Enhanced Defeasible DLs

Next Steps in Reasoning Defeasibly over Description-Logic Ontologies

(based on joint work with R. Booth, K. Britz, G. Casini, T. Meyer, K. Moodley and U. Sattler)

Ivan Varzinczak

Centre de Recherche en Informatique de Lens

Université d'Artois & CNRS, France

http://www.ijv.ovh

Dresden, 23/01/2018

Ivan Varzinczak (CRIL)

Next Steps in Defeasible DLs

```
\left\{\begin{array}{c} \mathsf{Parent} \equiv \exists \mathsf{hasChild}.\top, \\ \mathsf{Grandparent} \equiv \exists \mathsf{hasChild}.\mathsf{Parent}, \\ \mathsf{Husband} \sqsubseteq \exists \mathsf{marriedTo}.\mathsf{Woman}, \\ \mathsf{Wife} \sqsubseteq \exists \mathsf{marriedTo}.\mathsf{Man}, \\ \mathsf{Father} \equiv \mathsf{Man} \sqcap \mathsf{Parent}, \\ \mathsf{Mother} \equiv \mathsf{Woman} \sqcap \mathsf{Parent}, \\ \mathsf{Parent} \sqsubseteq \exists \mathsf{pays}.\mathsf{Nursery}, \\ \mathsf{SingleParent} \sqsubseteq \mathsf{Parent} \sqcap \forall \mathsf{hasPartner}.\bot, \\ \mathsf{SingleParent} \sqcap \neg \exists \mathsf{pays}.\mathsf{Nursery}, \\ \mathsf{SingleParent} \sqcap \mathsf{Rich} \sqsubseteq \exists \mathsf{pays}.\mathsf{Nursery} \\ \mathsf{SingleParent} \urcorner \mathsf{SingleParent} \urcorner \mathsf{Rich} \sqsubseteq \exists \mathsf{Pays}.\mathsf{Nursery} \\ \mathsf{Rich} \urcorner \mathsf{Rich} \urcorner \mathsf{Rich} \urcorner \mathsf{Rich} \urcorner \mathsf{Rich} \urcorner \mathsf{Rich} \urcorner \mathsf{Rich} \cr \mathsf{Ri
```

$$\mathcal{A} = \left\{ \begin{array}{ll} \mathsf{Woman}(\mathsf{mary}), & \mathsf{Man}(\mathsf{john}), \\ & \mathsf{marriedTo}(\mathsf{john},\mathsf{mary}), \\ & \mathsf{marriedTo}(\mathsf{mary},\mathsf{john}), \\ & \mathsf{hasChild}(\mathsf{mary},\mathsf{alice}), \\ & \mathsf{progenitorOf}(\mathsf{john},\mathsf{alice}), \\ & \mathsf{Woman}(\mathsf{jane}) \end{array} \right.$$

$$\mathcal{A} = \left\{ \begin{array}{ll} \mathsf{Woman}(\mathsf{mary}), & \mathsf{Man}(\mathsf{john}), \\ \mathsf{marriedTo}(\mathsf{john},\mathsf{mary}), \\ \mathsf{marriedTo}(\mathsf{mary},\mathsf{john}), \\ \mathsf{hasChild}(\mathsf{mary},\mathsf{alice}), \\ \mathsf{progenitorOf}(\mathsf{john},\mathsf{alice}), \\ \mathsf{Woman}(\mathsf{jane}) \end{array} \right.$$

Problem

- $\mathcal{KB} \models \mathsf{SingleParent} \sqsubseteq \bot$
- In every interpretation \mathcal{I} , SingleParent $^{\mathcal{I}} = \emptyset$
- I.e., there is no such thing as a single parent

Big problem!

- $\mathcal{KB} \models \top \sqsubseteq \bot$
- \mathcal{KB} is now inconsistent
- Collapse of reasoning

 $\mathcal{A} = \left\{ \begin{array}{ll} \mathsf{Woman}(\mathsf{mary}), & \mathsf{Man}(\mathsf{john}), \\ \mathsf{marriedTo}(\mathsf{john}, \mathsf{mary}), \\ \mathsf{marriedTo}(\mathsf{mary}, \mathsf{john}), \\ \mathsf{hasChild}(\mathsf{mary}, \mathsf{alice}), \\ \mathsf{progenitorOf}(\mathsf{john}, \mathsf{alice}), \\ \mathsf{Woman}(\mathsf{jane}), \\ \mathsf{SingleParent}(\mathsf{alice}) \end{array} \right.$

А

Defeasible reasoning over ontologies

```
\mathcal{T} = \begin{cases} \mathsf{Parent} \equiv \exists \mathsf{hasChild}.\top, \\ \mathsf{Grandparent} \equiv \exists \mathsf{hasChild}.\mathsf{Parent}, \\ \mathsf{Husband} \sqsubseteq \exists \mathsf{marriedTo}.\mathsf{Woman}, \\ \mathsf{Wife} \sqsubseteq \exists \mathsf{marriedTo}.\mathsf{Man}, \\ \mathsf{Father} \equiv \mathsf{Man} \sqcap \mathsf{Parent}, \\ \mathsf{Mother} \equiv \mathsf{Woman} \sqcap \mathsf{Parent}, \\ \mathsf{Parent} \sqcap (\neg \mathsf{SingleParent} \sqcup \mathsf{Rich}) \sqsubseteq \exists \mathsf{pays}.\mathsf{Nursery}, \\ \mathsf{SingleParent} \sqsubseteq \urcorner \neg \exists \mathsf{pays}.\mathsf{Nursery}, \\ \mathsf{SingleParent} \sqcap \mathsf{Rich} \sqsubseteq \exists \mathsf{pays}.\mathsf{Nursery} \end{cases}
```

$$= \left\{ \begin{array}{ll} \mathsf{Woman}(\mathsf{mary}), & \mathsf{Man}(\mathsf{john}), \\ & \mathsf{marriedTo}(\mathsf{john},\mathsf{mary}), \\ & \mathsf{marriedTo}(\mathsf{mary},\mathsf{john}), \\ & \mathsf{hasChild}(\mathsf{mary},\mathsf{alice}), \\ & \mathsf{progenitorOf}(\mathsf{john},\mathsf{alice}), \\ & \mathsf{Woman}(\mathsf{jane}) \end{array} \right.$$

Dealing explicitly with exceptions

- Does not scale well: the more exceptions, the less intuitive the default rule
- New explicit exceptions require remodeling
- Humans tend not to anticipate explicit exceptions

```
= \left\{ \begin{array}{l} \mathsf{Parent} \equiv \exists \mathsf{hasChild}.\top, \\ \mathsf{Grandparent} \equiv \exists \mathsf{hasChild}.\mathsf{Parent}, \\ \mathsf{Husband} \sqsubseteq \exists \mathsf{marriedTo}.\mathsf{Woman}, \\ \mathsf{Wife} \sqsubseteq \exists \mathsf{marriedTo}.\mathsf{Man}, \\ \mathsf{Father} \equiv \mathsf{Man} \sqcap \mathsf{Parent}, \\ \mathsf{Mother} \equiv \mathsf{Woman} \sqcap \mathsf{Parent}, \\ \mathsf{Parent} \sqsubseteq \exists \mathsf{pays}.\mathsf{Nursery}, \\ \mathsf{SingleParent} \sqsubseteq \mathsf{Parent} \sqcap \forall \mathsf{hasPartner}.\bot, \\ \mathsf{SingleParent} \sqsubset \neg \exists \mathsf{pays}.\mathsf{Nursery}, \\ \mathsf{SingleParent} \sqcap \mathsf{Rich} \sqsubseteq \exists \mathsf{pays}.\mathsf{Nursery} \end{array} \right\}
```

$$\mathcal{A} = \left\{ \begin{array}{ll} \mathsf{Woman}(\mathsf{mary}), & \mathsf{Man}(\mathsf{john}), \\ & \mathsf{marriedTo}(\mathsf{john},\mathsf{mary}), \\ & \mathsf{marriedTo}(\mathsf{mary},\mathsf{john}), \\ & \mathsf{hasChild}(\mathsf{mary},\mathsf{alice}), \\ & \mathsf{progenitorOf}(\mathsf{john},\mathsf{alice}), \\ & \mathsf{Woman}(\mathsf{jane}) \end{array} \right.$$

Exceptionality and beyond

- Exceptions are pervasive in quotidian reasoning
- Classical reasoning does not cope with exceptions
- Worse: there is more to it than meets the eye!

```
T = \left\{ \begin{array}{l} \mathsf{Parent} \equiv \exists \mathsf{hasChild}.\top, \\ \mathsf{Grandparent} \equiv \exists \mathsf{hasChild}.\mathsf{Parent}, \\ \mathsf{Husband} \sqsubseteq \exists \mathsf{marriedTo}.\mathsf{Woman}, \\ \mathsf{Wife} \sqsubseteq \exists \mathsf{marriedTo}.\mathsf{Man}, \\ \mathsf{Father} \equiv \mathsf{Man} \sqcap \mathsf{Parent}, \\ \mathsf{Mother} \equiv \mathsf{Woman} \sqcap \mathsf{Parent}, \\ \mathsf{Parent} \sqsubseteq \exists \mathsf{pays}.\mathsf{Nursery}, \\ \mathsf{SingleParent} \sqsubseteq \mathsf{Parent} \sqcap \forall \mathsf{hasPartner}.\bot, \\ \mathsf{SingleParent} \sqsubseteq \lnot \exists \mathsf{pays}.\mathsf{Nursery}, \\ \mathsf{SingleParent} \sqcap \mathsf{Rich} \sqsubseteq \exists \mathsf{pays}.\mathsf{Nursery} \end{array} \right\}
```

```
\mathcal{A} = \left\{ \begin{array}{ll} \mathsf{Woman}(\mathsf{mary}), & \mathsf{Man}(\mathsf{john}), \\ & \mathsf{marriedTo}(\mathsf{john},\mathsf{mary}), \\ & \mathsf{marriedTo}(\mathsf{mary},\mathsf{john}), \\ & \mathsf{hasChild}(\mathsf{mary},\mathsf{alice}), \\ & \mathsf{progenitorOf}(\mathsf{john},\mathsf{alice}), \\ & \mathsf{Woman}(\mathsf{jane}), \mathsf{hasChild}(\mathsf{jane},\mathsf{pete}) \end{array} \right.
```

Ampliative and defeasible reasoning

- It is plausible to have KB ⊨ ∃pays.Nursery(jane)
- But upon learning SingleParent(jane), this conclusion should be dropped
- Actually, we would then want $\mathcal{KB} \models \neg \exists pays.Nursery(jane)$

```
\mathcal{T} = \left\{ \begin{array}{l} \mathsf{Parent} \equiv \exists \mathsf{hasChild}.\top, \\ \mathsf{Grandparent} \equiv \exists \mathsf{hasChild}.\mathsf{Parent}, \\ \mathsf{Husband} \sqsubseteq \exists \mathsf{marriedTo.Woman}, \\ \mathsf{Wife} \sqsubseteq \exists \mathsf{marriedTo.Wan}, \\ \mathsf{Wife} \sqsubseteq \exists \mathsf{marriedTo.Man}, \\ \mathsf{Father} \equiv \mathsf{Man} \sqcap \mathsf{Parent}, \\ \mathsf{Mother} \equiv \mathsf{Woman} \sqcap \mathsf{Parent}, \\ \mathsf{Parent} \sqsubseteq \exists \mathsf{pays.Nursery}, \\ \mathsf{SingleParent} \sqsubseteq \urcorner \exists \mathsf{pays.Nursery}, \\ \mathsf{SingleParent} \sqcap \mathsf{Rich} \sqsubseteq \exists \mathsf{pays.Nursery} \\ \mathsf{SingleParent} \sqcap \mathsf{Rich} \sqsubseteq \exists \mathsf{pays.Nursery} \\ \end{array} \right\}
```

```
\mathcal{A} = \left\{ \begin{array}{l} \mathsf{Woman}(\mathsf{mary}), \quad \mathsf{Man}(\mathsf{john}), \\ \mathsf{marriedTo}(\mathsf{john}, \mathsf{mary}), \\ \mathsf{marriedTo}(\mathsf{mary}, \mathsf{john}), \\ \mathsf{hasChild}(\mathsf{mary}, \mathsf{alice}), \\ \mathsf{progenitorOf}(\mathsf{john}, \mathsf{alice}), \\ \mathsf{Woman}(\mathsf{jane}), \mathsf{Grandparent}(\mathsf{john}) \end{array} \right.
```

Ampliative and defeasible reasoning

- It is plausible to have KB ⊨ ∃hasChild.∃pays.Nursery(john)
- If we learn ∀hasChild.SingleParent(john), this conclusion must be dropped
- Actually, we would then want $\mathcal{KB} \models \exists hasChild. \neg \exists pays.Nursery(john)$

```
 = \left\{ \begin{array}{l} \mathsf{Parent} \equiv \exists \mathsf{hasChild}.\top, \\ \mathsf{Grandparent} \equiv \exists \mathsf{hasChild}.\mathsf{Parent}, \\ \mathsf{Husband} \sqsubseteq \exists \mathsf{marriedTo}.\mathsf{Woman}, \\ \mathsf{Wife} \sqsubseteq \exists \mathsf{marriedTo}.\mathsf{Man}, \\ \mathsf{Father} \equiv \mathsf{Man} \sqcap \mathsf{Parent}, \\ \mathsf{Mother} \equiv \mathsf{Woman} \sqcap \mathsf{Parent}, \\ \mathsf{Parent} \sqsubseteq \exists \mathsf{pays}.\mathsf{Nursery}, \\ \mathsf{SingleParent} \sqsubseteq \urcorner \exists \mathsf{pays}.\mathsf{Nursery}, \\ \mathsf{SingleParent} \sqsubseteq \urcorner \exists \mathsf{pays}.\mathsf{Nursery}, \\ \mathsf{SingleParent} \sqcap \mathsf{Rich} \sqsubseteq \exists \mathsf{pays}.\mathsf{Nursery} \end{array} \right.
```

```
\mathcal{A} = \left\{ \begin{array}{ll} \mathsf{Woman}(\mathsf{mary}), & \mathsf{Man}(\mathsf{john}), \\ \mathsf{marriedTo}(\mathsf{john},\mathsf{mary}), \\ \mathsf{marriedTo}(\mathsf{mary},\mathsf{john}), \\ \mathsf{hasChild}(\mathsf{mary},\mathsf{alice}), \\ \mathsf{progenitorOf}(\mathsf{john},\mathsf{alice}), \\ \mathsf{Woman}(\mathsf{jane}) \end{array} \right.
```

The bottom line

- Need for endowing ontologies with non-monotonic reasoning capabilities
- Problem well studied in the propositional case (see '80s and '90s)
- Not so in more expressive logics: FOL, modal logic, DLs

Families of non-monotonic DLs

Default logic-based

• Baader & Hollunder (1993,1995), Padgham & Zhang (1993), Straccia (1993)

Circumscription-based

• Bonatti et al. (2009, 2011), Sengupta et al. (2011)

Priorities on axioms or rules

• Heymans & Vermeir (2002), Governatori (2004)

Logic programming-based

• Donini et al. (2003), Grosof et al. (2003), Knorr et al. (2012)

Possibility logic-based

• Qi et al. (2007,2013)

Preferential approaches

• Quantz et al. (1992), Giordano et al. (2007), Britz et al. (2008,2011), Casini & Straccia (2010), Pensel & Turhan (2017)

Basic Defeasible DLs

Furthering Defeasibility in DL Ontologies

Conclusion

Outline

Basic Defeasible DLs

Furthering Defeasibility in DL Ontologies

Conclusion

Defeasible concept subsumption in \mathcal{ALC}

$$C \sqsubseteq D$$

Intuition

- Usually, C is subsumed by D (or typically, C is subsumed by D)
- Typical Cs are Ds (exceptional Cs need not)

Defeasible concept subsumption in \mathcal{ALC}

$$C \sqsubseteq D$$

Intuition

- Usually, C is subsumed by D (or typically, C is subsumed by D)
- Typical Cs are Ds (exceptional Cs need not)

Example

- Parent $\sqsubseteq \exists pays.Nursery$
- SingleParent $\sqsubseteq \neg \exists pays.Nursery$
- SingleParent \sqcap Rich $\sqsubseteq \exists$ pays.Nursery

Defeasible concept subsumption in \mathcal{ALC}

$$C \sqsubseteq D$$

Intuition

- Usually, C is subsumed by D (or typically, C is subsumed by D)
- Typical Cs are Ds (exceptional Cs need not)

Example

- Parent $\sqsubseteq \exists pays.Nursery$
- SingleParent $\Box \neg \exists pays.Nursery$
- SingleParent \sqcap Rich $\sqsubseteq \exists$ pays.Nursery

Expected behaviour

- To cope with exceptionality, $\[abel{eq:copy}\]$ should not be monotonic
- From $C \sqsubseteq D$, one should **not** (in general) conclude $C \sqcap E \sqsubseteq D$

Definition (Preferential interpretation)

A preferential interpretation is a tuple $\mathcal{P} := \langle \Delta^{\mathcal{P}}, \cdot^{\mathcal{P}}, \prec^{\mathcal{P}} \rangle$ where

- $\langle \Delta^{\mathcal{P}}, \cdot^{\mathcal{P}} \rangle$ is a DL interpretation
- $\prec^{\mathcal{P}}$ is a strict partial order on $\Delta^{\mathcal{P}}$

• for every $C \in \mathcal{L}$, if $C^{\mathcal{P}} \neq \emptyset$, then $\min_{\prec^{\mathcal{P}}}(C^{\mathcal{P}}) \neq \emptyset$ (i.e., $\prec^{\mathcal{P}}$ is smooth)

Definition (Preferential interpretation)

A preferential interpretation is a tuple $\mathcal{P} := \langle \Delta^{\mathcal{P}}, \cdot^{\mathcal{P}}, \prec^{\mathcal{P}} \rangle$ where

- $\langle \Delta^{\mathcal{P}}, \cdot^{\mathcal{P}} \rangle$ is a DL interpretation
- $\prec^{\mathcal{P}}$ is a strict partial order on $\Delta^{\mathcal{P}}$
- for every $C \in \mathcal{L}$, if $C^{\mathcal{P}} \neq \emptyset$, then $\min_{\prec^{\mathcal{P}}}(C^{\mathcal{P}}) \neq \emptyset$ (i.e., $\prec^{\mathcal{P}}$ is smooth)

Intuition

- Objects lower down in $\prec^{\mathcal{P}}$ are more normal than those higher up
- $\min_{\prec \mathcal{P}}(C^{\mathcal{P}})$ denotes the most normal (or typical) elements in $C^{\mathcal{P}}$

Definition (Preferential interpretation)

A preferential interpretation is a tuple $\mathcal{P} := \langle \Delta^{\mathcal{P}}, \cdot^{\mathcal{P}}, \prec^{\mathcal{P}} \rangle$ where

- $\langle \Delta^{\mathcal{P}}, \cdot^{\mathcal{P}} \rangle$ is a DL interpretation
- $\prec^{\mathcal{P}}$ is a strict partial order on $\Delta^{\mathcal{P}}$
- for every $C \in \mathcal{L}$, if $C^{\mathcal{P}} \neq \emptyset$, then $\min_{\prec^{\mathcal{P}}}(C^{\mathcal{P}}) \neq \emptyset$ (i.e., $\prec^{\mathcal{P}}$ is smooth)

Intuition

- Objects lower down in $\prec^{\mathcal{P}}$ are more normal than those higher up
- $\min_{\prec \mathcal{P}}(C^{\mathcal{P}})$ denotes the most normal (or typical) elements in $C^{\mathcal{P}}$

Definition

- $\mathcal{P} \Vdash C \sqsubset D$ iff $\min_{\prec \mathcal{P}} (C^{\mathcal{P}}) \subseteq D^{\mathcal{P}}$
- If $\mathcal{P} \Vdash \alpha$, then \mathcal{P} is a model of α . $\llbracket \alpha \rrbracket$: set of all models of α .

• $\min_{\prec \mathcal{P}} (A_1 \sqcup A_3)^{\mathcal{P}} = \{x_6, x_7, x_8\}$ $\boldsymbol{\tau}$

• $\min_{\prec \mathcal{P}}(\exists r_2.\top) = \{x_6, x_9\}$

•
$$P \not \vdash A_1 \sqsubseteq A_3$$

• $\mathcal{P} \Vdash A_1 \sqsubseteq A_3$

Defeasible concept subsumption: properties

KLM-style properties (or 'postulates' or Gentzen-style rules)

$$(\mathsf{Cons}) \top \not\sqsubseteq \bot \qquad (\mathsf{Ref}) \ C \, \bigtriangledown \, C \qquad (\mathsf{LLE}) \ \frac{C \equiv D, \ C \, \sqsubset \, E}{D \, \bigtriangledown E}$$

$$(\mathsf{And}) \ \frac{C \sqsubseteq D, \ C \sqsubseteq E}{C \sqsubseteq D \sqcap E} \qquad (\mathsf{Or}) \ \frac{C \sqsubseteq E, \ D \sqsubseteq E}{C \sqcup D \sqsubseteq E} \qquad (\mathsf{RW}) \ \frac{C \sqsubseteq D, \ D \sqsubseteq E}{C \sqsubseteq E}$$

$$(\mathsf{CM}) \ \frac{C \sqsubseteq D, \ C \sqsubseteq E}{C \sqcap D \sqsubseteq E} \qquad (\mathsf{RM}) \ \frac{C \sqsubseteq D, \ C \gneqq \neg E}{C \sqcap E \sqsubseteq D}$$

Defeasible concept subsumption: properties

KLM-style properties (or 'postulates' or Gentzen-style rules)

$$(Cons) \top \not\sqsubseteq \bot \qquad (Ref) \ C \,\sqsubset \, C \qquad (LLE) \ \frac{C \equiv D, \ C \,\sqsubset E}{D \,\sqsubset E}$$

$$(\mathsf{And}) \ \frac{C \sqsubseteq D, \ C \sqsubseteq E}{C \sqsubseteq D \sqcap E} \qquad (\mathsf{Or}) \ \frac{C \sqsubseteq E, \ D \sqsubseteq E}{C \sqcup D \sqsubseteq E} \qquad (\mathsf{RW}) \ \frac{C \sqsubseteq D, \ D \sqsubseteq E}{C \sqsubseteq E}$$

$$(\mathsf{CM}) \ \frac{C \sqsubseteq D, \ C \sqsupseteq E}{C \sqcap D \sqsubseteq E} \qquad (\mathsf{RM}) \ \frac{C \sqsubseteq D, \ C \gneqq \neg E}{C \sqcap E \sqsubseteq D}$$

Theorem (Representation result)

'Soundness' and 'completeness' of the set of properties w.r.t. the preferential semantics

Ivan Varzinczak (CRIL)

• TBox \mathcal{T} enriched with defeasible concept subsumption statements

Example

• TBox \mathcal{T} enriched with defeasible concept subsumption statements

Example

• TBox \mathcal{T} enriched with defeasible concept subsumption statements

Example

Definition (Preferential entailment)

 $\mathcal{KB} \models_P \alpha \text{ iff } \llbracket \mathcal{KB} \rrbracket \subseteq \llbracket \alpha \rrbracket$

• TBox \mathcal{T} enriched with defeasible concept subsumption statements

Example

• TBox \mathcal{T} enriched with defeasible concept subsumption statements

Example

• TBox \mathcal{T} enriched with defeasible concept subsumption statements

Example

Basic requirements for an appropriate notion of entailment

- Ampliativeness
- Defeasibility

Basic requirements for an appropriate notion of entailment

- Ampliativeness
- Defeasibility

Various ways to achieve this

• Vast literature on NMR

General pattern

• See some models of \mathcal{KB} as 'more important'

Basic requirements for an appropriate notion of entailment

- Ampliativeness
- Defeasibility

Various ways to achieve this

• Vast literature on NMR

General pattern

• See some models of \mathcal{KB} as 'more important'

In our context

- To be important = to maximise typicality (or normality)
- Idea: prefer models in which objects are as typical as possible

Preferring maximal typicality

Example

Let $\mathcal{P}_1 = \langle \Delta^{\mathcal{P}_1}, \cdot^{\mathcal{P}_1}, \prec^{\mathcal{P}_1} \rangle$ and $\mathcal{P}_2 = \langle \Delta^{\mathcal{P}_2}, \cdot^{\mathcal{P}_2}, \prec^{\mathcal{P}_2} \rangle$ be such that

• $\Delta^{\mathcal{P}_1} = \Delta^{\mathcal{P}_2} = \{x_i \mid 1 \leq i \leq 5\}$ (same domain!), $\cdot^{\mathcal{P}_1} = \cdot^{\mathcal{P}_2}$, $\prec^{\mathcal{P}_1}$ and $\prec^{\mathcal{P}_2}$ as below

Definition (Rational entailment) $\mathcal{KB} \models_R \alpha \text{ iff } \min_{\triangleleft} \llbracket \mathcal{KB} \rrbracket \subseteq \llbracket \alpha \rrbracket$

Example

$$\mathcal{T} = \left\{ \begin{array}{l} \mathsf{Parent} \equiv \exists \mathsf{hasChild}.\mathsf{T}, \\ \mathsf{Grandparent} \equiv \exists \mathsf{hasChild}.\mathsf{Parent}, \\ \mathsf{Husband} \equiv \exists \mathsf{marriedTo}.\mathsf{Woman}, \\ \mathsf{Wife} \equiv \exists \mathsf{marriedTo}.\mathsf{Man}, \\ \mathsf{Father} \equiv \mathsf{Man} \sqcap \mathsf{Parent}, \\ \mathsf{Mother} \equiv \mathsf{Woman} \sqcap \mathsf{Parent}, \\ \mathsf{Parent} \sqsubseteq \exists \mathsf{pays}.\mathsf{Nursery}, \\ \mathsf{SingleParent} \sqsubseteq \neg \exists \mathsf{pays}.\mathsf{Nursery}, \\ \mathsf{SingleParent} \sqsubset \neg \exists \mathsf{pays}.\mathsf{Nursery} \end{array} \right\}, \mathcal{A} = \left\{ \begin{array}{l} \mathsf{Woman}(\mathsf{mary}), \\ \mathsf{Man}(\mathsf{john}), \\ \mathsf{marriedTo}(\mathsf{john}, \mathsf{mary}), \\ \mathsf{marriedTo}(\mathsf{mary}, \mathsf{john}), \\ \mathsf{hasChild}(\mathsf{mary}, \mathsf{alice}), \\ \mathsf{progenitorOf}(\mathsf{john}, \mathsf{alice}), \\ \mathsf{Woman}(\mathsf{jane}) \end{array} \right\} \models_{R} \mathsf{Parent} \sqcap \mathsf{Rich} \eqsim \exists \mathsf{pays}.\mathsf{Nursery}$$

Definition (Rational entailment) $\mathcal{KB} \models_R \alpha \text{ iff } \min_{\triangleleft} \llbracket \mathcal{KB} \rrbracket \subseteq \llbracket \alpha \rrbracket$

Example

 $Parent \equiv \exists hasChild, \top$. $Grandparent \equiv \exists hasChild.Parent.$ Husband $\Box \exists married To.Woman.$ Woman(mary), Wife $\sqsubseteq \exists married To.Man$, Man(john), Father \equiv Man \sqcap Parent. marriedTo(john, mary), $\not\models_B$ Parent \sqcap Rich $\sqsubseteq \exists pays. Nursery$ Mother \equiv Woman \sqcap Parent. $\mathcal{A} =$ marriedTo(mary, john), Parent $\sqsubseteq \exists pays. Nursery,$ hasChild(mary, alice), SingleParent \sqsubseteq Parent, progenitorOf(john, alice), SingleParent $\Box \neg \exists pays.Nursery$, Woman(iane) SingleParent \sqcap Rich $\sqsubseteq \exists pays.Nurserv.$ Parent $\Box \neg Rich$

Definition (Rational entailment) $\mathcal{KB} \models_R \alpha \text{ iff } \min_{\triangleleft} \llbracket \mathcal{KB} \rrbracket \subseteq \llbracket \alpha \rrbracket$

Example

- Implementation: DIP (github.com/kodymoodley/defeasibleinferenceplatform)
- Experimental results: good performance scalability in practice

Representation issues

- Defeasibility of argument forms, only: $C \sqsubseteq D$
- Single preference ordering on objects of the domain

Representation issues

- Defeasibility of argument forms, only: $C \sqsubseteq D$
- Single preference ordering on objects of the domain

Reasoning issues

• Rational entailment not enough

Example

Representation issues

- Defeasibility of argument forms, only: $C \sqsubseteq D$
- Single preference ordering on objects of the domain

Reasoning issues

• Rational entailment not enough

Failure of properties

$$(\exists \mathsf{M}) \ \frac{C \sqsubseteq D}{\exists r.C \sqsubseteq \exists r.D}$$

$$(\forall \mathsf{M}) \ \frac{C \sqsubseteq D}{\forall r.C \sqsubseteq \forall r.D}$$

Representation issues

- Defeasibility of argument forms, only: $C \sqsubseteq D$
- Single preference ordering on objects of the domain

Reasoning issues

• Rational entailment not enough

Failure of properties

$$(\exists \mathsf{M}) \ \frac{C \sqsubseteq D}{\exists r.C \sqsubseteq \exists r.D}$$

$$(\forall \mathsf{M}) \ \frac{C \sqsubseteq D}{\forall r.C \sqsubseteq \forall r.D}$$

Current work

- Strengthen the preference relation on models
- Prefer models of \mathcal{KB} in which also $r^{\mathcal{P}}(x)$ are as typical as possible
- New representation theorems

Basic Defeasible DLs

Furthering Defeasibility in DL Ontologies

Conclusion

Ivan Varzinczak (CRIL)

A broader take on exceptionality

Example

$$\mathcal{T} = \{ C \sqsubseteq \forall r.D \}$$
$$\mathcal{A} = \{ C(a), \ r(a,b), \ \neg D(b) \}$$

A broader take on exceptionality

Example

$$\mathcal{T} = \{ C \sqsubseteq \forall r.D \}$$
$$\mathcal{A} = \{ C(a), \ r(a,b), \ \neg D(b) \}$$

A broader take on exceptionality

Example

$$\mathcal{T} = \{ C \sqsubseteq \forall r.D \}$$
$$\mathcal{A} = \{ C(a), \ r(a,b), \ \neg D(b) \}$$

In previous approaches

- $C \sqsubseteq \forall r.D$ is too strong
- Replace it with $C \sqsubseteq \forall r.D$ (and make sure a is not typical in C)

A broader take on exceptionality

Example

$$\mathcal{T} = \{ C \sqsubseteq \forall r.D \}$$
$$\mathcal{A} = \{ C(a), \ r(a,b), \ \neg D(b) \}$$

In previous approaches

- $C \sqsubseteq \forall r.D$ is too strong
- Replace it with $C \subseteq \forall r.D$ (and make sure a is not typical in C)

There may be alternatives

- What if (a, b) is not a typical *r*-instance?
- The relationship is exceptional

A broader take on exceptionality

Example

$$\mathcal{T} = \{ C \sqsubseteq \forall r.D \}$$
$$\mathcal{A} = \{ C(a), \ r(a,b), \ \neg D(b) \}$$

In previous approaches

- $C \sqsubseteq \forall r.D$ is too strong
- Replace it with $C \sqsubseteq \forall r.D$ (and make sure a is not typical in C)

There may be alternatives

- What if (a, b) is not a typical *r*-instance?
- The relationship is exceptional

Typicality of <u>relations</u> not accounted for by existing approaches

A broader take on exceptionality

Example

$$\mathcal{T} = \{ C \sqsubseteq \forall r.D \}$$
$$\mathcal{A} = \{ C(a), \ r(a,b), \ \neg D(b) \}$$

In previous approaches

- $C \sqsubseteq \forall r.D$ is too strong
- Replace it with $C \sqsubseteq \forall r.D$ (and make sure a is not typical in C)

There may be alternatives

- What if (a, b) is not a typical *r*-instance?
- The relationship is exceptional

Focus restricted to (concept) subsumption and entailment

Definition (*r*-ordered interpretation)

An *r*-ordered interpretation is a tuple $\mathcal{R} := \langle \Delta^{\mathcal{R}}, \cdot^{\mathcal{R}}, \prec^{\mathcal{R}} \rangle$ where

- $\langle \Delta^{\mathcal{R}}, \cdot^{\mathcal{R}} \rangle$ is a DL interpretation
- $\prec^{\mathcal{R}} := \langle \prec_1^{\mathcal{R}}, \dots, \prec_n^{\mathcal{R}} \rangle$ where • $\prec_i^{\mathcal{R}} \subseteq r_i^{\mathcal{R}} \times r_i^{\mathcal{R}}$, for $1 \le i \le n$

• Each $\prec_i^{\mathcal{R}}$ is a well-founded strict partial order on $r_i^{\mathcal{R}}$

Definition (*r*-ordered interpretation)

An *r*-ordered interpretation is a tuple $\mathcal{R} := \langle \Delta^{\mathcal{R}}, \cdot^{\mathcal{R}}, \prec^{\mathcal{R}} \rangle$ where

• $\langle \Delta^{\mathcal{R}}, \cdot^{\mathcal{R}} \rangle$ is a DL interpretation

•
$$\prec^{\mathcal{R}} := \langle \prec^{\mathcal{R}}_{1}, \dots, \prec^{\mathcal{R}}_{n} \rangle$$
 where
• $\prec^{\mathcal{R}}_{i} \subseteq r^{\mathcal{R}}_{i} \times r^{\mathcal{R}}_{i}$, for $1 \le i \le n$

• Each $\prec^{\mathcal{R}}_i$ is a well-founded strict partial order on $r^{\mathcal{R}}_i$

Intuition

- Pairs lower down in $\prec^{\mathcal{R}}$ are more normal than those higher up
- For each $R \subseteq r_i^{\mathcal{R}}$, $\min_{\prec_i^{\mathcal{R}}} R$: most normal r_i -pairs in R w.r.t. $\prec_i^{\mathcal{R}}$

Definition (*r*-ordered interpretation)

An *r*-ordered interpretation is a tuple $\mathcal{R} := \langle \Delta^{\mathcal{R}}, \cdot^{\mathcal{R}}, \prec^{\mathcal{R}} \rangle$ where

• $\langle \Delta^{\mathcal{R}}, \cdot^{\mathcal{R}} \rangle$ is a DL interpretation

•
$$\prec^{\mathcal{R}} := \langle \prec^{\mathcal{R}}_{1}, \dots, \prec^{\mathcal{R}}_{n} \rangle$$
 where
• $\prec^{\mathcal{R}}_{i} \subseteq r^{\mathcal{R}}_{i} \times r^{\mathcal{R}}_{i}$, for $1 \le i \le n$

• Each $\prec^{\mathcal{R}}_i$ is a well-founded strict partial order on $r^{\mathcal{R}}_i$

Intuition

- Pairs lower down in $\prec^{\mathcal{R}}$ are more normal than those higher up
- For each $R \subseteq r_i^{\mathcal{R}}$, $\min_{\prec_i^{\mathcal{R}}} R$: most normal r_i -pairs in R w.r.t. $\prec_i^{\mathcal{R}}$

Notation

$$r_i^{\mathcal{R}|x} := r_i^{\mathcal{R}} \cap (\{x\} \times \Delta^{\mathcal{R}})$$

Ivan Varzinczak (CRIL)

•
$$\min_{\prec_1^{\mathcal{R}}} r_1^{\mathcal{R}} = \{x_4 x_8\}$$

• $\min_{\prec_2^{\mathcal{R}}} r_2^{\mathcal{R}} = \{x_6 x_4, x_5 x_8\}$

Beyond defeasible subsumption

Defeasible quantifiers

- $C ::= A \mid \neg C \mid C \sqcap C \mid C \sqcup C \mid \forall r.C \mid \exists r.C \mid \forall r.C \mid \exists r.C$
- E.g.: ∀guardianOf.Minor
- 'Those individuals whose all normal guardianship relations are of minors'
- $(\forall r_i.C)^{\mathcal{R}} := \{x \mid \text{ for all } y, \text{ if } (x,y) \in \min_{\prec_i^{\mathcal{R}}}(r_i^{\mathcal{R}|x}), \text{ then } y \in C^{\mathcal{R}}\}$

Defeasible number restrictions

- $C ::= \cdots \mid \leq nr.C \mid \geq nr.C \mid \geq nr.C \mid \leq nr.C$
- E.g.: $\lesssim 2$ hasSibling.Female, ≈ 1 marriedTo. \top
- In the latter, 'those individuals in one normal marriage'
- $(\gtrsim nr_i.C)^{\mathcal{R}} := \{x \mid \#\{y \mid (x,y) \in \min_{\prec_i^{\mathcal{R}}}(r_i^{\mathcal{R}\mid x}) \text{ and } y \in C^{\mathcal{R}}\} \ge n\}$

Beyond defeasible subsumption

Defeasible role inclusions

- $r_1 \sqsubset r_2$
- E.g.: guardianOf \sqsubset parentOf
- 'Usually, the role of guardianship is also that of being a parent'
- $\mathcal{R} \Vdash r_i \sqsubseteq r_j$ iff $\min_{\prec_i^{\mathcal{R}}} r_i^{\mathcal{R}} \subseteq r_j^{\mathcal{R}}$

Defeasible role assertions

- Role properties that may fail
- E.g.: partOf is <u>usually transitive</u>, marriedTo is <u>normally functional</u>
- dFun (r_i) , dTra (r_i) , dDis (r_i, r_j) , ...
- $\min_{\prec_i^{\mathcal{R}}} r_i^{\mathcal{R}}$ is functional, $\min_{\prec_i^{\mathcal{R}}} r_i^{\mathcal{R}}$ is transitive, $\min_{\prec_i^{\mathcal{R}}} r_i^{\mathcal{R}} \cap \min_{\prec_j^{\mathcal{R}}} r_j^{\mathcal{R}} = \emptyset$
- Alternative: $\top \sqsubseteq \leq 1r$ in the TBox or $r \circ r \sqsubseteq r$ in the RBox

Beyond defeasible subsumption

Theorem

 \mathcal{ALC} extended with our new constructors is decidable

Theorem

Concept satisfiability and subsumption w.r.t. acyclic TBoxes: PSPACE-complete

Theorem

Concept satisfiability and subsumption w.r.t. general TBoxes: EXPTIME-complete

A glimpse of Defeasible SROIQ

Concepts

- All *SROIQ* concepts
- $\forall r.C$, $\exists r.C$, $\exists r.Self$
- $\gtrsim ns.C$, $\lesssim ns.C$ (s is a simple role)

A glimpse of Defeasible \mathcal{SROIQ}

Concepts

- All SROIQ concepts
- $\forall r.C$, $\exists r.C$, $\exists r.$ Self
- $\gtrsim ns.C$, $\lesssim ns.C$ (s is a simple role)

Statements and assertions

- All SROIQ statements and assertions
- $C \sqsubseteq D$, $r \circ r \sqsubseteq r$, $\operatorname{inv}(r) \sqsubseteq r$
- $s_1 \circ \cdots \circ s_n \sqsubset r$, $r \circ s_1 \circ \cdots \circ s_n \sqsubset r$, $s_1 \circ \cdots \circ s_n \circ r \sqsubset r$
- dFun(r), dRef(r), dIrr(r), dSym(r), dAsy(r), dTra(r), dDis(r,s)

A glimpse of Defeasible \mathcal{SROIQ}

Reduction of $\langle \mathcal{T}, \mathcal{A}, \mathcal{R} \rangle$ to $\langle \emptyset, \emptyset, \mathcal{R} \rangle$

- Elimination of the ABox as for classical SROIQ
- Rewriting of classical role assertions as for classical \mathcal{SROIQ}
- Rewriting of defeasible role assertions: Replace
 - dFun(r) with $\top \sqsubseteq \lesssim 1r.\top$
 - dRef(r) with $\top \sqsubseteq \exists r.\text{Self}$ and dIrr(r) with $\top \sqsubseteq \neg \exists r.\text{Self}$
 - $\mathrm{dSym}(r)$ with $r^{-} \sqsubseteq r$
 - dTra(r) with $r \circ r \sqsubset r$
 - dAsy(r) with $dDis(r, r^{-})$
- Rewrite $C \sqsubseteq D$ in SROIQ
- Eliminate the TBox and the universal role as for classical \mathcal{SROIQ}

A glimpse of Defeasible SROIQ

Tableau system

- Extension of the *SROIQ* tableau:
 - Rules □, ⊔, ∀, ch, ≤ and o do not change (modulo new blocking and merging)
 - New versions of \exists -, Self-, \geq and NN-rules
 - 8 new rules for defeasible constructs
- For now, we don't deal with role composition on the LHS of $\ \sqsubseteq$

A glimpse of Defeasible \mathcal{SROIQ}

Tableau system

- Extension of the SROIQ tableau:
 - Rules □, ⊔, ∀, ch, ≤ and o do not change (modulo new blocking and merging)
 - New versions of ∃-, Self-, ≥- and NN-rules
 - 8 new rules for defeasible constructs
- For now, we don't deal with role composition on the LHS of $\ \sqsubseteq$

Theorem

- Let C be a concept and \mathcal{R} an RBox.
- The tableau algorithm terminates if started with nnf(C) and $\mathcal R$
- When exhaustively applied to nnf(C) and \mathcal{R} , the expansion rules yield a complete and clash-free completion graph iff C is satisfiable w.r.t. \mathcal{R}

Issues with a single ordering on objects

Assume

• Cheninblanc $\subseteq \exists$ hasAroma.Floral

• Cheninblanc $\subseteq \forall$ hasOrigin.Loire

Then

- No way to have $x \prec y$ and $y \prec x$
 - No model of reality!

$$C \sqsubseteq_r D$$

Definition

Let $\mathcal{R} = \langle \Delta^{\mathcal{R}}, \cdot^{\mathcal{R}}, \prec^{\mathcal{R}} \rangle$ be an *r*-ordered interpretation. For every role *r*, let

$$\begin{aligned} <^{\mathcal{R}}_r &:= & \{(x,y) \mid \text{ for some } z, u \in \Delta^{\mathcal{R}}, [((x,z),(y,u)) \in \prec^{\mathcal{R}}_r] \text{ and} \\ & \text{ for no } z, u \in \Delta^{\mathcal{R}}, [((y,u),(x,z)) \in \prec^{\mathcal{R}}_r] \} \end{aligned}$$

Then

•
$$\mathcal{R} \Vdash C \sqsubseteq_r D$$
 iff $\min_{<_r^{\mathcal{R}}} C^{\mathcal{R}} \subseteq D^{\mathcal{R}}$

Example

- Cheninblanc $\sqsubseteq_{hasAroma} \exists hasAroma.Floral$
- Cheninblanc $\sqsubseteq_{hasOrigin} \forall hasOrigin.Loire$

• $\prec_1^{\mathcal{R}} = \{(x_4x_8, x_2x_5), (x_2x_5, x_1x_6), (x_4x_8, x_1x_6)\}$ • $\prec_2^{\mathcal{R}} = \{(x_5x_8, x_9x_3), (x_6x_4, x_4x_4)\}$

• $\prec_1^{\mathcal{R}} = \{(x_4x_8, x_2x_5), (x_2x_5, x_1x_6), (x_4x_8, x_1x_6)\}$ • $\prec_2^{\mathcal{R}} = \{(x_5x_8, x_9x_3), (x_6x_4, x_4x_4)\}$

• $<_{1}^{\mathcal{R}} = \{(x_4, x_2), (x_2, x_1), (x_4, x_1)\}$

$$\prec_2 = \{(x_5x_8, x_9x_3), (x_6x_4, x_4x_4)\}$$

•
$$<_{2}^{\mathcal{R}} = \{(x_{5}, x_{9}), (x_{6}, x_{4})\}$$

• $\prec_1^{\mathcal{R}} = \{(x_4x_8, x_2x_5), (x_2x_5, x_1x_6), (x_4x_8, x_1x_6)\}$ • $\prec_2^{\mathcal{R}} = \{(x_5x_8, x_9x_3), (x_6x_4, x_4x_4)\}$

• $\prec_1^{\mathcal{R}} = \{(x_4x_8, x_2x_5), (x_2x_5, x_1x_6), (x_4x_8, x_1x_6)\}$ • $\prec_2^{\mathcal{R}} = \{(x_5x_8, x_9x_3), (x_6x_4, x_4x_4)\}$

• $\prec_1^{\mathcal{R}} = \{(x_4x_8, x_2x_5), (x_2x_5, x_1x_6), (x_4x_8, x_1x_6)\}$ • $\prec_2^{\mathcal{R}} = \{(x_5x_8, x_9x_3), (x_6x_4, x_4x_4)\}$

Lemma

For every r, \sqsubset_r is preferential (in the KLM sense). If $<_r^{\mathcal{R}}$ is a modular order, then \sqsubset_r is rational.

Lemma

For every r, \sqsubset_r is preferential (in the KLM sense). If $<_r^{\mathcal{R}}$ is a modular order, then \sqsubset_r is rational.

Moreover

- Contextual rational closure: generalisation to contexts (under review)
- But, of course, it still doesn't satisfy

$$(\exists \mathsf{M}) \ \frac{C \sqsubseteq {}_{r}D}{\exists r.C \sqsubseteq {}_{r}\exists r.D}$$
$$(\forall \mathsf{M}) \ \frac{C \sqsubseteq {}_{r}D}{\forall r.C \sqsubseteq {}_{r}\forall r.D}$$

Outline

Basic Defeasible DLs

Furthering Defeasibility in DL Ontologies

Conclusion

Conclusion

Summary

- DLs are classical: no coping with exceptions and inconsistencies
- Defeasible subsumption, properties and entailment (and issues)
- A family of new defeasible constructors and their properties
- Theoretical feasibility of the proposed frameworks
- An approach to contextual defeasible subsumption

Conclusion

Summary

- DLs are classical: no coping with exceptions and inconsistencies
- Defeasible subsumption, properties and entailment (and issues)
- A family of new defeasible constructors and their properties
- Theoretical feasibility of the proposed frameworks
- An approach to contextual defeasible subsumption

Ongoing and future work

- Extensions of rational closure in the new framework
- Implementation of Protégé plugins followed by experimental tests
- Conjunctive-query answering in the richer languages

References

- K. Britz and I. Varzinczak. *Rationality and context in defeasible subsumption*. Submitted.
- K. Britz and I. Varzinczak. *Context-based defeasible subsumption for* $d\mathcal{SROIQ}$. Commonsense, 2017.
- K. Britz and I. Varzinczak. *Towards defeasible SROIQ*. DL, 2017.
- K. Britz and I. Varzinczak. *Introducing Role Defeasibility in Description Logics*. JELIA, 2016.
- R. Booth, G. Casini, T. Meyer and I. Varzinczak. *On the entailment problem for a logic of typicality*. IJCAI, 2015.
- G. Casini, T. Meyer, K. Moodley, U. Sattler and I. Varzinczak. Introducing Defeasibility into OWL Ontologies. ISWC, 2015.

References

- K. Britz and I. Varzinczak. *Rationality and context in defeasible subsumption*. Submitted.
- K. Britz and I. Varzinczak. *Context-based defeasible subsumption for* $d\mathcal{SROIQ}$. Commonsense, 2017.
- K. Britz and I. Varzinczak. *Towards defeasible SROIQ*. DL, 2017.
- K. Britz and I. Varzinczak. *Introducing Role Defeasibility in Description Logics*. JELIA, 2016.
- R. Booth, G. Casini, T. Meyer and I. Varzinczak. *On the entailment problem for a logic of typicality*. IJCAI, 2015.
- G. Casini, T. Meyer, K. Moodley, U. Sattler and I. Varzinczak. Introducing Defeasibility into OWL Ontologies. ISWC, 2015.

Thank you!