (Finding some implicit static laws)

input: 〈S, E ,X〉
output: a set of implicit static laws SI

SI:= ∅
for all α ∈ mod(E) ∩ mod(X ) do

for all B → 〈α〉> ∈ X do

for all {A1 → [α]C1, . . . , An → [α]Cn} ⊆ Eα do

if S ∪ {C1, . . . , Cn} ` ⊥ and S ∪ {B,A1, . . . , An} 6` ⊥ then

SI:= SI ∪ {¬(B ∧ A1 ∧ . . . ∧ An)}
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THEOREM 8 Algorithm 7 terminates.

Proof. Straightforward from finiteness of X and E . �

LEMMA 9 For every A ∈ PFOR such that S, E ,X |= A, if A ∈ SI , then
A is an implicit static law of 〈S, E ,X〉.

Proof. Let A ∈ PFOR be such that A ∈ SI and S, E ,X |= A. A is of the
form ¬(B ∧ A1 ∧ . . . ∧ An), for some B,A1, . . . , An, and S ∧ ¬(B ∧ A1 ∧
. . . ∧ An) 0 ⊥ is the case. Hence, S ∧ ¬A 0 ⊥, which means that S 6|= A.
Therefore A is an implicit static law. �

REMARK 10 The converse of Lemma 9 does not hold: consider the quite
simple action theory

〈S, E ,X〉 =

〈 {¬pn},
{pi−1 → [α]pi, 1 ≤ i ≤ n},

{〈α〉>}

〉

Thus, 〈S, E ,X〉 |= ¬pi, for 0 ≤ i ≤ n, but running Algorithm 7 returns only
SI = {¬pn−1}. This suggests that it is necessary to iterate the algorithm
in order to find all implicit static laws. We shall do this in the next section,
and now just observe that:

THEOREM 11 An action theory 〈S, E ,X〉 is modular if and only if SI = ∅.

Proof. The left-to-right direction is straightforward, by Lemma 9.
For the right-to-left direction, suppose SI = ∅. Therefore for all subsets

{A1 → [α]C1, . . . , An → [α]Cn} of Eα and all B → 〈α〉> ∈ X we have that

(1) if S ∪ {B,A1, . . . , An} 6` ⊥, then S ∪ {C1, . . . , Cn} 6` ⊥.

By Theorem 4, then, it suffices to prove that then 〈S, E ,X〉 is propositionally
modular. Therefore, suppose S 6|= A for some propositional A. Let W be
the set of all propositional valuations satisfying S that falsify A. As S 6|= A,
S ∪ {¬A} is satisfiable, hence W must be nonempty. For every w ∈ W let

Eα(w) = {A : A → [α]C ∈ Eα and w |= A}.
We define R(α) such that wR(α)w′ if and only if

• w |= B for some B → 〈α〉> ∈ X , and

• w′ |= C for every A→ [α]C ∈ Eα such that A ∈ Eα(w).

Taking the obvious definition of V we obtain a model M = 〈W,R, V 〉. We
have that M |= S ∧ E ∧ X , because:
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• M |= S: by definition of W ;

• M |= E : for every world w, every α and every A → [α]C ∈ Eα if
w |= A, then, by the definition of R(α), w′ |= C for all w′ ∈ W such
that wR(α)w′ ;

• M |= X : for every world w, every α and every B → 〈α〉> ∈ X , if
w |= B, then from (1) and the definition of R(α), there exists at least
one w′ such that wR(α)w′.

Clearly M 6|= A, by the definition of W . Hence S, E ,X 6|= A. �

7 Making action theories modular

Considering the action theory in Remark 10, we can see that running Al-
gorithm 7 on 〈S ∪ {¬pn−1}, E ,X〉 will give us SI = {¬pn−2}. This means
that some of the implicit static laws of an action theory may be needed in
order to derive others. Hence, Algorithm 7 must be iterated to get 〈S, E ,X〉
modular. This is achieved with the following algorithm, which iteratively
feeds the set of static laws considered into the if-test of Algorithm 7.

ALGORITHM 12 (Finding all implicit static laws)

input: 〈S, E ,X〉
output: SItotal, the set of all implicit static laws of 〈S, E ,X〉
Snew:= S
SItotal:= ∅
repeat

SI:= find imp stat(〈Snew, E ,X〉) /* a call to Algorithm 7 */
Snew:= Snew ∪ SI

SItotal:= SItotal ∪ SI

until SI = ∅

THEOREM 13 Algorithm 12 terminates.

Proof. First, for given α the set of candidates to be an implicit static law
is

{¬(B ∧
∧

Ai→[α]Ci∈E′
α

Ai) : B → 〈α〉> ∈ X and E ′
α ⊆ Eα}

This set is finite.
In each step either the algorithm ends because SI = ∅, or at least one of

the candidates is put into SI (by a call to Algorithm 7, which terminates).
Such a candidate is not going to be put into SI in future steps, because
once added to Snew, it will be in the set of laws of all subsequent calls to
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Algorithm 7, falsifying its respective if-test for such a candidate. Hence
the repeat-loop is bounded by the number of candidates, and therefore
Algorithm 12 terminates. �

THEOREM 14 Let SItotal be the output of Algorithm 12 on input 〈S, E ,X〉.
Then

1. 〈S ∪ SItotal, E ,X〉 is modular.

2. S, E ,X |=
∧

SItotal.

Proof. Item 1. is straightforward from the termination of Algorithm 12 and
Theorem 11. Item 2. follows from the fact that by the if-test in Algorithm 7,
the only formulas that are put in SItotal at each execution of the loop are
exactly those that are implicit static laws of the original theory. �

COROLLARY 15 For all A ∈ PFOR, S, E ,X |= A if and only if S∪SItotal |=
A.

Proof.

For the left-to-right direction, let A ∈ PFOR be such that S, E ,X |= A.
Then S ∪ SItotal, E ,X |= A, by monotonicity. By Theorem 14-1., 〈S ∪
SItotal, E ,X〉 is modular, hence S ∪ SItotal |= A.

The right-to-left direction is straightforward by Theorem 14-2. �

This establishes that Algorithm 12 finds all implicit static laws of a given
action theory 〈S, E ,X〉. Adding such laws to the original set of static laws
S guarantees, hence, modularity of 〈S, E ,X〉.

In the next section we assess existing work on the field in the literature,
emphasizing the points that make our approach a step further on a more
fine-grained characterization of modularity.

8 Related work

Pirri and Reiter have investigated the metatheory of the Situation Calcu-
lus [14]. In a spirit similar to ours, they use executability laws and effect
laws. Contrary to us, their executability laws are equivalences and are thus
at the same time inexecutability laws. There are no static laws, i.e., S = ∅.
For this setting they give a syntactical condition on effect laws guarantee-
ing that they do not interact with the executability laws in the sense that
they do not entail implicit static laws. Basically, the condition says that
when there are effect laws A → [α]C and A′ → [α]¬C, then A and A′ are
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inconsistent (which essentially amounts to having in their theories a kind of
“implicit static law schema” of the form ¬(A ∧ A′)).

This then allows them to show that such theories are always consistent.
Moreover they thus simplify the entailment problem for this calculus, and
show for several problems such as consistency or regression that only some
of the modules of an action theory are necessary.

Amir [1] focuses on design and maintainability of action descriptions ap-
plying many of the concepts of the object-oriented paradigm in the Situation
Calculus. In that work, guidelines for a partitioned representation of a given
theory are presented, with which the inference task can also be optimized,
as it is restricted to the part of the theory that is really relevant to a given
query. This is observed specially when different agents are involved: the
design of an agent’s theory can be done with no regard to others’, and after
the integration of multiple agents, queries about an agent’s beliefs do not
take into account the belief state of other agents.

In the above mentioned work, executabilities are as in [14] and the same
condition on effect laws is assumed, which syntactically precludes the exis-
tence of implicit static laws.

Despite of using many of the object-oriented paradigm tools and tech-
niques, no mention is made to the concepts of cohesion and coupling. In
the approach presented in [1], even if modules are highly cohesive, they are
not minimally coupled, due to the dependence between objects in the rea-
soning phase. We do not investigate this further here, but conjecture that
this could be done there by, during the reasoning process defined for that
approach, avoiding passing to a module a formula of a type different from
those it contains.

The present work generalizes and extends Pirri and Reiter’s result to the
case where S 6= ∅ and both Pirri and Reiter’s and Amir’s where the syntac-
tical restriction on effect laws is not made. This gives us more expressive
power, as we can reason about inexecutabilities, and a better modularity in
the sense that we do not combine formulas that are conceptually different
(viz. executabilities and inexecutabilities).

Zhang et al. [20] have also proposed an assessment of what a good ac-
tion theory should look like. They develop the ideas in the framework
of EPDL [21], an extended version of PDL which allows for propositions
as modalities to represent causal connection between literals. We do not
present the details of that, but concentrate on the main metatheoretical
results.

Zhang et al. propose a normal form for describing action theories,9 and

9But not as expressive as one might think: For instance, in modeling the non-
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investigate three levels of consistency. Roughly speaking, an action theory
T is uniformly consistent if it is globally consistent (i.e., T 6|=

EPDL
⊥); a

formula ϕ is T -consistent if T 6|=
EPDL

¬ϕ, for T a uniformly consistent
theory; T is universally consistent if (in our terms) every logically possible
world is accessible.

Furthermore, two assumptions are made to preclude the existence of im-
plicit qualifications. Satisfaction of such assumptions means the action the-
ory under consideration is safe, i.e., it is uniformly consistent. Such a normal
form justifies the two assumptions made and on whose validity relies their
notion of good action theories.

Given these definitions, they propose algorithms to test the different
versions of consistency for an action theory T that is in normal form.
This test essentially amounts to checking whether T is safe, i.e., whether
T |=

EPDL
〈α〉>, for every α. Success of this check should mean the action

theory under analysis satisfies the consistency requirements.

Nevertheless, this is only a necessary condition: it is not hard to imagine
action theories that are uniformly consistent but in which we can still have
implicit laws that are not caught by the algorithm. Consider for instance a
scenario with a lamp that can be turned on and off by a toggle action, and
its EPDL representation given by:

T =















On → [toggle]¬On,

Off → [toggle]On,

[On]¬Off,

[¬On]Off















The causal statement [On]¬Off means that On causes ¬Off. Such an action
theory satisfies each of the consistency requirements (in particular it is uni-
formly consistent, as T 6|=

EPDL
⊥). Nevertheless, T is not safe because the

static law ¬(On ∧ Off) cannot be proved.10

Although they are concerned with the same kind of problems that have
been discussed in this paper, they take an overall view of the subject, in

deterministic action of dropping a coin on a chessboard, we are not able to state
[drop](Black ∨ White). Instead, we should write something like [dropBlack]Black,
[dropWhite]White, [dropBlack,White]Black and [dropBlack,White]White, where dropBlack is
the action of dropping the coin on a black square (analogously for the others) and
drop = dropBlack ∪ dropWhite ∪ dropBlack,White, with “∪” the nondeterministic compo-
sition of actions.

10A possible solution could be considering the set of static constraints explicitly in
the action theory (viz. in the deductive system). For the running example, taking into
account the constraint On ↔ ¬Off (derived from the causal statements and the EPDL

global axioms), we can conclude that T is safe. On the other hand, all the side effects
such a modification could have on the whole theory has yet to be analyzed.
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the sense that all problems are dealt with together. This means that in
their approach no special attention (in our sense) is given to the different
components of the action theory, and then every time something is wrong
with it this is taken as a global problem inherent to the action theory as a
whole. Whereas such a “systemic” view of action theories is not necessarily
a drawback (we have just seen the strong interaction that exists between
the different sets of laws composing an action theory), being modular in
our sense allows us to circumscribe the “problematic” laws and take care
of them. Moreover, the advantage of allowing to find the set of laws which
must be modified in order to achieve the desired consistency is made evident
by the algorithms we have proposed (while their results only allow to decide
whether a given theory satisfies some consistency requirement).

Lang et al. [9] address consistency in the causal laws approach [11], fo-
cusing on the computational aspects. They suppose an abstract notion of
completion of an action theory solving the frame problem. Given an action
theory T α containing logical information about α’s direct effects as well as
the indirect effects that may follow, the completion of T α roughly speaking
is the original theory T α amended of logical axioms stating the persistence
of all non-affected (directly nor indirectly) literals.

Their executability problem is to check whether α is executable in
all possible initial states (Zhang et al.’s safety property). This amounts to
testing whether every possible state w has a successor w′ reachable by α

such that w and w′ both satisfy the completion of T α. For instance, still
considering the lamp scenario, the representation of the action theory for
toggle is:

T toggle =



















On
toggle
−→ Off,

Off
toggle
−→ On,

Off −→ ¬On,

On −→ ¬Off



















where the first two formulas are conditional effect laws for toggle, and the
latter two causal laws in McCain and Turner’s sense. We will not dive in the
technical details, and just note that the executability check will return “no”
for this example as toggle cannot be executed in a state satisfying On∧Off.

In the mentioned work, the authors are more concerned with the complex-
ity analysis of the problem of doing such a consistency test and no algorithm
for performing it is given, however. In spite of the fact they have the same
motivation as us, again what is presented is just a kind of “yes-no tool”
which can help in doing a metatheoretical analysis of a given action theory,
and many of the comments concerning Zhang and Chopra’s approach could
be repeated here.
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9 Discussion and conclusion

In the perspective of independently axiomatized multimodal logics that are
not serial we have investigated several criteria of modularity for simple theo-
ries. We have demonstrated the usefulness of modularity in reasoning about
actions, where we have given an algorithmic checking for modularity of a
given action theory.

We can have our criterion of modularity refined by taking into account po-
larity. Let mod±(ϕ) be the set of modalities of MOD occurring in ϕ together
with their polarity. For instance mod±([α1]([α2]p → q)) = {+α1,−α2}.
mod±(T ) is defined accordingly. If M is a set of modalities with polarity
then we define: T M = {ϕ ∈ T : mod±(ϕ) ∩M 6= ∅}.

DEFINITION 16 A theory T is ±-modular if and only if for every formula
ϕ,

T |= ϕ implies T mod±(ϕ) ∪ T ∅ |= ϕ

There are other theories that are modular but not ±-modular, e.g.,

T = {¬[α]p, [α]p ∨ [α]¬p}

Indeed, T |= [α]¬p, but T +α ∪ T ∅ 6|= [α]¬p.
For the restricted case of action theories this has been proved in [4].

Moreover, a monotonic solution to the frame problem has been integrated
there in such an algorithm. This makes the algorithm a bit more complex
as it involves computing prime implicates. For the sake of simplicity this
has not been done here.

With regard to the action theory in Example 5, it can be argued that
unintuitive consequences in action theories are mainly due to badly written
axioms and not to the lack of modularity. True enough, but what we have
presented here is the case that making a domain description modular gives
us a tool to detect at least some of such problems and correct it. (But
note that we do not claim to correct badly written axioms automatically
and once for all). Besides this, having separate entities in the ontology
and controlling their interaction help us to localize where the problems are,
which can be crucial for real world applications.

A topic for further investigations could be considering the notion of co-

herence defined in [8] as a guideline for “repairing” a given theory. Roughly,
given an action theory T and an unintuitive implicit static law A, the for-
mulas in T that are most likely to be revised are exactly those whose utility,
in Kwok et al.’s sense, for deriving A are the highest.
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