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Basic Defeasible DLs Enhanced Defeasible DLs Conclusion

Defeasible reasoning over ontologies

T =



Parent ≡ ∃hasChild.>,
Grandparent ≡ ∃hasChild.Parent,
Husband v ∃marriedTo.Woman,

Wife v ∃marriedTo.Man,
Father ≡ Man u Parent,

Mother ≡Woman u Parent,
Parent v ∃pays.Nursery,

SingleParent v Parent u ∀hasPartner.⊥,
SingleParent v ¬∃pays.Nursery,

SingleParent u Rich v ∃pays.Nursery



A =



Woman(mary), Man(john),
marriedTo(john,mary),
marriedTo(mary, john),
hasChild(mary, alice),

progenitorOf(john, alice),
Woman(jane)
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Problem
• KB |= SingleParent v ⊥
• In every interpretation I, SingleParentI = ∅
• I.e., there is no such thing as a single parent
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Big problem!
• KB |= > v ⊥
• KB is now inconsistent
• Collapse of reasoning
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Dealing explicitly with exceptions
• Does not scale well: the more exceptions, the less intuitive the default rule
• New explicit exceptions require remodeling
• Humans tend not to anticipate explicit exceptions
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Exceptionality and beyond
• Exceptions are pervasive in quotidian reasoning
• Classical reasoning does not cope with exceptions
• Worse: there is more to it than meets the eye!
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Ampliative and defeasible reasoning
• It is plausible to have KB |= ∃pays.Nursery(jane)
• But upon learning SingleParent(jane), this conclusion should be dropped
• Actually, we would then want KB |= ¬∃pays.Nursery(jane)
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Ampliative and defeasible reasoning
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The bottom line
• Need for endowing ontologies with non-monotonic reasoning capabilities
• Problem well studied in the propositional case (see ’80s and ’90s)
• Not so in more expressive logics: FOL, modal logic, DLs
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Families of non-monotonic DLs
Default logic-based
• Baader & Hollunder (1993,1995), Padgham & Zhang (1993), Straccia (1993)

Circumscription-based
• Bonatti et al. (2009, 2011), Sengupta et al. (2011)

Priorities on axioms or rules
• Heymans & Vermeir (2002), Governatori (2004)

Logic programming-based
• Donini et al. (2003), Grosof et al. (2003), Knorr et al. (2012)

Possibility logic-based
• Qi et al. (2007,2013)

Preferential approaches
• Quantz et al. (1992), Giordano et al. (2007), Britz et al. (2008,2011), Casini &

Straccia (2010), Pensel & Turhan (2017)
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Defeasible concept subsumption in ALC

C @∼D
Intuition
• Usually, C is subsumed by D (or typically, C is subsumed by D)
• Typical Cs are Ds (exceptional Cs need not)

Example
• Parent@∼ ∃pays.Nursery
• SingleParent@∼ ¬∃pays.Nursery
• SingleParent u Rich@∼ ∃pays.Nursery

Expected behaviour
• To cope with exceptionality, @∼ should not be monotonic
• From C @∼D, one should not (in general) conclude C u E @∼D
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Defeasible concept subsumption: semantics

Definition (Preferential interpretation)
A preferential interpretation is a tuple P := 〈∆P , ·P ,≺P〉 where
• 〈∆P , ·P〉 is a DL interpretation
• ≺P is a strict partial order on ∆P

• for every C ∈ L, if CP 6= ∅, then min≺P (CP) 6= ∅ (i.e., ≺P is smooth)

Intuition
• Objects lower down in ≺P are more normal than those higher up
• min≺P (CP) denotes the most normal (or typical) elements in CP

Definition
• P  C @∼D iff min≺P (CP) ⊆ DP

• If P  α, then P is a model of α. JαK: set of all models of α.
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Defeasible concept subsumption: semantics

P : ∆P
AP1 AP2

AP3

xa2
1 xa3

2 x3

x4 xa1
5

x6 x7 x8 x9

r1

r2 r1 r2

r1

r2

r2

• min≺P (A1 tA3)P = {x6, x7, x8}

• min≺P (∃r2.>) = {x6, x9}

• P 6 A1 v A3

• P  A1 @∼A3
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Defeasible concept subsumption: properties
KLM-style properties (or ‘postulates’ or Gentzen-style rules)

(Cons) > 6@∼ ⊥ (Ref) C @∼ C (LLE) C ≡ D, C @∼ E
D @∼ E

(And) C
@∼D, C @∼ E
C @∼D u E

(Or) C
@∼ E, D @∼ E
C tD @∼ E

(RW) C
@∼D, D v E
C @∼ E

(CM) C
@∼D, C @∼ E
C uD @∼ E

(RM) C
@∼D, C 6@∼ ¬E
C u E @∼D

Theorem (Representation result)
‘Soundness’ and ‘completeness’ of the set of properties w.r.t. the preferential
semantics
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Defeasible ontologies

• TBox T enriched with defeasible concept subsumption statements

Example

T =



Parent ≡ ∃hasChild.>,
Grandparent ≡ ∃hasChild.Parent,
Husband v ∃marriedTo.Woman,

Wife v ∃marriedTo.Man,
Father ≡ Man u Parent,

Mother ≡Woman u Parent,
Parent@∼ ∃pays.Nursery,
SingleParent v Parent,

SingleParent@∼ ¬∃pays.Nursery,
SingleParent u Rich@∼ ∃pays.Nursery



,A =



Woman(mary),
Man(john),

marriedTo(john,mary),
marriedTo(mary, john),
hasChild(mary, alice),

progenitorOf(john, alice),
Woman(jane)



6|=P SingleParent v ⊥

6|=P > v ⊥

|=P SingleParent u ∃hasChild.>@∼ ¬∃pays.Nursery

|=P Mother(mary)

6|=P Parent u Rich@∼ ∃pays.Nursery

6|=P ∃pays.Nursery(mary)

Definition (Preferential entailment)
KB |=P α iff JKBK ⊆ JαK
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Defeasible ontologies
Basic requirements for an appropriate notion of entailment
• Ampliativeness
• Defeasibility

Various ways to achieve this
• Vast literature on NMR

General pattern
• See some models of KB as ‘more important’

In our context
• To be important = to maximise typicality (or normality)
• Idea: prefer models in which objects are as typical as possible
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Defeasible ontologies
Preferring maximal typicality

Example
Let P1 = 〈∆P1 , ·P1 ,≺P1〉 and P2 = 〈∆P2 , ·P2 ,≺P2〉 be such that

• ∆P1 = ∆P2 = {xi | 1 ≤ i ≤ 5} (same domain!), ·P1 = ·P2 , ≺P1 and ≺P2 as below

P1 : ∆P1

x1 x2x3

x4 x5

C

P2 : ∆P2

x1 x2

x3

x4 x5
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Defeasible ontologies

Definition (Rational entailment)
KB |=R α iff minCJKBK ⊆ JαK

Example

T =



Parent ≡ ∃hasChild.>,
Grandparent ≡ ∃hasChild.Parent,
Husband v ∃marriedTo.Woman,

Wife v ∃marriedTo.Man,
Father ≡ Man u Parent,

Mother ≡Woman u Parent,
Parent@∼ ∃pays.Nursery,
SingleParent v Parent,

SingleParent@∼ ¬∃pays.Nursery,
SingleParent u Rich@∼ ∃pays.Nursery



,A =



Woman(mary),
Man(john),

marriedTo(john,mary),
marriedTo(mary, john),
hasChild(mary, alice),

progenitorOf(john, alice),
Woman(jane)



|=R Parent u Rich@∼ ∃pays.Nursery
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Woman(mary),
Man(john),

marriedTo(john,mary),
marriedTo(mary, john),
hasChild(mary, alice),

progenitorOf(john, alice),
Woman(jane)



|=R Parent u Rich@∼ ∃pays.Nursery

• Implementation: DIP (github.com/kodymoodley/defeasibleinferenceplatform)
• Experimental results: good performance scalability in practice
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Limitations
Representation issues
• Defeasibility of argument forms, only: C @∼D
• Single preference ordering on objects of the domain

Reasoning issues
• Rational entailment not enough
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Limitations
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• Defeasibility of argument forms, only: C @∼D
• Single preference ordering on objects of the domain

Reasoning issues
• Rational entailment not enough

Failure of properties

(∃M) C @∼D
∃r.C @∼ ∃r.D

(∀M) C @∼D
∀r.C @∼ ∀r.D
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Limitations
Representation issues
• Defeasibility of argument forms, only: C @∼D
• Single preference ordering on objects of the domain

Reasoning issues
• Rational entailment not enough

Failure of properties

(∃M) C @∼D
∃r.C @∼ ∃r.D

(∀M) C @∼D
∀r.C @∼ ∀r.D

Current work
• Strengthen the preference relation on models

• Prefer models of KB in which also rP(x) are
as typical as possible

• New representation theorems
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Furthering Defeasibility in DL Ontologies
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A broader take on exceptionality

Example

T = {C v ∀r.D}

A = {C(a), r(a, b), ¬D(b)}
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In previous approaches
• C v ∀r.D is too strong
• Replace it with C @∼ ∀r.D (and make sure a is not typical in C)

There may be alternatives
• What if (a, b) is not a typical r-instance?
• The relationship is exceptional

Typicality of relations not accounted for by existing approaches
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A broader take on exceptionality

Example

T = {C v ∀r.D}

A = {C(a), r(a, b), ¬D(b)}
T ∪ A not OK!

In previous approaches
• C v ∀r.D is too strong
• Replace it with C @∼ ∀r.D (and make sure a is not typical in C)

There may be alternatives
• What if (a, b) is not a typical r-instance?
• The relationship is exceptional

Focus restricted to (concept) subsumption and entailment
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Beyond object typicality: semantics

Definition (r-ordered interpretation)
An r-ordered interpretation is a tuple R := 〈∆R, ·R,≺R〉 where
• 〈∆R, ·R〉 is a DL interpretation
• ≺R:= 〈≺R1 , . . . ,≺Rn 〉 where

• ≺Ri ⊆ rRi × rRi , for 1 ≤ i ≤ n
• Each ≺Ri is a well-founded strict partial order on rRi

Intuition
• Pairs lower down in ≺R are more normal than those higher up
• For each R ⊆ rRi , min≺R

i
R: most normal ri-pairs in R w.r.t. ≺Ri

Notation

r
R|x
i := rRi ∩ ({x} ×∆R)
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Beyond object typicality: semantics

R : ∆R
AR1 AR2

AR3

xa2
1 xa3

2 x3

x4 xa1
5

x6 x7 x8 x9

r1

r2 r1 r2

r1

r2

r2

• min≺R
1
rR1 = {x4x8}

• min≺R
2
rR2 = {x6x4, x5x8}
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Beyond defeasible subsumption
Defeasible quantifiers
• C ::= A | ¬C | C u C | C t C | ∀r.C | ∃r.C | ∨∼r.C | −∼−|r.C
• E.g.: ∨∼guardianOf.Minor
• ‘Those individuals whose all normal guardianship relations are of minors’

• (∨∼ri.C)R := {x | for all y, if (x, y) ∈ min≺R
i

(rR|xi ), then y ∈ CR}

Defeasible number restrictions
• C ::= · · · | ≤ nr.C | ≥ nr.C | & nr.C | . nr.C

• E.g.: . 2hasSibling.Female, h 1marriedTo.>
• In the latter, ‘those individuals in one normal marriage’

• (& nri.C)R := {x | #{y | (x, y) ∈ min≺R
i

(rR|xi ) and y ∈ CR} ≥ n}
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Beyond defeasible subsumption
Defeasible role inclusions
• r1 @∼ r2

• E.g.: guardianOf @∼ parentOf
• ‘Usually, the role of guardianship is also that of being a parent’
• R  ri @∼ rj iff min≺R

i
rRi ⊆ rRj

Defeasible role assertions
• Role properties that may fail
• E.g.: partOf is usually transitive, marriedTo is normally functional
• dFun(ri), dTra(ri), dDis(ri, rj), . . .
• min≺R

i
rRi is functional, min≺R

i
rRi is transitive, min≺R

i
rRi ∩min≺R

j
rRj = ∅

• Alternative: > v. 1r in the TBox or r ◦ r @∼ r in the RBox
Ivan Varzinczak (CRIL) Next Steps in Defeasible DLs Dresden, 23/01/2018 20
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Beyond defeasible subsumption

Theorem
ALC extended with our new constructors is decidable

Theorem
Concept satisfiability and subsumption w.r.t. acyclic TBoxes:
pspace-complete

Theorem
Concept satisfiability and subsumption w.r.t. general TBoxes:
exptime-complete
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A glimpse of Defeasible SROIQ
Concepts
• All SROIQ concepts
• ∨∼r.C, −∼−|r.C, −∼−|r.Self
• & ns.C, . ns.C (s is a simple role)

Statements and assertions
• All SROIQ statements and assertions
• C @∼D, r ◦ r @∼ r, inv(r)@∼ r

• s1 ◦ · · · ◦ sn @∼ r, r ◦ s1 ◦ · · · ◦ sn @∼ r, s1 ◦ · · · ◦ sn ◦ r @∼ r

• dFun(r), dRef(r), dIrr(r), dSym(r), dAsy(r), dTra(r), dDis(r, s)
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A glimpse of Defeasible SROIQ
Reduction of 〈T ,A,R〉 to 〈∅, ∅,R〉
• Elimination of the ABox as for classical SROIQ
• Rewriting of classical role assertions as for classical SROIQ
• Rewriting of defeasible role assertions: Replace

• dFun(r) with > v. 1r.>
• dRef(r) with >@∼ ∃r.Self and dIrr(r) with >@∼ ¬∃r.Self
• dSym(r) with r− @∼ r
• dTra(r) with r ◦ r @∼ r
• dAsy(r) with dDis(r, r−)

• Rewrite C @∼D in SROIQ
• Eliminate the TBox and the universal role as for classical SROIQ
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A glimpse of Defeasible SROIQ
Tableau system
• Extension of the SROIQ tableau:

• Rules u, t, ∀, ch, ≤ and o do not change (modulo new blocking and merging)
• New versions of ∃-, Self-, ≥- and NN-rules
• 8 new rules for defeasible constructs

• For now, we don’t deal with role composition on the LHS of @∼

Theorem
Let C be a concept and R an RBox.

• The tableau algorithm terminates if started with nnf(C) and R
• When exhaustively applied to nnf(C) and R, the expansion rules yield a
complete and clash-free completion graph iff C is satisfiable w.r.t. R
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Issues with a single ordering on objects

P : ∆P
AP1 AP2

AP3

xa2
1 xa3

2 x3

x4 xa1
5

x6 x7 x8 x9

r1

r2 r1 r2

r1

r2

r2

Assume
• Cheninblanc@∼ ∃hasAroma.Floral
• Cheninblanc@∼ ∀hasOrigin.Loire

Then
• No way to have x ≺ y and y ≺ x
• No model of reality!
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Contextual defeasible subsumption

C @∼ rD

Definition
Let R = 〈∆R, ·R,≺R〉 be an r-ordered interpretation. For every role r, let

<Rr := {(x, y) | for some z, u ∈ ∆R, [((x, z), (y, u)) ∈ ≺Rr ] and
for no z, u ∈ ∆R, [((y, u), (x, z)) ∈ ≺Rr ]}

Then
• R  C @∼ rD iff min<R

r
CR ⊆ DR

Example
• Cheninblanc@∼ hasAroma∃hasAroma.Floral
• Cheninblanc@∼ hasOrigin∀hasOrigin.Loire
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Contextual defeasible subsumption

R : ∆R
AR1 AR2

AR3

xa2
1 xa3

2 x3

x4 xa1
5

x6 x7 x8 x9

r1

r2 r1 r2

r1

r2

r2

• ≺R
1 = {(x4x8, x2x5), (x2x5, x1x6), (x4x8, x1x6)}

• <R
1 = {(x4, x2), (x2, x1), (x4, x1)}

• ≺R
2 = {(x5x8, x9x3), (x6x4, x4x4)}

• <R
2 = {(x5, x9), (x6, x4)}
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Contextual defeasible subsumption

Lemma
For every r, @∼ r is preferential (in the KLM sense). If <Rr is a modular
order, then @∼ r is rational.

Moreover
• Contextual rational closure: generalisation to contexts (under review)

• But, of course, it still doesn’t satisfy

(∃M) C @∼ rD

∃r.C @∼ r∃r.D

(∀M) C @∼ rD

∀r.C @∼ r∀r.D
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Conclusion
Summary
• DLs are classical: no coping with exceptions and inconsistencies

• Defeasible subsumption, properties and entailment (and issues)

• A family of new defeasible constructors and their properties

• Theoretical feasibility of the proposed frameworks

• An approach to contextual defeasible subsumption

Ongoing and future work
• Extensions of rational closure in the new framework

• Implementation of Protégé plugins followed by experimental tests

• Conjunctive-query answering in the richer languages
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