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Abstract. In this paper we address the principle of modularity of on-
tologies in description logics. It turns out that with existing accounts
of modularity of ontologies we do not completely avoid unforeseen in-
teractions between module components, and modules designed in those
ways may be as complex as whole theories. We here give a more fine-
grained paradigm for modularizing descriptions. We propose algorithms
that check whether a given terminology is modular and that also help
the designer making it modular, if needed. Completeness, correctness
and termination results are demonstrated for a fragment of ALC. We
also present the properties that ontologies that are modular in our sense
satisfy w.r.t. reasoning services.
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1 Motivation

Imagine an automatic passport control system in an airport such that all passen-
gers must be controlled. Besides other software components, such a system is built
on a passenger ontology. Suppose that the ontology is made up of statements like
“a passenger has a passport”, “EU citizens have EU passports”, and “foreigners
have non-EU passports”. Such a knowledge can be encoded in description logics
like ALC [1] by the following terminological axioms: Passenger � ∃passport.�,
EUcitizen ≡ ∀passport.EU, and Foreigner ≡ ∀passport.¬EU. Moreover, let the ax-
iom DoubleCitizen ≡ Foreigner � EUcitizen define a foreigner that also has got a
second citizenship of some EU country. It is not that hard to see that this de-
scription is consistent. Now, from such an ontology it follows DoubleCitizen ≡
∀passport.⊥, and from this and the axiom Passenger � ∃passport.� we conclude
DoubleCitizen � ¬Passenger, i.e., a person with double citizenship is not a pas-
senger. Hence, if we have the assertion DoubleCitizen(BINLADEN), regarding the
system behavior, this means that the concerned individual does not necessarily
need to be controlled!

Despite the simplicity of such a scenario, problems like this are very likely
to happen, especially if the knowledge base gets huge and hence more difficult
to control. An alternative to ease maintainability of large ontologies is decom-
posing it into modules. Starting with [6], where modularity is assessed in logical
theories in general, this issue has been investigated for ontologies in the recent
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literature on the subject [15, 5]. Nevertheless, it turns out that these methods
for modularizing descriptions, i.e., creating independent partitions of a knowl-
edge base, do not take into account internal interactions of components of the
description that can lead to unintuitive conclusions like the one above, even if
the ontology is consistent. Here we go further and propose a more fine-grained
modularity principle with which we get a decomposition of the ontology so that
interactions between and inside their components are limited and controlled.

Ontologies are usually represented by DL knowledge bases containing multiple
roles R1,R2, . . . Such roles are used to formalize attributes of a concept. Then
we naturally have modularity whenever a given ontology description Σ can be
partitioned into sub-descriptions relative to each role:

Σ = Σ∅ ∪ ΣR1 ∪ ΣR2 ∪ . . .

such that

– Σ∅ contains no role references, and
– the only role of ΣRi is Ri.

We call these sub-descriptions modules (some modules might be empty). Examples
of such modules can easily be found in design of DL ontologies, where each ΣRi

contains axioms involving only the role Ri, and Σ∅ is the sub-description whose
axioms mention no role at all, i.e., contains only boolean combinations of
concepts.

For example, for our passport control system we have the description:

Σpassport =

⎧
⎨

⎩

Passenger � ∃passport.�,
EUcitizen ≡ ∀passport.EU,
Foreigner ≡ ∀passport.¬EU

⎫
⎬

⎭

Σ∅ = {DoubleCitizen ≡ Foreigner � EUcitizen}

Such a description is composed of two sub-descriptions, one for expressing the
attributive part of the theory, Σpassport, and one to formalize the role-free con-
straints of the domain, Σ∅. Σpassport formalizes the restrictions on the attributes
of the concepts of the domain, in this case that a passenger must have a passport,
that an EU citizen has an EU passport, and so on. Σ∅ establishes the boolean
constraint according to which a double citizen is a foreigner and an EU citizen,
with no regard to his attributes.

A similar partitioning of descriptions can be found in reasoning about ac-
tions, where each Σa contains descriptions of the atomic action a in terms of
preconditions and effects, and Σ∅ is the set of static laws (alias domain con-
straints), i.e., those formulas that hold in every possible state of a dynamic
system, and are thus global axioms. Another example is when mental atti-
tudes such as knowledge, beliefs or goals of several independent agents are
represented: then each module Σα contains the respective mental attitudes of
agent α.
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Let Σ denote a description logic ontology and suppose we want to know
whether Σ |=C � D, i.e., whether an axiom C � D follows from the description
in Σ . Then it is natural to expect that we only have to consider those modules
of Σ which concern the alphabet of C � D, more specifically the roles occurring
in C � D. For instance, deductions concerning the role passport should not
involve axioms for role hasDisease; querying the ontology of the passport control
system should not require bothering with that of the fast-food in the airport
hall. This is the problem we address in this paper.

The present work is structured as follows: in Section 2 we recall some logical
definitions that we will use throughout this paper. In Section 3 we present a role-
based decomposition of ontologies, which will serve as guideline for the definition
of modularity in description logics we give in Section 4. We then define a fragment
of ALC for which we have a sound and complete modularity test (Section 5).
Before concluding, we show some of the benefits we get from ontologies that are
modular in our sense (Section 6).

2 Description Logic ALC

Here we briefly present the basic definitions of the description logic ALC. For
more details, see [1].

The basic syntactic building blocks of ALC as of any other description logics
are atomic concepts, atomic roles, and individuals. We call atomic concepts and
atomic roles elementary descriptions. Complex descriptions are built from them
with concept constructors. We use A to denote atomic concepts, R for atomic
roles, and C, D, . . . for complex concept descriptions.

Complex concept descriptions are recursively defined in the following way:

C ::= A | (an atomic concept)
� | (universal concept)
⊥ | (contradiction concept)
¬C | (complement)
C � C | (conjunction)
C 
 C | (disjunction)
∀R.C | (value restriction)
∃R.C | (existential restriction)

where A ranges over atomic concepts, R over atomic roles, and C over complex
concepts. Recalling our running example, the statements Foreigner � EUcitizen,
∃passport.�, ∀passport.EU, and ∀passport.¬EU are complex concepts in ALC.

We use individuals to describe a specific state of affairs in terms of con-
cepts and roles. We use a, b, . . . to denote individuals. In our example, JAN
and POLAND are individuals of which we can assert, respectively, the proper-
ties EUcitizen and EU. The intended meaning of such assertions is that JAN
has EU citizenship and POLAND is a member of the European community.
Individuals and assertions about them allow us to give a description of the
world.
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Definition 1. An interpretation I is a tuple 〈ΔI , ·I〉 such that ΔI is a nonempty
set and ·I a function mapping:

– every concept to a subset of ΔI

– every role to a subset of ΔI × ΔI

– every individual to an element of ΔI

Given an interpretation I = 〈ΔI , ·I〉, ΔI is the interpretation domain, and ·I
the associated interpretation function. If a is an individual name, A an atomic
concept, R an atomic role, and C, D concepts, we have:

aI ∈ ΔI

AI ⊆ ΔI

RI ⊆ ΔI × ΔI

�I = ΔI

⊥I = ∅
(¬C)I = ΔI \ CI

(C � D)I = CI ∩ DI

(C 
 D)I = CI ∪ DI

(∀R.C)I = {a ∈ ΔI : ∀b.(a, b) ∈ RI implies b ∈ CI}
(∃R.C)I = {a ∈ ΔI : ∃b.(a, b) ∈ RI and b ∈ CI}

In ALC we also have terminological axioms (axioms, for short). These are
statements of the form C ≡ D and C � D. Axioms of the first kind are called
concept definitions (alias equalities). Those of the second kind are called concept
inclusion axioms (alias inclusions or subsumptions). If C and D are both complex
concepts, then C � D is called a general concept inclusion axiom (GCI).

An interpretation I satisfies a concept definition C ≡ D (noted |=I C ≡
D) if CI = DI . Intuitively, C ≡ D establishes a definition for concept C in
terms of D. In our example, we have DoubleCitizen ≡ Foreigner � EUcitizen,
which gives both necessary and sufficient conditions to be a person with double
citizenship.

An interpretation I satisfies a subsumption C � D (noted |=I C � D) if
CI ⊆ DI . Intuitively, C � D means that concept C is more specific than
concept D. In our example we have DoubleCitizen � EUcitizen, which says that
a person with double citizenship is a specialization of a European citizen. We
also have Passenger � ∃passport.�, saying that a necessary condition to be a
passenger is having a passport. Concept inclusion axioms are used when one is
not able to completely define a concept: in the last example, a passenger may
have many other properties of which the knowledge engineer was not necessarily
aware when modeling the description.

We call a (finite) set of terminological axioms a terminology, alias TBox. We
denote TBoxes by T . An interpretation I is a model of a TBox T (noted |=I T )
if |=I C � D for all C � D ∈ T . An axiom C � D is a consequence of a TBox T
(noted T |=C � D) if for every interpretation I, |=I T implies |=I C � D.
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Henceforth we can suppose w.l.o.g. that TBoxes are linearized, i.e., T only
contains inclusion axioms (no concept definitions), and see C ≡ D as just as an
abbreviation for C � D and D � C.

A concept assertion is a statement about an individual with respect to some
concept. We denote by C(a) the fact that a belongs to (the interpretation of)
concept C. In our example, the assertion Foreigner(JOHN) says that JOHN is a
non-European citizen, and that all properties a foreigner has (e.g. possessing a
non-EU passport) apply to JOHN as well.

A role assertion establishes a relationship between two individuals. If a, b are
individuals and R is a role name, then R(a, b) asserts that b is a filler of the
role R for a. In our example, the role assertion refund(JOHN, VAT) states that
JOHN can claim the refund of the value added tax when leaving the airport.

An interpretation I satisfies a concept assertion C(a) (noted |=I C(a)) if
aI ∈ CI , and a role assertion R(a, b) (noted |=I R(a, b)) if (aI , bI) ∈ RI .

A (finite) set of concept and role assertions define an ABox. We denote ABoxes
by A. An interpretation I is a model of an ABox A (noted |=I A) if I satisfies
every assertion in A. A concept assertion C(a) (resp. a role assertion R(a, b)) is
a consequence of an ABox A, noted A |=C(a) (resp. A |=R(a, b)), if for every

interpretation I, |=I A implies |=I C(a) (resp. |=I R(a, b)).
A knowledge base is a tuple Σ = 〈T , A〉, where T is a TBox and A an

ABox. An interpretation I is a model of Σ = 〈T , A〉 if |=I T and |=I A. Logical
consequence of an axiom C � D, of a concept assertion C(a) and of a role
assertion R(a, b) from a knowledge base Σ is defined in the standard way.

In the rest of this paper we are going to restrict ourselves only to the TBox
component of knowledge bases.

3 Role-Based Decomposition

Here we give a novel way of decomposing ontologies. Let Roles = {R1,R2, . . .}
be the set of all role names of a domain. Let roles(C � D) return the set of role
names occurring in an axiom C � D. For instance roles(C ≡ ∃R1.D � ∀R2.E) =
{R1,R2}. Moreover, for a TBox T , let roles(T ) =

⋃
C�D∈T roles(C � D).

With that we define a role-based classification of axioms.

Definition 2. A boolean axiom is an axiom C � D such that roles(C � D) = ∅.
If roles(C � D) �= ∅, C � D is a non-boolean axiom.

If R ⊆ Roles, R �= ∅, then we define

T R = {C � D ∈ T : roles(C � D) ∩ R �= ∅}

Hence, T R contains all non-boolean axioms of the terminology T whose roles
appear in R. For R = ∅, T ∅ = {C � D ∈ T : roles(C � D) = ∅} is the set of
all boolean axioms of a knowledge base.
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For example, if

T =

⎧
⎪⎨

⎪⎩

Passenger � ∃passport.�, EUcitizen ≡ ∀passport.EU,

Foreigner ≡ ∀passport.¬EU, Foreigner � ∃refund.Tax,

DoubleCitizen ≡ Foreigner � EUcitizen

⎫
⎪⎬

⎪⎭

then we have
T {refund} = {Foreigner � ∃refund.Tax}

and
T ∅ = {DoubleCitizen ≡ Foreigner � EUcitizen}

For parsimony’s sake, we write T R instead of T {R}.
Given these fundamental concepts, we are able to formally define modularity

for ontologies in description logics.

4 Modular TBoxes

We can suppose from now on that T is partitioned, in the sense that {T ∅} ∪
{T Ri : Ri ∈ Roles} is a partition1 of T . We thus exclude T Ri containing more
than one role name, which means that complex concepts with nested roles are
not allowed. We thus make it a hypothesis:

{T ∅} ∪ {T Ri : Ri ∈ Roles} partitions T (H)

We are interested in the following principle of modularity:

Definition 3. A terminology T is modular if and only if for every C � D,

T |=C � D implies T roles(C�D) ∪ T ∅ |=C � D.

Modularity means that when investigating whether C � D is a consequence
of T , the only axioms in T that are relevant are those whose role names occur
in C � D and the boolean axioms in T ∅.

This is reminiscent of interpolation [4], which for the case of roles says:

Definition 4. A terminology T has the interpolation property if and only if for
every axiom C � D, if T |=C � D, then there is a terminology TC�D such that

– roles(TC�D) ⊆ roles(T ) ∩ roles(C � D)
– T |=C′ � D′ for every C′ � D′ ∈ TC�D

– TC�D |=C � D

1 Remembering, {T ∅} ∪ {T Ri : Ri ∈ Roles} partitions T if and only if T = T ∅ ∪
⋃

Ri∈Roles T Ri , and T ∅ ∩ T Ri = ∅, and T Ri ∩ T Rj = ∅, if i �= j. Note that T ∅ and
T Ri might be empty.
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Our definition of modularity is a strengthening of interpolation because it re-
quires TC�D to be a subset of T .

Contrary to interpolation however, modularity does not generally hold. Clearly
if the Hypothesis (H) is not satisfied, then modularity fails. To witness, consider

T = {C ≡ ∀R1.∀R2.C
′, ∀R1.∀R2.C

′ ≡ D}

Then T |=C ≡ D, but T ∅ �|=C ≡ D.
Nevertheless even under our hypothesis modularity may fail to hold. For ex-

ample, let
T = {C 
 ∀R.⊥ ≡ �, C 
 ∃R.� ≡ �}

Then T ∅ = ∅, and T R = T . Now T |=C, but clearly T ∅ �|=C.
How can we know whether a given TBox T is modular? The following criterion

is simpler:

Definition 5. A terminology T is boolean-modular if and only if for every
boolean axiom C � D,

T |=C � D implies T ∅ |=C � D.

With that we guarantee modularity:

Theorem 1 ([12]). Let T be a partitioned terminology. If T is boolean-modular,
then T is modular.

In the rest of the paper we investigate how it can be automatically checked
whether a given terminology T is modular and how to make it modular, if
needed. We do this for a version of ALC with a restriction on the form of the
axioms we can state in a TBox.

5 Soundness and Completeness for a Fragment of ALC

Definition 6. A concept C is a boolean concept if roles(C) = ∅.

We here make a syntactical restriction on the form of non-boolean axioms in our
TBoxes.

Definition 7. If C is a boolean concept, then ∀R.C is a boolean value restric-
tion, and ∃R.C is a boolean existential restriction.

In this section we suppose that:

All value/existential restrictions in a knowledge base
are boolean value/existential restrictions. (H2)

Our fragment differs from ALC just in the sense that only boolean concepts
are allowed in the scope of a quantification over a role. We observe however
that we could allow for axioms with nested roles like C ≡ ∀R1.∀R2.D and GCIs
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like ∀R3.E � ∀R4.F . For that it would suffice to adapt an existing technique
of subformula renaming [17] in the literature on classical logic [14, 2, 3] to recur-
sively replace complex concepts with some new concepts, stating definitions for
these as global axioms. For instance, C ≡ ∀R1.∀R2.D should then be rewrit-
ten as C ≡ ∀R1.C

′ and C′ ≡ ∀R2.D, and ∀R3.E � ∀R4.F could be replaced
by E′ � ∀R4.F and E′ ≡ ∀R4.E, where C′, E′ are new concept names. It is
known that subformula renaming is satisfiability preserving and can be com-
puted in polynomial time [13]. However it remains to assess the impact the
introduction of new concept names can have on the intuition about the original
ontology.

Our central hypothesis here is that the different types of axioms in a given
terminology should be neatly separated and only interfere in one sense: boolean
axioms together with non-boolean axioms for role R may have consequences
that do not follow from the non-boolean axioms for R alone. The other way
round, non-boolean axioms should not allow to infer new boolean axioms. That
is what we expect modularity of TBoxes to establish and we develop it in the
sequel.

Definition 8. A boolean inclusion axiom C � D is an implicit boolean inclusion
axiom of a terminology T if and only if T |=C � D and T ∅ �|=C � D.

In our running example, DoubleCitizen � ¬Passenger is an example of an implicit
boolean inclusion axiom.

With Algorithm 1 below we can check whether a TBox has such implicit ax-
ioms. The idea is as follows: for each pair of axioms C � ∃R.D and E � ∀R.F
in T such that F conflicts with D, i.e., T |= D � F � ⊥, if T ∅ ∪ {C � E} is
satisfiable and T ∅ �|=C � ¬E, mark C � ¬E as an implicit boolean inclusion
axiom.

Algorithm 1. Deciding existence of implicit boolean inclusion axioms
input: a TBox T
output: a set of implicit boolean inclusion axioms T ∅

imp

T ∅
imp:= ∅

for all R ∈ Roles do
for all {C1 � ∃R.D1, . . . , Cn � ∃R.Dn} ⊆ T do

for all {E1 � ∀R.F1, . . . , Em � ∀R.Fm} ⊆ T do

if T ∅ �|=
�

1≤i≤n Ci �
�

1≤j≤m Ei � ⊥ and
T ∅ |=

�
1≤i≤n Di �

�
1≤j≤m Fi � ⊥ then

T ∅
imp:= T ∅

imp ∪ {
�

1≤i≤n Ci �
⊔

1≤j≤m ¬Ei}

Theorem 2. Algorithm 1 terminates.

Proof. Straightforward from finiteness of T .
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Lemma 1. Let T ∅
imp* be the output of Algorithm 2 on input T . Then every

C � D ∈ T ∅
imp is an implicit boolean inclusion axiom of T .

Converse of Lemma 1 does not hold. Indeed, consider the quite simple TBox:

T =

⎧
⎨

⎩

Cn � ⊥,
Ci−1 � ∀R.Ci, 1 ≤ i ≤ n,

� � ∃R.�

⎫
⎬

⎭

Thus, T |= Ci � ⊥, for 0 ≤ i ≤ n, but running Algorithm 1 returns only
T ∅
imp = {Cn−1 � ⊥}. This suggests that it is necessary to iterate the algorithm

in order to find all implicit boolean inclusion axioms. Before doing that we
observe that:

Theorem 3. A terminology T is modular if and only if T ∅
imp = ∅.

Considering the example just above, we can see that running Algorithm 1 on
T ∪ {Cn−1 � ⊥} will give us T ∅

imp = {Cn−2 � ⊥}. This means that some of the
implicit boolean inclusion axioms of a terminology may be needed in order to
derive others. Hence, Algorithm 1 must be iterated to get T modular. This is
achieved with the following algorithm, which iteratively feeds the set of boolean
axioms considered into the if-test of Algorithm 1:

Algorithm 2. Finding all implicit boolean inclusion axioms

input: a TBox T
output: T ∅

imp*, the set of all implicit boolean inclusion axioms of T

T ∅
imp*:= ∅

repeat
T ∅
imp:= find imp bia(T ∪ T ∅

imp*) {a call to Algorithm 1}
T ∅
imp*:= T ∅

imp* ∪ T ∅
imp

until T ∅
imp = ∅

Theorem 4. Algorithm 2 terminates.

Theorem 5. Let T ∅
imp* be the output of Algorithm 2 on input T . Then

1. T ∪ {T ∅
imp*} is modular;

2. T |=
�

{T ∅
imp*}.

Corollary 1. For all boolean inclusion axioms C � D, T |=C � D if and only
if T ∪ {T ∅

imp*} |=C � D.
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This establishes that Algorithm 2 finds all implicit boolean inclusion axioms of
a given terminology T . Hence, adding such axioms to the original set of boolean
axioms T ∅ guarantees modularity of T .

We want to point out, however, that the algorithm only catches implicit
boolean inclusion axioms. Deciding whether they are intuitive remains the knowl-
edge engineer’s task, and only she can carry out changes in the knowledge base
in order to accommodate them in or discard them from the description. In our
running example, the inclusion DoubleCitizen � ¬Passenger is not intuitive and
should then be contracted from the terminology.

Algorithms 1 and 2 are generalizations/extensions of the method for PDL
given in [12] where (in terms of description logics) only existential restrictions
of the form C � ∃R.� were allowed.

6 The Role of Modularity in Reasoning Services

The following result is important in the ontology building phase:

Theorem 6. Let T and C � D be such that T �|=� � ⊥. If T is modular, then
T ∪ {C � D} |=� � ⊥ if and only if T ∅ ∪ T roles(C�D) ∪ {C � D} |=� � ⊥.

This theorem says that under modularity consistency of a new learned axiom
C � D w.r.t. a consistent TBox reduces to consistency check of the axioms that
are relevant to C � D.

Theorem 7. If T is modular, then T |=� � ⊥ if and only if T ∅ |=� � ⊥.

Hence, if there are no implicit boolean inclusion axioms, then consistency of the
whole terminology can be checked by just checking consistency of T ∅.

It turns out that checking whether a concept C is the least common sub-
sumer (lcs) of a set of concepts, i.e., the minimal concept that subsumes all
other concepts in question [1], is also optimized under modularity:

Theorem 8. Let Γ be a set of concepts. If T is modular, then C is the lcs of
Γ w.r.t. T if and only if C is the lcs of Γ w.r.t. T ∅ ∪ T roles(C).

For T a TBox, we define T R
∀ = {C � ∀R.D : C � ∀R.D ∈ T }, i.e., T R

∀ contains
all non-boolean axioms in the TBox T with value restrictions for role R.

Theorem 9. If T is modular, then

T |=C � ∀R.D if and only if T ∅ ∪ T R
∀ |=C � ∀R.D.

This means that under our modularity principle we have modularity inside the
module for non-boolean axioms, too: when deducing an axiom with value re-
strictions we do not need to consider axioms with existential restrictions.

The existential restriction counterpart of Theorem 9, however, does not hold.
To witness, from the modular description {∀R.C
D, ∃R.¬C} we conclude ∃R.D,
but {∃R.¬C} �|=∃R.D. Nevertheless, we can establish a result if only the universal
concept (�) is allowed in the scope of existential restrictions. For that we define
T R
∃ = {C � ∃R.� : C � ∃R.� ∈ T }.
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Theorem 10. If T is modular, then

T |=C � ∃R.� if and only if T ∅ ∪ T R
∃ |=C � ∃R.�.

Let T R1,...,Rn

∀ =
⋃

1≤i≤n T Ri

∀ . The following theorem shows that under modular-
ity deduction of an axiom based on nested value restrictions does not need the
axioms based on existential restrictions:

Theorem 11. If T is modular, then T |= C � ∀R1 . . .∀Rn.D if and only if
T ∅ ∪ T R1,...,Rn

∀ |=C � ∀R.D.

The same result holds for deductions of axioms based on existential restrictions
under the assumption that only � is allowed in the scope of ∃. Let T R1,...,Rn

∃ =
⋃

1≤i≤n T Ri

∃ .

Theorem 12. If T is modular, then T |= C � ∃R1 . . . ∃Rn.� if and only if
T ∅ ∪ T R1,...,Rn

∃ |=C � ∃R.�.

7 Concluding Remarks

We defined here a modularity paradigm for ontologies in description logics and
pointed out some of the problems that arise if it is not satisfied, even if the
ontology is consistent. In particular we have argued that the boolean part of a
description could influence but should not be influenced by the role-based one.

We have seen that the presence of implicit boolean inclusion axioms is a
sign that we possibly have slipped up in designing the ontology in question. We
showed how to detect this problem in a fragment of ALC with a syntactical
restriction on its formulas. With Algorithm 2 we have a sound and complete
decision procedure for such a task. Moreover, the output of the algorithm gives
us guidelines that can help correcting the ontology.

We could also use full ALC, in this case our method is sound but not complete.
As an example, let T = {C ≡ ∀R1.∀R2.D, C′ ≡ ∀R1.∃R2.¬D, � ≡ ∃R1.�}. We
have T |=C � ¬C′, but running Algorithm 2 on T gives T ∅

imp* = ∅.
It could be argued that unintuitive consequences in ontologies are mainly due

to badly written axioms and not to lack of modularity. True enough, but what
we presented here is the case that making an ontology modular gives us a tool
to detect some of such problems and correct it. (But note that we do not claim
to correct badly written axioms automatically and once for all.) Besides this,
having separate entities in the ontology and controlling their interaction help us
to localize where the problems are, which is crucial for real world applications.

As our theorems show (proofs were omitted due to lack of space), being mod-
ular is a useful feature of terminologies w.r.t. reasoning: beyond being a reason-
able principle of design that helps structuring data, it clearly restricts the search
space, and thus makes reasoning easier.

The first work on formalizing modularity in logical systems in general seems to
be due to Garson [6]. Modularity of theories in reasoning about actions was orig-
inally defined in [10] and extensively developed in [12, 9]. A different viewpoint
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of that can be found in [11], where modularity of action theories is assessed from
a more software engineering oriented perspective. The present work has been
inspired by ideas in the referred approaches. Following [6], a modularization
technique for ontologies in DL different from ours is addressed in [5].

Our notion of modularity is related to uniform interpolation for TBoxes [7].
Let concepts(T ) denote the concept names occurring in a TBox T . Given T
and a signature S ⊆ concepts(T ) ∪ roles(T ), a TBox T S over (concepts(T ) ∪
roles(T )) \ S is a uniform interpolant of T outside S if and only if:

– T |=T S ;
– T S |=C � D for every C � D that has no occurrences of symbols from S.

It is not difficult to see that a partition {T ∅} ∪ {T Ri : Ri ∈ Roles} is modular
if and only if every T Ri is a uniform interpolant of T outside roles(T ) \ {Ri}.
In [16] there are complexity results for computing uniform interpolants in ALC.

In [7] a notion of conservative extension is defined that is similar to our
modularity. There, T1 ∪ T2 is a conservative extension of T1 if and only if for
all concepts C, D built from concepts(T1) ∪ roles(T1), T1 ∪ T2 |=C � D implies
T1 |=C � D.

Given our Theorem 1, we can show that checking for modularity can be
reduced to checking for conservative extensions of T ∅. Indeed, supposing that
the signature of T ∅ is the set of all concept names, we have that T is modular
if and only if for every role Ri, T Ri ∪ T ∅ is a conservative extension of T ∅.

We plan to pursue further work on extensions of our method to more ex-
pressive description logics. Another extension that we foresee is generalizing
modularity to also take into account ABoxes. In this case our algorithms should
be adapted so that implicit interactions between terminologies and assertions
can be caught.

Because interactions between TBoxes and ABoxes may lead to inconsistency,
ontology update and revision should be considered, too. We are currently in-
vestigating update of terminologies based on the method given in [8], for which
satisfaction of modularity shows to be fruitful.
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