
Domain descriptions should be modular
(preliminary report)

Andreas Herzig Ivan Varzinczak∗

Institut de Recherche en Informatique de Toulouse
F-31062 Toulouse Cedex 04, France
mailto:{herzig,ivan}@irit.fr

Abstract In this work we address the problem of what a good domain description

for reasoning about actions should look like. We establish some postulates concerning

this sore spot and point out the problems that arise when they are violated. Such

problems can be overcome with the algorithms we propose.

Keywords: Reasoning about actions, domain description, modularity.

1 Introduction

A lot of logical frameworks for reasoning about actions exist. In all of them
some domain is described by means of logical formulas, of which several types
can be distinguished, such as domain constraints and effect laws.

Usually, consistency of a domain description (alias action theory) is identi-
fied with the existence of a model for it. We here have a closer look at that
issue, and formulate some postulates expressing that the different entities of
domain descriptions should be arranged in a modular way, such that interac-
tions between them are limited and controlled. We first give some intuitive
justifications, pointing out that none of the main existing accounts of actions
satisfies all these postulates. In order to get around this, we give algorithms
that allow to check whether a given domain description satisfies the postulates,
and aid in its generation or correction.

Throughout this work we use a weak version of dynamic logic [6], but our
notions and results can be applied to other frameworks as well.

This paper is organized as follows: in Section 2 we define the different types
of laws commonly used in the field, establishing the ontology the rest of this
work is about. After stating our set of postulates (Section 3), we study each of
them in Sections 4–6. In Section 7 we discuss possible strengthenings of them.
We assess related work in Section 8 and finally give some conclusions.

∗Supported by a fellowship from the government of the Federative Republic of Brazil.
Grant: CAPES BEX 1389/01-7.

2 Domain descriptions and inference

Every domain description contains a representation of action effects. We call
effect laws formulas relating an action to its effects. Statements of conditions
under which an action cannot be executed are called inexecutability laws. Ex-

ecutability laws in turn stipulate the context where an action is guaranteed to
be executable. Finally, static laws are formulas that do not mention actions
and express constraints that must hold in every possible state. These are our
four ingredients that we introduce more formally in the sequel.

2.1 Static laws

Frameworks which allow for indirect effects make use of logical formulas that
link invariant propositions about the world. Such formulas do not refer to
actions and are supposed to characterize the set of possible states.

Definition 2.1 A static law is a logical formula of classical propositional
logic.1

An example of a static law is Walking → Alive , expressing the fact that if
some turkey is walking then it must be alive [14].

We here use the syntax of propositional logic, but all we shall say applies
as well to first-order frameworks, in particular to the Situation Calculus [12].
Propositional formulas are noted A, B, C and so forth, and the set of all propo-
sitional formulas PFOR. Hence we do not consider here causality statements
linking propositions as used e.g. in the approaches of Lin [9], McCain and
Turner [10], or Giordano et al. [5].

S ⊆ PFOR denotes the set of all static laws of a given domain.

2.2 Effect laws

By nature, logical frameworks for reasoning about actions contain expressions
linking actions and their effects. We suppose that such effects might be condi-
tional, and thus get a third component.

Let us denote actions by α, β, and so forth, and the set of all possible
actions of a given domain by ACT. From now on, we will use the syntax of
propositional dynamic logic (PDL) [6]. [α]A is read as “after the execution of
action α, the formula A is true”.

Definition 2.2 An effect law is of the form A → [α]C, where α ∈ ACT ,
A, C ∈ PFOR, and A and C are both consistent.

1Static laws are often called domain constraints, but we prefer not to use that term here
because it would also apply to the different laws for actions that we shall introduce in the
sequence.

The antecedent A is a condition and the consequent C is the effect which
obtains when α is executed in a state where the condition holds.2

An example of effect law is [tease]Walking , expressing that in every possi-
ble situation, after teasing the turkey it starts walking. Another example is
Loaded → [shoot]¬Alive : whenever the gun is loaded then the result of the
shoot action is that the turkey is dead.

The consistency requirements for both the condition and effect make sense:
if A is inconsistent then the effect law is superfluous. If C is inconsistent then
we have an inexecutability law, that we consider to be a separate entity.

E(α) = {A → [α]C : A, C ∈ PFOR} is the set of all effect laws concerning
a given action α, and E =

⋃

α∈ACT E(α) denotes the set of all effect laws.

2.3 Inexecutability laws

We can also state laws expressing that an action cannot be executed at all in
the presence of some condition A. This can be done by stating that the effect
of executing α is ⊥ in every situation where A holds.

Definition 2.3 An inexecutability law is of the form A → [α]⊥, where A ∈
PFOR is classically consistent.

For example ¬HasGun → [shoot]⊥ expresses that shoot is inexecutable if
one does not have a gun.

This kind of law is not distinguished from effect laws in the literature.
Nevertheless, opting for a separate entity allows us to avoid mixing things that
are conceptually different: an inexecutability law links an antecedent A and an
action α, while an effect law mainly links an action and a consequent C.

We denote the set of all inexecutability laws for α by I(α). I =
⋃

α∈ACT I(α)
is the set of all inexecutability laws.

2.4 Executability laws

With only static and effect laws one cannot express the conditions under which
executability of an action is guaranteed. In dynamic logic we use the dual 〈α〉A
defined as ¬[α]¬A as a means to express executability. 〈α〉> thus reads “the
execution of action α is possible”.

Definition 2.4 An executability law is of the form A → 〈α〉> where α ∈ ACT

and A ∈ PFOR is classically consistent.

An executability law describes a condition under which α is executable. For
instance 〈tease〉> expresses that the turkey can always be teased. HasGun →
〈shoot〉> formalizes that the action of shooting the turkey can be executed
whenever one has a gun.

2Effect laws are often called action laws, but we prefer not to use that term here because
it would also apply to executability laws that are to be introduced in the sequel.

Whereas all the extant approaches in the literature that allow for indirect
effects of actions contain static and effect laws, the status of executability laws
is less consensual: in some approaches [13, 3, 10, 11, 15] it is more or less
tacitly considered that they should not be made explicit, but rather inferred
by the reasoning mechanism. On the other hand, in several approaches [9, 17]
executability laws are first class objects that one can reason about. It seems
to us a matter of debate whether one can always do without executability
laws. We think that there are many domains where one wants to explicitly
state under which conditions a given action is guaranteed to be executable.
This holds in particular when we want to express constraints such as that a
robot should never get stuck, i.e., it should always be able to execute a move
action, or that it should always be able to get home. In any case, allowing for
executability laws gives us more flexibility and expressive power.

Most of the approaches that allow for executability laws (most prominently
Reiter’s) do it in form of biconditionals like 〈α〉> ↔ A. As this is equivalent
to ¬A ↔ [α]⊥, it means that information about inexecutability is merged
with that about executability. Appealing to modularity, we propose here to
decompose such laws into two sets.

We will denote the set of executability laws by X .

2.5 Dynamic logic and the frame problem

Henceforth we will consider that domain descriptions are tuples of the form
〈S, E ,X , I〉, where S, E ,X and I are as defined above. What follows from such
a domain description? To this end we now formally define dynamic logic, and
show how the frame problem can be solved by extending PDL with dependence
relations.

We use P1, P2, . . . for propositional constants. L1, L2, . . . denote literals,
and Φ, Ψ, . . . denote formulas. If L = ¬P then we shall identify ¬L with
P . We recall that A, B, . . . denote classical propositional formulas (without
occurrences of action symbols).

A model for an action description in such a language is a triple M =
〈W, R, I〉 where W is a set of possible worlds, R is a function mapping ac-
tion constants to binary relations on W , and I is an interpretation function
mapping propositional constants to subsets of W .

For a given PDL-model M = 〈W, R, I〉, w |=M [α]Φ if for every w′ such that
wR(α)w′, w′ |=M Φ. We say that a formula Φ is a consequence of the set of
global axioms Γ in the class of all PDL-models (noted Γ |=PDL Φ) if and only if
for every PDL-model M , if |=M Φi for every Φi ∈ Γ, then |=M Φ.

As expected, PDL alone does not solve the frame problem. For instance,
if 〈S, E ,X , I〉 describes our shooting domain then S, E ,X , I 6|=PDL HasGun →
[load]HasGun. Therefore its deductive power has to be augmented in order to
ensure that the relevant frame axioms follow. The presence of static constraints
makes that this is a delicate task, and starting with [9, 10], several approaches
in the literature have argued that some notion of causality is needed. We here

opt for the dependence based approach presented in [1], where dependence
information has been added to PDL. α L denotes that the execution of
action α may change the truth value of the literal L. In our running example
we have

 = {〈shoot ,¬Loaded 〉, 〈shoot ,¬Alive〉, 〈shoot ,¬Walking〉, 〈tease ,Walking〉}

Hence shoot 6 HasGun, i.e., HasGun is never caused by shoot.
A given dependence relation defines a class of possible worlds models

M : every M ∈ M must satisfy that whenever wR(α)w′ then

• α 6 P and w 6∈ I(P) implies w′ 6∈ I(P);

• α 6 ¬P and w ∈ I(P) implies w′ ∈ I(P).

The associated consequence relation is noted |= . Then we indeed obtain
for our example S, E ,X , I |= HasGun → [load]HasGun. We have shown
in [2] how Reiter’s solution to the frame problem translates to this PDL variant
in a straightforward way.

3 Postulates

When does a given domain description have a model? We claim that the ap-
proaches that are put forward in the literature are too liberal to such an extent
that there are satisfiable domain descriptions that are intuitively incorrect.

Our central hypothesis is that the different types of laws should be neatly
separated, and should only interfere in one sense: static laws allow to infer new
effects that do not follow from the effect laws alone. The other way round,
effect laws should not allow to infer new static laws.

We put forward the following postulates:

P0. Logical consistency:
S, E ,X , I 6|= ⊥

A domain description in dynamic logic should be logically consistent. Postu-
late P0 is obvious.

P1. No implicit executability laws:

if S, E ,X , I |= A → 〈α〉>, then S,X |=PDL A → 〈α〉>

If an executability law can be inferred from a given domain description, then it
should already “be” in X , in the sense that it should also be inferable in PDL

from the set of executability and static laws alone.

P2. No implicit inexecutability laws:

if S, E ,X , I |= A → [α]⊥, then S, I |=PDL A → [α]⊥

If an inexecutability law can be inferred from the domain description under
consideration then it should be inferable in PDL from the set of static and
inexecutability laws alone.

P3. No implicit static laws:

if S, E ,X , I |= A, then S |=PDL A

If a static law can be inferred from a domain description then it should be
inferable in PDL (and even in classical logic) from the set of static laws alone.

In most of the approaches of the literature Postulates P2 and P3 are not
satisfied. Therefore, in the subsequent sections we discuss each of them by
means of examples, and give algorithms to decide whether they are satisfied by
a given domain description.

Before that, we just give another postulate about executability laws:

P4. Maximal executability laws:

if S, E ,X , I 6|= A → [α]⊥, then S,X |=PDL A → 〈α〉>

This expresses that if no inexecutability for a given action under condition A

can be inferred, then its executability under the same condition follows from the
executability and static laws. Postulate P4 holds in nonmonotonic frameworks,
and we will show that it can easily be ensured in monotonic approaches such
as ours by maximizing X .

4 No implicit inexecutability laws

Consider the following domain description:

S1 = {Walking → Alive}

E1 =

{

[tease]Walking ,

Loaded → [shoot]¬Alive

}

X1 = I1 = ∅

For the time being executability laws are irrelevant and we focus on inex-
ecutability ones: from [tease]Walking it somewhat surprisingly follows with
S1 that [tease]Alive , i.e., in every situation, after teasing the turkey is alive:
S1, E1 |=PDL [tease]Alive .

Now if we have a correct solution to the frame problem, then we should have
that S1, E1 |= ¬Alive → [tease]¬Alive i.e., the status of Alive is not modified
by the tease action. This is ensured here by not containing 〈tease ,Alive〉.
From the above, it follows S1, E1,X1I1 |= ¬Alive → [tease]⊥, i.e., the turkey
cannot be teased if it is dead. But S1, I1 6|=PDL ¬Alive → [tease]⊥, hence
Postulate P2 is violated. The formula ¬Alive → [tease]⊥ is an example of
what we call an implicit inexecutability law.

In the literature, such laws are also known as implicit qualifications [4], and
it has been argued that it is a positive feature of reasoning about actions frame-
works to let them implicit and provide mechanisms for inferring them [9, 15].
The other way round, one might argue as well that such implicit qualifications
indicate that the domain has not been described in an adequate manner: in-
executability laws have a form that is simpler than that of effect laws, and it
might be reasonably expected that it is easier than for the latter to exhaustively
describe them. (Note that nevertheless this is not related to the qualification
problem, which basically says that it is difficult to state all the executability
laws of a domain.) Thus, in order to be abide by the Postulate P2, a given
domain description should not allow the derivability of implicit inexecutability
laws, and all the inexecutabilities for a given action in the domain description
should be explicitly stated.

Postulate P2 can be checked with the aid of the below algorithm. It uses a
function NewConsA(B) which given two formulas A and B computes the set
of strongest clauses that follow from A ∧ B, but do not follow from A alone
(cf. e.g. [7]). It is known that NewConsA(B) can be computed by subtracting
the prime implicates of A from those of A ∧ B. For example, the set of prime
implicates of P is just {P}, the set of prime implicates of P ∧ (¬P ∨Q)∧ (¬P ∨
R∨T) is {P, Q, R∨T}, hence NewConsP ((¬P ∨Q)∧(¬P ∨R∨T)) = {Q, R∨T}.

Algorithm 4.1 (Finding implicit inexecutability laws)

input: S, E , I and .

output: a set of implicit inexecutability laws II .

begin

II:= ∅

forall α ∈ ACT

let E(α):= {Ai → [α]Ci : 1 ≤ i ≤ n}

forall J ⊆ {1, . . . , n}

let AJ:=
∧

j∈J Aj and CJ:=
∧

j∈J Cj

if S ∪ {AJ} is classically consistent then

let ∆:= NewConsS(CJ)

forall L1 ∨ . . . ∨ Lm ∈ ∆

if α 6 Li for every i and

S, I 6|=PDL (AJ ∧ ¬L1 ∧ . . . ∧ ¬Lm) → [α]⊥ then

II:= II ∪ { (AJ ∧ ¬L1 ∧ . . . ∧ ¬Lm) → [α]⊥}

end

Example 4.1 Consider S1, E1, I1 and D as given above. Then Algorithm 4.1
returns II = {¬Alive → [tease]⊥}.

Theorem 4.1 〈S, E ,X , I〉 satisfies Postulate P2 if and only if II = ∅.

Given a way of finding what is going wrong with an action theory, we are
also concerned about how to “repair” it. Still considering Example 4.1, given
the output II = {¬Alive → [tease]⊥} produced by Algorithm 4.1, we have
three possibilities: 1) let I1 = I1 ∪ II , i.e., explicitly state all implicit inexe-
cutabilities; 2) add the dependence 〈tease ,Alive〉 to (which, in this case, is
not intuitive); or 3) weaken the law [tease]Walking by Alive → [tease]Walking .
It is easy to see that whatever of these alternatives we opt for, the resulting
domain description will satisfy Postulate P2.

Now we turn to another type of implicit laws.

5 No implicit static laws

Whereas executability laws increase expressive power, however, complexity of
the framework increases, too: executability laws might conflict with inexe-
cutability laws or even with static and effect laws, while this is not the case in
frameworks based on static and effect axioms only (where executability laws
are obtained by maximization), there are no implicit static laws. For instance,
let S2 = S1, E2 = E1, X2 = {〈tease〉>}, and I2 = {¬Alive → [tease]⊥}. First
note that 〈S2, E2,X2, I2〉 satisfies Postulate P2. In PDL (and a fortiori in our
dependence based variant, and more generally in all logics of action where ex-
ecutability laws can be expressed) this entails the static law Alive , i.e., the
turkey is immortal. Our example illustrates that sometimes from a given do-
main description new static laws can be inferred that were not provable from
the static laws alone. We call these implicit static laws.

The existence of implicit static laws in a domain description may indicate
an incorrect specification of executability laws: in the previous example, we
derived an implicit static law because we wrongly assumed that action tease

is always executable. It may also indicate an incomplete formalization of the
static laws (see below for an example).

How can we find out whether there are implicit static laws? We here assume
that Postulate P2 is satisfied. Then the algorithm below does the job.

Algorithm 5.1 (Finding implicit static laws)

input: S,X , I.

output: a set of implicit static laws SI .

begin

SI:= ∅

forall α ∈ ACT

forall A → [α]⊥ ∈ I and A′ → 〈α〉> ∈ X

if S 6|=PDL ¬(A ∧ A′) then

SI:= SI ∪ {¬(A ∧ A′)}

end

Example 5.1 Algorithm 5.1 applied to the domain description 〈S2, E2,X2, I2〉
will output, as expected, the unintended but implicit static law Alive, i.e., the
agent never dies.

Example 5.2 Suppose a domain with a lamp that can be turned on and off
by toggling a switch. Suppose also that the following domain description of
such a scenario has been given:

S3 = ∅

E3 =

{

On → [toggle]¬On ,

Off → [toggle]On

}

X3 = {〈toggle〉>}

I3 = {(On ∧ Off) → [toggle]⊥}

together with the dependence relation = {〈toggle ,On〉, 〈toggle ,Off 〉}. This
satisfies Postulate P2. Applying Algorithm 5.1 to this action theory gives us
the implicit static law ¬(On ∧ Off), i.e., the light cannot be on and off at the
same time.

Theorem 5.1 Suppose 〈S, E ,X , I〉 satisfies P2. Then Postulate P3 is satisfied
if and only if SI = ∅.

Once having derived all implicit static laws, what can we do with them?
Examples 5.1 and 5.2 illustrate that we may obtain both “good” and “bad”
implicit static laws. Whereas in the latter the implicit static law should be
added to S, in the former the implicit static law is due to an executability law
that is too strong, and is thus unintuitive.

6 Maximal executability laws

As we have seen, implicit static laws might be due to executability laws that
are too strong. It is perhaps for that reason that in many approaches there
are no such laws, and they are inferred a posteriori by some nonmonotonic
mechanism. In this section we show how such a maximization can be done in a
straightforward way to find all the executability laws that can be consistently
added to a given domain description.

Algorithm 6.1 (Finding implicit executability laws)

input: S,X , I.

output: a set of implicit executability laws X I .

begin

X I:= ∅

forall α ∈ ACT

A(α):=
∨

{j:Aj→[α]⊥∈I(α)} Aj

if S,X 6|=PDL ¬A(α) → 〈α〉> then

X I:= X I ∪ {¬A(α) → 〈α〉>}.

end

Example 6.1 Suppose that S4 = {Walking → Alive}, X4 = ∅ and I4 =
{¬Alive → [tease]⊥}. Then Algorithm 6.1 yields X I = {Alive → 〈tease〉>}.

Theorem 6.1 Suppose 〈S, E ,X , I〉 satisfies P2 and P3. X I = ∅ if and only if
Postulate P4 is satisfied.

What Theorem 6.1 says is that it suffices to take the “complement” of I,
I = {¬(A1 ∧ . . . ∧ A|I(α)|) → 〈α〉> : Ai → [α]⊥ ∈ I(α), 1 ≤ i ≤ |I(α)|},
to obtain all the executability laws of the domain. Note that this counts as
a solution to the qualification problem, in the sense that all preconditions for
guaranteeing executability of actions are known.

For our running example, letting X4:= X4 ∪ X I establishes maximal exe-
cutability for such an action theory.

7 Discussion: can we ask for more?

One question that could be raised is: can our postulates be improved, i.e., can
we be more restrictive?

Let’s suppose we want our domain descriptions not to allow for the deduc-
tion of new effect laws. In this case, we should state the following additional
postulate:

P5. No implicit effect laws:

if S, E ,X , I |= A → [α]C and S, E ,X , I 6|= A → [α]⊥,

then S, E |= A → [α]C

In other words, if an effect law can be inferred from a domain description and
no inexecutability law for the same action in the same context can be derived,
then it should be inferable from the set of static and effect laws alone.

At first glance, this sounds reasonable. However, consider the following
intuitively correct domain description, which satisfies Postulates P1, P2, P3,
and P4, but does not satisfy P5:

S5 = ∅

E5 =

{

Loaded → [shoot]¬Alive ,

(¬Loaded ∧ Alive) → [shoot]Alive

}

X5 = {HasGun → 〈shoot〉>}

I5 = {¬HasGun → [shoot]⊥}

together with the dependence relation of Example 4.1. Indeed, we have

S5, E5,X5, I5 |= ¬HasGun ∨ Loaded → [shoot]¬Alive

and
S5, E5,X5, I5 6|= ¬HasGun ∨ Loaded → [shoot]⊥,

but
S5, E5 6|= ¬HasGun ∨ Loaded → [shoot]¬Alive .

So, Postulate P5 would not help us to deliver the goods.
Another though obvious possibility of amending our modularity criteria

could be by stating the following postulate:

P6. No unattainable effects:

if A → [α]C ∈ E then S, E ,X , I 6|= A → [α]⊥

This expresses that if we have explicitly stated an effect law for a given ac-
tion in some context, then there should be no inexecutability law in E for the
same action in the same context. It is straightforward to design an algorithm
which checks whether this postulate is satisfied. We do not investigate this
further here, but just observe that the slightly stronger version below leads to
unintuitive consequences:

P6′. No unattainable effects (strong version):

if S, E , |= A → [α]C then S, E ,X , I 6|= A → [α]⊥

For this postulate, and considering the above action theory, we have that

E5 |= (¬HasGun ∧ Loaded) → [shoot]¬Alive ,

but
S5, E5,X5, I5 |= (¬HasGun ∧ Loaded) → [shoot]⊥.

So this version is certainly too strong.
This also illustrates that it is sometimes natural to have some “redundan-

cies” or “overlaps” between I and E . (Indeed, as we have pointed out, inex-
ecutability laws are a particular type of effect laws, and the distinction here
made is conventional.)

8 Related work

Zhang and Chopra [16] have also proposed an assessment of what a good do-
main description should look like. They develop the ideas in the framework of
EPDL [17], an extended version of PDL which allows for propositions as modal-
ities in order to represent causal connection between literals. Without getting
into the details of their logical framework that is used there, we concentrate
here on the main metatheoretical results. They propose a quite expressive nor-
mal form for describing action theories, and three different levels of consistency
are given.

Roughly speaking, an action theory Σ is uniformly consistent if it is globally
consistent (i.e., Σ 6|=EPDL ⊥). A formula Φ is Σ-consistent if Σ 6|=EPDL ¬Φ,
for Σ a uniformly consistent theory. Universal consistency of Σ w.r.t. a set
of fluents means that every logically possible world is accessible, which in our
terms corresponds to S = ∅.

Once with these definitions, they propose algorithms to test the different
versions of consistency for an action theory Σ that is in normal form. This test
essentially amounts to checking whether Σ is safe, i.e., whether Σ |=EPDL 〈α〉>.
Success of this check should mean the action theory under analysis satisfies the
consistency requirements.

Nevertheless, such satisfaction is not a sufficient condition: it is not hard
to imagine domain descriptions that are uniformly consistent but in which we

can still have implicit inexecutabilities that are not caught in this approach.
For instance, consider the following representation in EPDL of the scenario of
Example 5.2:

Σ =















On → [toggle]¬On,

Off → [toggle]On,

[On]¬Off ,

[¬On]Off















The causality statement [On]¬Off means that On causes ¬Off . Such an action
theory satisfies each of Zhang and Chopra’s requirements (in particular it is
uniformly consistent, because Σ 6|=EPDL ⊥). Nevertheless, Σ is not safe because
the implicit static law ¬(On ∧ Off) cannot be proved.3

Focusing on the computational issues of determining what a good domain
description is, Lang et al. [8] address the problem in a base formalism very
similar to the causal laws approach [10]. Instead of using a particular form
of minimization, however, they suppose an abstract notion of completion of a
domain description as a way of overcoming the frame problem.

Given an action theory Tα containing logical information about α’s direct
effects as well as the indirect effects they can produce, the completion of Tα

(noted cl(Tα)) roughly speaking is the original theory Tα amended of logical
axioms stating the persistence of all non-affected (directly nor indirectly) lit-
erals. (Note that such a notion of completion is very close to the underlying
semantics of the dependence relation originally appeared in [1] and used
throughout the present paper.)

The consistency of a domain description (and by extension the evaluation
of how good it is) is achieved by means of testing whether α is executable in all
possible initial states (the executability problem). Such a test amounts to
checking whether every possible state s has a successor s′ reachable by α such
that s and s′ both satisfy the completion of Tα. An implicit inexecutability for
α being found means that Tα has a problem and should, thus, be revised.

For instance, still considering the lamp scenario, the representation of the
action theory for toggle is:

Ttoggle =



















On
toggle
−→ Off ,

Off
toggle
−→ On,

Off −→ ¬On,

On −→ ¬Off



















where the first two formulas are effect laws relating toggle and its possible
effects under the respective conditions, and the latter two are causal laws in
McCain and Turner’s sense. We will not dive in the technical details of this

3A possible solution could be considering the set of static constraints explicitly in the
action theory (viz. in the deductive system). For the running example, taking into account
the constraint On ↔ ¬Off (derived from the causal statements and the EPDL global axioms),
we can conclude that Σ is safe. On the other hand, all the side effects such a modification
could have on the whole theory is to be analyzed.

formalism and just note that checking executability in the completion of this
action theory will give “no” as answer, as toggle cannot be executed in a state
satisfying On ∧ Off .

In the referred work, the authors are more concerned with the complexity
analysis of the problem of doing such a consistency test and no algorithm
for performing it is given, however. In spite of the fact they have the same
motivation as us, again what is presented is just a kind of “yes-no tool” which
can help in doing a metatheoretical analysis of a given domain description,
and many of the comments concerning Zhang and Chopra’s approach could be
repeated here.

9 Conclusion

We have pointed out throughout this paper the problems that arise when one
does not care about encoding a domain description in a modular way. We
have argued that domain descriptions should be modular in the sense that the
non-dynamic part should not be influenced by the dynamic one.4

Such a concept of modularity has motivated us to put forward several postu-
lates. We have in particular tried to demonstrate that when there are implicit
inexecutability and static laws then one has slipped up in designing the domain
description under consideration.

As we have seen, a possible solution comes into its own with Algorithms 4.1,
5.1 and 6.1. Together, they can provide a way of checking how modular a given
domain description is, and correct it if needed.

An important point we have not yet talked about, however, is the order of
execution of each algorithm. It seems to be natural to run them following their
order of presentation.

Acknowledgments

We are grateful to the anonymous referees for their thorough comments on the
earlier version of this paper.

References

[1] Marcos A. Castilho, Olivier Gasquet, and Andreas Herzig. Formalizing
action and change in modal logic I: the frame problem. Journal of Logic

and Computation, 9(5):701–735, 1999.

[2] Robert Demolombe, Andreas Herzig, and Ivan Varzinczak. Regression in
modal logic. Journal of Applied Non-Classical Logic, 13(2):165–185, 2003.

4It might be objected that it is only by doing experiments that one learns the static laws
that govern the universe. But note that this involves learning, whereas here — as always
done in the reasoning about actions field — the static laws are known once forever, and do
not evolve.

[3] Patrick Doherty, Witold Lukaszewicz, and Andrzej Sza las. Explaining
explanation closure. In Proc. Int. Symp. on Methodologies for Intelligent

Systems, 1996.

[4] Matthew L. Ginsberg and David E. Smith. Reasoning about actions II:
The qualification problem. Artificial Intelligence, 35(3):311–342, 1988.

[5] Laura Giordano, Alberto Martelli, and Camilla Schwind. Ramification
and causality in a modal action logic. Journal of Logic and Computation,
10(5):625–662, 2000.

[6] David Harel. Dynamic logic. In D. M. Gabbay and F. Guenther, editors,
Handbook of Philosophical Logic, volume 2: Extensions of Classical Logic,
pages 497–604. D. Reidel Publishing Co., Dordrecht, 1984.

[7] Katsumi Inoue. Linear resolution for consequence finding. Artificial Intel-

ligence, 56(2–3):301–353, 1992.

[8] Jérôme Lang, Fangzhen Lin, and Pierre Marquis. Causal theories of action
– a computational core. In Proc. IJCAI’2003, pages 1073–1078, 2003.

[9] Fangzhen Lin. Embracing causality in specifying the indirect effects of
actions. In C. Mellish, editor, Proc. IJCAI’95, pages 1985–1991, 1995.

[10] Norman McCain and Hudson Turner. A causal theory of ramifications
and qualifications. In C. Mellish, editor, Proc. IJCAI’95, pages 1978–1984,
1995.

[11] Norman McCain and Hudson Turner. Causal theories of action and change.
In Proc. AAAI’97, pages 460–465, 1997.

[12] John McCarthy and Patrick Hayes. Some philosophical problems from the
standpoint of artificial intelligence. Machine Intelligence, 4:463–502, 1969.

[13] Lenhart K. Schubert. Monotonic solution of the frame problem in the
situation calculus: an efficient method for worlds with fully specified ac-
tions. In H. E. Kyberg, R. P. Loui, and G. N. Carlson, editors, Knowledge

Representation and Defeasible Reasoning, pages 23–67, 1990.

[14] Michael Thielscher. Computing ramifications by postprocessing. In
C. Mellish, editor, Proc. IJCAI’95, pages 1994–2000, 1995.

[15] Michael Thielscher. Ramification and causality. Artificial Intelligence,
89(1–2):317–364, 1997.

[16] Dongmo Zhang and Samir Chopra. Consistency of action descriptions. In
PRICAI’02, Topics in Artificial Intelligence, Springer, 2002.

[17] Dongmo Zhang and Norman Y. Foo. EPDL: A logic for causal reasoning.
In Proc. IJCAI’2001, pages 131–138, 2001.

