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Abstract Description logics have been extended in a number of ways to sup-
port defeasible reasoning in the KLM tradition. Such features include pref-
erential or rational defeasible concept inclusion, and defeasible roles in com-
plex concept descriptions. Semantically, defeasible subsumption is obtained by
means of a preference order on objects, while defeasible roles are obtained by
adding a preference order to role interpretations. In this paper, we address an
important limitation in defeasible extensions of description logics, namely the
restriction in the semantics of defeasible concept inclusion to a single prefer-
ence order on objects. We do this by inducing a modular preference order on
objects from each modular preference order on roles, and using these to rela-
tivise defeasible subsumption. This yields a notion of contextualised rational
defeasible subsumption, with contexts described by roles. We also provide a
semantic construction for rational closure and a method for its computation,
and present a correspondence result between the two.

Keywords Description logics, non-monotonic reasoning, defeasible subsump-
tion, preferential semantics, rational closure, context

1 Introduction

Description Logics (DLs) [2] are decidable fragments of first-order logic that
serve as the formal foundation for Semantic-Web ontologies. As witnessed by
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recent developments in the field, DLs still allow for meaningful, decidable ex-
tensions, as new knowledge representation requirements are identified. A case
in point is the need to allow for exceptions and defeasibility in reasoning over
logic-based ontologies [4–6,15,16,19,21,23,29,31,32,37,38,44,46]. Yet, DLs do
not allow for the direct expression of and reasoning with different aspects of
defeasibility.

Given the special status of concept inclusion in DLs in particular, and the
historical importance of entailment in logic in general, past research efforts
in this direction have focused primarily on accounts of defeasible subsump-
tion and the characterisation of defeasible entailment. Semantically, the latter
usually takes as point of departure orderings on a class of first-order inter-
pretations [36,38], whereas the former usually assume a preference order on
objects of the domain [17,18,33].

Recently, we proposed decidable extensions of DLs supporting defeasible
knowledge representation and reasoning over ontologies [21,23,24,27]. Our pro-
posal built on previous work to resolve two important ontological limitations
of the preferential approach to defeasibility in DLs — the assumption of a
single preference order on all objects in the domain of interpretation, and the
assumption that defeasibility is intrinsically linked to arguments or condition-
als [20,22,25,26].

We achieved this by introducing non-monotonic reasoning features that
any classical DL can be extended with in the concept language, in subsump-
tion statements and in role assertions, via an intuitive notion of normality for
roles [21]. This parameterised the idea of preference while at the same time in-
troducing the notion of defeasible class membership. Defeasible subsumption
allows for the expression of statements of the form “C is usually subsumed
by D”, for example, “Chenin blanc wines are usually unwooded”. In the ex-
tended language, one can also refer directly to, for example, “Chenin blanc
wines that usually have a wood aroma”. We can also combine these seam-
lessly, as in: “Chenin blanc wines that usually have a wood aroma are usually
wooded”. This cannot be expressed in terms of defeasible subsumption alone,
nor can it be expressed w.l.o.g. using typicality-based operators [7,9,33,34,48]
on concepts. This is because the semantics of the expression is inextricably
tied to the two distinct uses of the term ‘usually’, one applying to objects and
the other to relationships.

Nevertheless, even this generalisation leaves open the question of differ-
ent, possibly incompatible, notions of defeasibility in subsumption, similar to
those studied in contextual argumentation [1,3]. In the statement “Chenin
blanc wines are usually unwooded”, the context relative to which the sub-
sumption is normal is left implicit — in this case, the style of the wine. In a
different context such as consumer preference or origin, the most preferred (or
normal, or typical) Chenin blanc wines may not correlate with the usual wine
style. Wine x may be more exceptional than y in one context, but less excep-
tional in another context. This represents a form of inconsistency in defeasible
knowledge bases that could arise from the presence of named individuals in
the ontology. The example illustrates why a single ordering on individuals,
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as it is usually assumed, does not suffice. It also points to a natural index
for relativised context, namely the use of preferential role names as we have
previously proposed [21]. Using role names to indicate context in defeasible
subsumption has the advantage that the vocabulary of the language does not
have to be extended by a new set of context names. Furthermore, opting for
role names rather than concept names to indicate context has a simpler seman-
tics, since constructs to form complex roles are either absent or limited. The
semantics of roles can also be suitably constrained by concept inclusions, for
example by defining domain restrictions. In this paper, we therefore propose
to induce multiple preference orders on objects from preference orders on role
interpretations, and use these to relativise defeasible subsumption. This yields
a notion of contextualised defeasible subsumption, with contexts indicated by
role names.

The remainder of the present paper is structured as follows: In Section 2,
we provide a summary of the required background on ALC, the prototypical
description logic and on which we shall focus in the present work. In Section 3,
we introduce an extension of ALC to represent both defeasible constructs on
complex concepts and contextual defeasible subsumption. In Section 4, we
address the most important question from the standpoint of knowledge repre-
sentation and reasoning with defeasible ontologies, namely that of entailment
from defeasible knowledge bases. In particular, we present a semantic con-
struction of contextual rational closure and provide a method for computing
it. Finally, with Section 5 we conclude the paper.

The present paper is a revised and extended version of a paper presented at
FoIKS 2018 [27]. Familiarity with the preferential approach to non-monotonic
reasoning [41,43,47] will be helpful, as many of the intuitions and technical
constructions are built on the propositional case. Whenever necessary, we refer
the reader to the definitions and results in the relevant literature.

2 The description logic ALC

The (concept) language of ALC is built upon a finite set of atomic concept
names C, a finite set of role names R and a finite set of individual names I such
that C, R and I are pairwise disjoint. With A,B, . . . we denote atomic concepts,
with r, s, . . . role names, and with a, b, . . . individual names. Complex concepts
are denoted by C,D, . . . and are built according to the following rule:

C ::= > | ⊥ | C | ¬C | C u C | C t C | ∃r.C | ∀r.C

With LALC we denote the language of all ALC concepts.

The semantics of LALC is the standard set-theoretic Tarskian semantics. An
interpretation is a structure I := 〈∆I , ·I〉, where ∆I is a non-empty set called
the domain, and ·I is an interpretation function mapping concept names A to
subsets AI of ∆I , role names r to binary relations rI over ∆I , and individual
names a to elements of the domain∆I , i.e., AI ⊆ ∆I , rI ⊆ ∆I×∆I , aI ∈ ∆I .
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Define rI(x) := {y | (x, y) ∈ rI}. We extend the interpretation function ·I to
also interpret complex concepts of LALC in the following way:

>I := ∆I ;

⊥I := ∅;

(¬C)I := ∆I \ CI ;

(C uD)I := CI ∩DI ;

(C tD)I := CI ∪DI ;

(∃r.C)I := {x ∈ ∆I | rI(x) ∩ CI 6= ∅};

(∀r.C)I := {x ∈ ∆I | rI(x) ⊆ CI}.
Given C,D ∈ LALC , C v D is called a subsumption statement, or general

concept inclusion (GCI), read “C is subsumed by D”. C ≡ D is an abbreviation
for both C v D and D v C. An ALC TBox T is a finite set of subsumption
statements and formalises the intensional knowledge about a given domain of
application. Given C ∈ LALC , r ∈ R and a, b ∈ I, an assertional statement
(assertion, for short) is an expression of the form a : C or (a, b) : r. An ALC
ABox A is a finite set of assertional statements formalising the extensional
knowledge of the domain. We denote statements, both subsumption and as-
sertional, with α, β, . . .. Given T and A, with KB := T ∪A we denote an ALC
knowledge base, a.k.a. an ontology.

An interpretation I satisfies a subsumption statement C v D (denoted
I 
 C v D) if CI ⊆ DI . I satisfies an assertion a : C (respectively, (a, b) : r),
denoted I 
 a : C (respectively, I 
 (a, b) : r), if aI ∈ CI (respectively,
(aI , bI) ∈ rI).

An interpretation I is a model of a knowledge base KB (denoted I 
 KB)
if I 
 α for every α ∈ KB. A statement α is (classically) entailed by KB,
denoted KB |= α, if every model of KB satisfies α.

For more details on Description Logics in general and on ALC in particular,
the reader is invited to consult the Description Logic Handbook [2].

3 Contextual defeasibility in DLs

In this section, we introduce an extension of ALC to represent both defeasible
constructs on complex concepts and contextual defeasible subsumption. The
logic presented here draws on the introduction of defeasible roles [21] and
recent work on context-based defeasible subsumption [27].

3.1 Defeasible constructs

Our previous investigations of defeasible DLs included parameterised defeasi-
ble constructs on concepts based on preferential roles, in the form of defea-
sible value and existential restriction of the form

∨∼r.C and −∼−|r.C. Intuitively,
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these concept descriptions refer respectively to individuals whose normal r-
relationships are only to individuals from C, and individuals that have some
normal r-relationship to an individual from C. However, while these constructs
allowed for multiple preference orders on (the interpretation of) roles, only a
single preference order on objects was assumed. This was somewhat of an
anomaly, which we address here by adding context-based orderings on objects
that are derived from preferential roles [23]. Briefly, each preferential role r,
interpreted as a strict partial order on the binary product space of the domain,
gives rise to a context-based order on objects as detailed in Definition 3 below.

The (concept) language of defeasible ALC, or dALC, is built according to
the following rule:

C ::= > | ⊥ | C | ¬C | C u C | C t C | ∃r.C | ∀r.C | −∼−|r.C |
∨∼r.C

With LdALC we denote the language of all dALC concepts.

The extension of ALC we propose here also adds contextual defeasible
subsumption statements to knowledge bases. Given C,D ∈ LdALC and r ∈ R,
C @∼rD is a defeasible subsumption statement or defeasible GCI, read “C is
usually subsumed by D in the context r”. A dALC defeasible TBox (or dTBox,
for short) D is a finite set of defeasible GCIs. A dALC classical TBox T (or
TBox T for short) is a finite set of (classical) subsumption statements C v D
(i.e., T may contain defeasible concept constructs, but not defeasible concept
inclusions). As before, we shall use α, β, . . . to denote statements, both classical
and defeasible.

This begs the question of adding some version of “contextual classical sub-
sumption” to the TBox, but, as we shall see in Section 3.2, this simply reduces
to classical subsumption.

Given a dALC classical TBox T , an ABox A and a dALC defeasible
TBox D, from now on we let KB := T ∪ D ∪ A and refer to it as a dALC
knowledge base (alias defeasible ontology). Although we allow ABox assertions
in the dALC language and semantics, our focus in this paper, and in particular
in Section 4, is on dALC knowledge bases in which the ABox A is empty, i.e.,
KB = T ∪ D.

3.2 Preferential semantics

We anchor our semantic constructions in the well-known preferential approach
to non-monotonic reasoning [41,43,47] and its extensions [9,10,8,12,25,26,20],
especially those in DLs [19,21,35,45,48].

Let X be a set and let < be a strict partial order on X. With min<X :=
{x ∈ X | there is no y ∈ X s.t. y < x} we denote the minimal elements of X
w.r.t. <. With #X we denote the cardinality of X.
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Definition 1 (Ordered interpretation) An ordered interpretation is a tu-
ple O := 〈∆O, ·O,�O〉 such that:

• 〈∆O, ·O〉 is an ALC interpretation, with AO ⊆ ∆O, for each A ∈ C, rO ⊆
∆O ×∆O, for each r ∈ R, and aO ∈ ∆O, for each a ∈ I, and

• �O:= 〈�O1 , . . . ,�O#R〉, where �Oi ⊆ rOi × rOi , for i = 1, . . . ,#R, and such
that each �Oi is a well-founded strict partial order.

As an example, let C = {Employee,Company,Student,EmployedStudent,
Parent,Tax}, R = {pays, employedBy,worksFor}, and I = {john, ibm,mary},
with the respective obvious intuitions. Let O = 〈∆O, ·O,�O〉 be such that
∆O = {xi | 0 ≤ i ≤ 9}, and interpreting the above vocabulary as follows:
EmployeeI = {x1, x2, x5, x9}, CompanyI = {x6, x10}, StudentI = {x1, x5, x7, x8},
EmployedStudentI = {x1, x5}, ParentI = {x1, x2, x3}, TaxI = {x4}, paysI =
{(x1, x0), (x5, x4)}, employedByI = {(x9, x10)}, worksForI = {(x2, x3), (x2, x6),
(x5, x6), (x9, x6), (x9, x10)}, johnI = x5, ibmI = x6, maryI = x2.

Moreover, let us assume�O= 〈�Opays,�OemployedBy,�OworksFor〉, where�Opays=
{(x5x4, x1x0)}, �OemployedBy= ∅, and �OworksFor= {(x2x6, x2x3), (x9x10, x9x6),
(x9x6, x5x6), (x9x10, x5x6)}. (For the sake of readability, we shall henceforth
sometimes write tuples of the form (x, y) as xy.)

Figure 1 below depicts the ordered interpretation O from the above exam-
ple. In the picture, preference relations are represented by the dashed arrows.
(Note the direction of the �O-arrows, which point from more preferred to
less preferred pairs of objects. Also for the sake of readability, we omit the
transitive �O-arrows.)

For example, we see that, informally, the individual john is a Student and
an Employee, ibm is a Company, and john worksFor ibm. We also have unnamed
objects in this domain, such as x0 and x1, where x1 is a Parent but x0 is not.

O :
∆O

TaxO

ParentO

StudentO EmployeeO

CompanyO

E
m
p
lo
ye
d
S
tu
d
en

tOx0 x1 x2(mary) x3

x4 x5(john) x6(ibm)

x7 x8 x9 x10

pays worksFor

worksFor

pays worksFor

worksFor

worksFor

employedBy

Fig. 1 A dALC ordered interpretation.
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Given O = 〈∆O, ·O,�O〉, the intuition of ∆O and ·O is the same as in
a standard DL interpretation. The intuition underlying each of the orderings
in �O is that they play the role of preference relations (or normality order-
ings), in a sense similar to that introduced by Shoham [47] with a preference on
worlds in a propositional setting and as investigated by Kraus et al. [41,43] and
others [9,10,12,18,33]: the pairs (x, y) that are lower down in the ordering�Oi
are deemed as the most normal (or typical, or expected, or conventional) in
the context of ri.

The well-foundedness condition on each preference order assumed in Def-
inition 1 will be used in the semantic construction of rational entailment of
Section 4.2. It is sometimes replaced by the weaker smoothness condition in
the literature on preferential reasoning [41], but this is not required here.

In the following definition we show how ordered interpretations can be
extended to interpret the complex concepts of the language.

Definition 2 (Interpretation of concepts) Let O = 〈∆O, ·O,�O〉, let
r ∈ R and let rO|x := rO∩({x}×∆O) (i.e., the restriction of the domain of rO
to {x}). The interpretation function ·O interprets dALC concepts as follows:

>O := ∆O;

⊥O := ∅;

(¬C)O := ∆O \ CO;

(C uD)O := CO ∩DO;

(C tD)O := CO ∪DO;

(∃r.C)O := {x ∈ ∆O | rO(x) ∩ CO 6= ∅};

(∀r.C)O := {x ∈ ∆O | rO(x) ⊆ CO};

(−∼−|r.C)
O := {x ∈ ∆O | min�Or (r

O|x)(x) ∩ CO 6= ∅};

(
∨∼r.C)O := {x ∈ ∆O | min�Or (r

O|x)(x) ⊆ CO}.

If, as in Definition 2, the role name r is not indexed, we use r itself as
subscript in �Or . It is not hard to see that, analogously to the classical case,∨∼ and −∼−| are dual to each other.

In the ordered interpretation of Figure 1 we can see that, for example:
(Student u Employee)O = {x1, x5}; (∃worksFor.> u ∀worksFor.Company)O =
{x5, x9}, and (∃worksFor.> u

∨∼worksFor.Company)O = {x2, x5, x9}.

Definition 3 (Satisfaction) Let O = 〈∆O, ·O,�O〉, r ∈ R, C,D ∈ LdALC ,
and a, b ∈ I. Define ≺Or ⊆ ∆O ×∆O as follows:

≺Or := {(x, y) | (∃(x, z) ∈ rO)(∀(y, v) ∈ rO)[((x, z), (y, v)) ∈ �Or ]}.
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The satisfaction relation 
 is defined as follows:

O 
 C v D if CO ⊆ DO;

O 
 C @∼rD if min≺Or C
O ⊆ DO;

O 
 a : C if aO ∈ CO;

O 
 (a, b) : r if (aO, bO) ∈ rO.

If O 
 α, then we say O satisfies α. O satisfies a defeasible knowledge base KB,
written O 
 KB, if O 
 α for every α ∈ KB, in which case we say O is a model
of KB. We say C ∈ LdALC is satisfiable w.r.t. KB if there is a model O of KB
s.t. CO 6= ∅. Likewise, r ∈ R is satisfiable w.r.t. KB if there is a model O of KB
s.t. rO 6= ∅.

For example, in the ordered interpretation of Figure 1 we have that O 

Employee@∼worksFor¬Student. That is, employees are normally not students. We
also have that O 
 ∀worksFor.Company v

∨∼worksFor.Company, but O 6
∨∼worksFor.Company v ∀worksFor.Company. That is, every individual who only
works for a company, normally only works for a company. But it is not the
case that every individual who normally only works for a company, only works
for a company.

The intuition of each context-based preference order ≺Or on objects in
the domain of interpretation is to rank the relative normality of objects in the
given context r. Different contexts can therefore in general give rise to different
orderings. This does not imply that roles are identified with contexts, but
rather that they provide a useful vehicle to relativise defeasible subsumption,
and to introduce multiple preference orders on objects that are naturally read
as providing context to preferences. It remains a modelling decision whether
to peg a context to an existing role name, or introduce a new independent role
name for this purpose.

Note that, for every r ∈ R, @∼r is ampliative and non-monotonic:

• Ampliativity: for every O, if O 
 C v D, then O 
 C @∼rD;

• Non-monotonicity: it is not generally the case that, for every O, if O 

C @∼rD, then O 
 C u E @∼rD for every E ∈ LdALC .

It follows from Definition 3 that, if �Or = ∅, i.e., if no r-tuple is preferred
to another, then @∼r reverts to v. A similar observation holds for individual
concept inclusions: if (C u ∃r.>)O = ∅, then C @∼rD reverts to C v D. This
reflects the intuition that the context r is taken into account through the
preference order on rO. In the absence of any preference, the context becomes
irrelevant. This also shows why the classical counterpart of @∼r is independent
of r — context is taken into account in the form of a preference order, but
preference has no bearing on the semantics of v.

Lemma 1 below shows that every ordered interpretation gives rise to a
preference order on objects in the domain. Conversely, Lemma 2 shows that
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every strict partial order on objects in the domain ∆O can be obtained from
some strict partial order on the interpretation of a new role name as in Defi-
nition 3. This means that the more traditional preference order on all objects
in the domain, as usually adopted in the literature [18,19,33], is a special case
of our proposal.

Lemma 1 Let O = 〈∆O, ·O,�O〉, r ∈ R and let ≺Or be as in Definition 3.
Then ≺Or is a well-founded strict partial order on ∆O.

Lemma 2 Let O = 〈∆O, ·O,�O〉, and let ≺ be a well-founded strict partial
order on ∆O. Let O′ be an extension of O with fresh role name r′ ∈ R added,
such that:

O′ 
 > v ∃r′.>;
�O′r′ := {((x, z), (y, v)) | x ≺ y and (x, z), (y, v) ∈ r′O

′
}.

Let ≺O′r′ be as in Definition 3. Then ≺ =≺O′r′ .

Corollary 1 Let O′, ≺ and r′ be as in Lemma 2, and let @∼ be defined by:
O′ 
 C @∼D if min≺ C

O′ ⊆ DO′ . Then @∼r′ has the same semantics as @∼.

Corollary 1 states that, in the special case where the domain of a new
designated context-providing role includes all objects, contextual defeasible
subsumption coincides with defeasible subsumption based on a single prefer-
ence order. In the more general parameterised case, consider for example the
role hasOrigin, which links individual wines to origins. Wine y is considered
more exceptional than x w.r.t. its origin if it has some more exceptional origin
link than x, and none that are less exceptional. This illustrates how context
serves to inform the preference order on objects.

Contextual defeasible subsumption @∼r can therefore also be viewed as
defeasible subsumption based on a preference order on objects in the domain
of rO, bearing in mind that, in any given interpretation, it is dependent on
�Or . For the remainder of this paper, we use @∼ as abbreviation for @∼r′ , where
r′ is a new role name introduced as in Lemma 2.

This raises the question whether a preference order on objects in the range
of rO could be considered as an alternative. In a more expressive language
allowing for role inverses, @∼inv(r) achieves this goal [23], but in dALC, this
would have to be added as an additional language construct.

The following result, of which the proof is analogous to that in the single-
ordering case [15], shows that contextual defeasible subsumption is indeed an
appropriate notion of non-monotonic subsumption:

Lemma 3 For every r ∈ R, @∼r is a preferential subsumption relation on
concepts in that the following rules (a.k.a. the DL version of the well-known
KLM-style postulates or properties) hold for every ordered interpretation O,
i.e., whenever O satisfies the antecedent, it satisfies the consequent as well:
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(Ref) C @∼rC (LLE)
C ≡ D, C @∼rE

D @∼rE
(And)

C @∼rD, C @∼rE
C @∼rD u E

(Or)
C @∼rE, D @∼rE
C tD @∼rE

(RW)
C @∼rD, D v E

C @∼rE
(CM)

C @∼rD, C @∼rE
C uD @∼rE

The following property, which follows directly from the preferential seman-
tics, makes explicit all classical information captured in the form of defeasible
concept inclusions:

Lemma 4 For every r ∈ R, the following property holds for every ordered
interpretation O

(CC)
C @∼r⊥
C v ⊥

We now turn to a class of ordered interpretations that are of special im-
portance in non-monotonic reasoning, namelymodular interpretations. A strict
partial order is called a modular order if its associated incomparability relation
is transitive. That is, given a strict partial order < over set X with converse
relation >, the relation 6< ∩ 6> is a transitive relation. This condition parti-
tions X into equivalence classes of incomparable elements. The strict partial
order < induces a linear order on these equivalence classes: Given two equiv-
alence classes [x] and [y], we either have z < u for all z ∈ [x] and u ∈ [y], or
z > u for all z ∈ [x] and u ∈ [y], or [x] = [y].

Definition 4 (Modular interpretation) A modular interpretation is an
ordered interpretation O := 〈∆O, ·O,�O〉, where �Or is modular, for each
r ∈ R.

For example, in the modular interpretation depicted in Figure 2 below,
the modular orders on paysO, worksForO and employedByO induce the follow-
ing respective equivalence classes: For the role pays, we have two equivalence
classes {x5x4} and {x1x0}; for worksFor we have {x9x10}, {x9x6, x2x6} and
{x5x6, x2x3}, and for employedBy the only equivalence class is {x9x10}.

Lemma 5 Let O be a modular interpretation, r ∈ R and let ≺Or be as in
Definition 3. Then ≺Or is a modular order.

We call an ordered model of a knowledge base KB which is a modular inter-
pretation a modular model of KB. It turns out that if the preference order�Or
on the interpretation of r is modular, then the defeasible subsumption @∼r it
induces is also rational:

Lemma 6 For every r ∈ R, @∼r is a rational subsumption relation on con-
cepts in that every modular interpretation O satisfies the following rational
monotonicity property:

(RM)
C @∼rE, C 6@∼r¬D

C uD @∼rE
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O :
∆O

TaxO

ParentO

StudentO EmployeeO

CompanyO

E
m
p
lo
ye
d
S
tu
d
en

tOx0 x1 x2(mary) x3

x4 x5(john) x6(ibm)

x7 x8 x9 x10

pays worksFor

worksFor

pays worksFor

worksFor

worksFor

employedBy

Fig. 2 A dALC modular interpretation.

The importance of modularity therefore lies in that it delivers a rational
defeasible subsumption relation.

We close this subsection by stating two lemmas that will be useful later on.
Their proofs are generalisations of the respective results in the single-ordering
case [14,17], making use of the filtration construction for preferential Kripke
models by Britz and Varzinczak [26], and we shall not provide them here.

Lemma 7 If KB has a modular model, then it has a finite modular model.

Lemma 8 If KB has a modular model that is a counter-model to C@∼rD, then
it has a finite modular model that is a counter-model to C @∼rD.

3.3 Modelling with contexts

The motivation for defeasible knowledge bases is to represent defeasible knowl-
edge, and to reason over defeasible ontologies. We now illustrate the different
aspects of defeasibility that can be expressed in dALC. We first consider de-
feasible existential restriction:

Cheninblanc u −∼−|hasAroma.Wood v ∃hasStyle.Wooded

This statement can be read as: “Chenin blanc wines that normally have a
wood aroma are wooded”. That is, any Chenin blanc wine that has a charac-
teristic wood aroma, has a wooded wine style. For an example of defeasible
subsumption, consider the statement

Cheninblanc@∼ ∃hasAroma.Floral

where @∼ is as in Corollary 1, which states that Chenin blanc wines usually
have some floral aroma. That is, the most usual Chenin blanc wines all have
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some floral aroma. Similarly,

Cheninblanc@∼ ∀hasOrigin.Loire

states that Chenin blanc wines usually come only from the Loire Valley. Now
suppose we have a Chenin blanc wine x, which comes from the Loire Valley
but does not have a floral aroma, and another Chenin blanc wine y which
has a floral aroma but comes from Languedoc. No model of this ontology can
simultaneously have x ≺ y w.r.t. origin and y ≺ x w.r.t. aroma. There can
therefore be no model that accurately models reality.

This is precisely the limitation imposed by having only a single order-
ing on objects, as is broadly assumed by preferential approaches to defeasible
DLs [18,19,33,35,37], and the motivation for introducing context-based de-
feasible subsumption. Although the two defeasible statements are not incon-
sistent, the presence of both rules out certain intended models. In contrast,
with contextual defeasible subsumption, both subsumption statements can be
expressed and x and y can have incompatible preferential relationships in the
same model:

Cheninblanc @∼hasAroma∃hasAroma.Floral

Cheninblanc@∼hasOrigin∀hasOrigin.Loire

Note that these statements cannot be changed to:

Cheninblanc v −∼−|hasAroma.Floral

Cheninblanc v
∨∼hasOrigin.Loire

as the latter state that every Chenin blanc wine has some characteristic floral
aroma and is usually exclusive to the Loire Valley. This rules out the possibility
of a Chenin blanc without a floral aroma, or one that comes only (or just
typically) from Languedoc.

We can also add subsumption statements indexed by different contextual
roles. For example:

Cheninblanc@∼ ∃hasAcidity.(Medium t High)

Cheninblanc@∼hasOrigin∃hasAcidity.High

state that Chenin blanc wines usually have a medium or high acidity, whereas
in the context of origin, Chenin blanc wines usually have a high acidity.

We conclude this section with an example from the access control domain.
Let C := {Intern,Employee,Graduate,ResearchAssociate,Classified}, and R :=
{access, hasE, hasQ}. The intuition of the concept names are evident, while the
intuition of the role names are respectively ‘has access to’, ‘has employment
status’ and ‘has qualification’. Let KB = T ∪ D with

T =

 Intern v Employee,
Employee v ∃hasE.>,
Graduate v ∃hasQ.>


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and

D =


Employee@∼ ∃access.Classified,
Intern@∼ ¬∃access.Classified,
Intern u Graduate@∼ ∃access.Classified,
ResearchAssociate@∼ ¬Employee,
ResearchAssociate@∼ Graduate


Intuitively, T states that interns are employees, employees have some em-

ployment and graduates have some qualification. D states that employees usu-
ally have access to classified information, but interns don’t, except for graduate
interns. Also, research associates are usually not employees, and they are usu-
ally graduates.

It follows from Lemma 3 that the following statements are satisfied in any
ordered model of KB:

Intern u Graduate@∼ ¬Graduate t ∃access.Classified (RW)

Intern u ¬Graduate@∼ Intern u ¬Graduate (Ref)

Intern u ¬Graduate@∼ ¬Graduate t ∃access.Classified (RW)

(Intern u Graduate) t (Intern u ¬Graduate)
@∼ ¬Graduate t ∃access.Classified (Or)

Intern@∼ ¬Graduate t ∃access.Classified (LLE)

Intern@∼ (¬Graduate t ∃access.Classified) u ¬∃access.Classified (And)

Intern@∼ ¬Graduate (RW)

One could similarly ask whether intern research associates are usually grad-
uates, and whether they should usually have access to classified information
in every ordered model of KB. It soon becomes clear that modelling defeasi-
ble information is more challenging than modelling classical information, and
that it becomes problematic when defeasible information relating to different
contexts are not modelled independently.

Suppose, for example, that John is a graduate research associate who is
also an employee, and Maria is a research associate who is neither a gradu-
ate nor an employee. In any ordered model of KB, both John and Maria are
exceptional in the class of research associates. This follows because John is
an exceptional research associate w.r.t. employment status, and Maria is an
exceptional research associate w.r.t. qualification. Also, in any ordered model
of KB John and Maria are either incomparable, or one of them is more excep-
tional than the other. Because context has not been taken into account, there
is no model in which John is more exceptional than Maria w.r.t. employment,
but Maria is more exceptional than John w.r.t. qualification.

This reflects a modelling inaccuracy resulting from the adoption of a single
preference order on objects. Using hasE and hasQ as contexts allows us to
axiomatise defeasible statements relating to different contexts independently,
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and to avoid unintended interactions between defeasible axioms. For example:

ResearchAssociate@∼hasE¬Employee

ResearchAssociate@∼hasQGraduate

This raises the question whether allowing multiple contexts simply corre-
sponds to a modelling intuition or whether it adds to the expressivity of the
language. To answer this question, we first need to investigate the notion of
entailment — determining what follows from a knowledge base.

4 Entailment in dALC

Given a dALC knowledge base KB, we are interested in the reasoning task
of entailment of statements from KB. That is, given the knowledge specified
in KB, how do we decide what other subsumption statements follow from KB?

As stated earlier, our focus in this paper is on dALC knowledge bases in
which the ABox A is empty. For the remainder of the present section, we
therefore assume that KB = T ∪ D. This is done to simplify the technical
presentation. Rational reasoning in the presence of an ABox has been inves-
tigated in the case of a single preference order on objects and the strategy
followed there should in principle apply here, too [14,30]. In Section 4.1, we
first introduce the natural generalisation of entailment to a preferential setting.
Thereafter we consider the additional assumption of modularity on preferential
models. This serves as motivation for our semantic characterisation of rational
entailment in Section 4.2.

4.1 Preferential entailment

In order to get to a definition of entailment for dALC, an obvious starting
point is to adopt a Tarskian notion thereof:

Definition 5 (Preferential entailment) A statement α is preferentially en-
tailed by a dALC knowledge base KB, written KB |=pref α, if every ordered
model of KB satisfies α.

Preferential entailment can be decided via the preferential tableau-based
method we have defined in recent work [28].

We start by considering the appropriateness of such a notion of entailment.

Definition 6 (KB-induced @∼r) Let KB be a dALC knowledge base and let
r ∈ R. With @∼KBr := {C @∼rD | KB |=pref C @∼rD} we denote the KB-induced
defeasible subsumption relation in context r.

The result below follows immediately from Lemma 3 and the definition of
preferential entailment above.
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Corollary 2 For every r ∈ R and every dALC knowledge base KB, @∼KBr is
preferential, i.e., @∼KBr is closed under the rules in Lemma 3.

In other words, Corollary 2 ensures that preferential entailment always
delivers a set of subsumption statements satisfying the basic KLM properties
for contextual non-monotonic reasoning.

Of course, preferential entailment is not always desirable, one of the reasons
being that it is monotonic, courtesy of the Tarskian notion of consequence it
relies on (see Definition 5). In most cases, as witnessed by the great deal of
work in the non-monotonic reasoning community, a move towards rationality
is in order. Thanks to the definitions above and the result in Lemma 6, we
already know where to start looking for it:

Definition 7 (Modular entailment) A statement α is modularly entailed
by a dALC knowledge base KB, written KB |=mod α, if every modular model
of KB satisfies α.

It follows from Definitions 5 and 7 respectively that both preferential and
modular entailment are explosive — if KB does not have an ordered (resp.,
modular) model, then it entails any dALC statement. Defeasible subsump-
tion provides a mechanism to resolve classical inconsistencies, but consistency
remains a prerequisite for non-trivial reasoning.

Unfortunately, modular entailment falls short of providing us with an ap-
propriate notion of non-monotonic entailment. This is so because it coincides
with preferential entailment, as the following result, adapted from a well-known
similar result in the propositional case [43, Theorem 4.2], shows.

Lemma 9 For every dALC knowledge base KB, and every statement α,
KB |=mod α if and only if KB |=pref α.

More fundamentally, this means the set of contextual @∼-statements induced
by a knowledge base (cf. Definition 6) via modular entailment need not satisfy
the rational monotonicity property. In what follows, we overcome precisely
this defficiency.

4.2 Rational entailment

In this section, we introduce a definition of semantic entailment which is ap-
propriate in the light of the discussion above. The constructions are for the
most part inspired by the work by Booth and Paris [11] in the propositional
case and those by Britz et al. [15,17] and Giordano et al. [37,38] in a single-
ordered preferential DL setting. (We shall give a corresponding proof-theoretic
characterisation of such a notion of entailment in Section 4.3.)

Let KB be a defeasible knowledge base and let ∆ be a fixed countably
infinite set. We define

Mod∆(KB) := {O = 〈∆O, ·O,�O〉 | O 
 KB,O is modular and ∆O = ∆}.
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The following result shows that the set Mod∆(KB) characterises modular en-
tailment:

Lemma 10 Let ∆ be a fixed, countably infinite set. For every KB, every
C,D ∈ LdALC and every r ∈ R, KB |=mod C @∼rD if and only if O 
 C @∼rD,
for every O ∈ Mod∆(KB).

Since ∆ is countable, for every O ∈ Mod∆(KB), we can partition ∆ ×
∆ into a sequence of layers (L0, . . . , Ln, . . .), where, for each i ≥ 0, Li :=
〈Lr1i , . . . , L

r#R

i 〉, and such that, for every x, y ∈ ∆ and every r ∈ R, (x, y) ∈ Lr0
iff (x, y) ∈ min�Or r

O and (x, y) ∈ Lri+1 iff (x, y) ∈ min�Or (r
O \

⋃
0≤j≤i L

r
j).

(That these constructions are well defined follows from the fact that, for every
r ∈ R, �Or is modular and well-founded.)

Definition 8 (Height of a pair) Let O = 〈∆O, ·O,�O〉 be a modular inter-
pretation over a countable domain ∆O, let x, y ∈ ∆O and let r ∈ R. The height
of (x, y) in O w.r.t. r is denoted hO(x, y, r) and is defined by: hO(x, y, r) := i
if (x, y) ∈ Lri .

Intuitively, the lower the height of (x, y) w.r.t. r in an interpretation O,
the more typical (or normal, or conventional) (x, y) is.

For example, in the modular interpretation O depicted in Figure 2 the
height of the respective pairs in O w.r.t. pays, worksFor and employedBy are as
follows: hO(x5, x4, pays) = 0; hO(x1, x10, pays) = 1; hO(x9, x10,worksFor) =
0; hO(x9, x6,worksFor) = hO(x2, x6,worksFor) = 1; hO(x5, x6,worksFor) =
hO(x2, x3,worksFor) = 2, and hO(x9, x10, employedBy) = 0.

For every O ∈ Mod∆(KB), given the induced ≺Or for each r ∈ R (Defini-
tion 3) and thanks to Lemma 5, ∆ too can be partitioned into a sequence of
(multiple) layers of objects of the domain. This allows us to define the height
of an object.

Definition 9 (Height of an object) Let O = 〈∆O, ·O,�O〉 be a modular
interpretation over a countable domain ∆O, let x ∈ ∆O and let r ∈ R. The
height of x in O w.r.t. r is denoted hO(x, r) and is defined by:

hO(x, r) :=

{
min{hO(x, y, r) | (x, y) ∈ rO}, if x is in the domain of rO;
ω otherwise.

Intuitively, the lower the height of an object in an interpretation O, the
more typical (or normal, or conventional) the object is in O in the context r.
We can also think of a level of typicality for concepts: the height of a concept
C ∈ LdALC in O in the context r is the index of the layer to which the
restriction of the concept’s extension to its ≺Or -minimal elements belong, i.e.,
hO(C, r) = i if min≺Or C

O 6= ∅ and hO(x, r) = i for every x ∈ min≺Or C
O. Since

O is a modular interpretation, all such ≺Or -minimal elements are guaranteed
to have the same height (i.e., they fall into the same equivalence class of
incomparable elements). If x is not in the domain of rO, its height is defined
as ω, the smallest ordinal greater than all natural numbers.
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For example, we can derive from the heights of pairs in the modular in-
terpretation of Figure 2 that hO(x9,worksFor) = 0, hO(x2,worksFor) = 1 and
hO(x5,worksFor) = 2. All other objects have height ω w.r.t. worksFor.

We can now use the set Mod∆(KB) as a springboard to introduce what
will turn out to be a canonical modular interpretation for KB.

Definition 10 (Big modular interpretation) Let KB be a modularly sat-
isfiable defeasible knowledge base and define OKB⊕ := 〈∆O

KB
⊕ , ·O

KB
⊕ ,�O

KB
⊕ 〉,

where
• ∆O

KB
⊕ :=

∐
O∈Mod∆(KB)∆

O, i.e., the disjoint union of the domains from
Mod∆(KB), where each O = 〈∆O, ·O,�O〉 ∈ Mod∆(KB) has the elements
x, y, . . . of its domain renamed as xO, yO, . . . so that they are all distinct
in ∆O

KB
⊕ ;

• xO ∈ AO
KB
⊕ if x ∈ AO;

• (xO, yO′) ∈ rO
KB
⊕ if O = O′ and (x, y) ∈ rO;

• (xO, yO′)�
OKB⊕
r (x′O, y

′
O′) if hO(x, y, r) < hO′(x

′, y′, r).

Intuitively, a big modular interpretation consists in a canonical modular in-
terpretation having as domain the disjoint union of the domains of all modular
interpretations of a knowledge base with domain ∆. It preserves the respec-
tive interpretations of concept names and role names w.r.t. each interpretation
in the disjoint union. Moreover, it defines preferences on the elements of role
interpretations that are faithful to their relative heights in the respective mod-
ular interpretations used in its construction.

The following result establishes that modular interpretations are closed
under disjoint union.

Lemma 11 If KB is modularly satisfiable, then OKB⊕ is a modular interpre-
tation.

The proofs for the two lemmas below follow from the definition of OKB⊕ :

Lemma 12 For every C ∈ LdALC and O ∈ Mod∆(KB), xO ∈ CO
KB
⊕ if and

only if x ∈ CO.

Lemma 13 For every r ∈ R and O ∈ Mod∆(KB), and for every (x, y) ∈ rO,
hOKB⊕ (xO, yO, r) = hO(x, y, r).

The three results above allow us to show the following:

Corollary 3 If KB is modularly satisfiable, then OKB⊕ is a modular model
of KB.

Given OKB⊕ , we can then define contextual modular orderings ≺O
KB
⊕

r on the
domain ∆O

KB
⊕ in the same way as in Definition 3. Thanks to Lemma 5, each

of these orderings is a modular order on ∆O
KB
⊕ .

Armed with the definitions and results above, we are now ready to provide
an alternative definition of entailment in dALC:
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Definition 11 (Rational entailment) A statement α is rationally entailed
by a knowledge base KB, written KB |=rat α, if OKB⊕ 
 α whenever OKB⊕ is
defined, or if KB is modularly unsatisfiable.

Corollary 4 Let KB be a modularly satisfiable defeasible knowledge base.
KB |=rat C@∼rD if and only if hOKB⊕ (CuD, r) < hOKB⊕ (Cu¬D, r) or hOKB⊕ (Cu
¬D, r′) = ω, where r′ is a new role name introduced as in Lemma 2.

The result below follows from the fact that the big modular interpretation
is a modular interpretation of the knowledge base (Corollary 3) together with
Lemma 6.

Corollary 5 Let KB be a defeasible knowledge base. For every r ∈ R, {C@∼rD |
KB |=rat C @∼rD} is rational, i.e., it is closed under the preferential rules of
Lemma 3 as well as the RM rule of Lemma 6.

In conclusion, |=rat is the notion of entailment for contextual defeasible
subsumption we were looking for. Modular entailment falls short of what is
needed, since it does not in general deliver a rational version of contextual
defeasible subsumption, whereas Corollary 5 shows that rational entailment
does.

4.3 Computing contextual rational closure

In the remainder of the section, we discuss a known instance of entailment for
defeasible reasoning that meets all the requirements of rational entailment. It is
a generalisation of the DL version of the propositional rational closure studied
by Lehmann and Magidor [43], to deal with context-based rational defeasible
entailment. We present a proof-theoretic characterisation here, based on the
work of Casini and Straccia [31,32]; an alternative semantic characterisation
of rational closure in DLs (without contexts) was proposed by Giordano and
others [37,38].

Rational closure is a form of inferential closure based on modular entail-
ment |=mod, but it extends its inferential power. Such an extension of modular
entailment is obtained formalising what is called the principle of presumption
of typicality [42, Section 3.1]. That is, we always assume that we are dealing
with the most typical possible situation compatible with the information at
our disposal. The main result of this section is the correspondence result of
Theorem 1, which relates rational closure to rational entailment introduced
in Definition 11 above. We first define what it means for a concept to be
exceptional in a given context:

Definition 12 (Contextual exceptionality) A concept C is exceptional in
the context r in the defeasible knowledge base KB = T ∪D if KB |=mod >@∼r¬C.
A defeasible subsumption statement C @∼rD is exceptional in the context r in
KB if C is exceptional in the context r in KB.
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So, a concept C is considered exceptional in a given context in a knowl-
edge base if it is not possible to have a modular model of the knowledge base
in which there is a typical individual (i.e., an individual at least as typical
as all the others in the domain of interpretation) that is an instance of the
concept C. Applying the notion of exceptionality iteratively, we associate with
every concept C and context r a rank in the knowledge base KB, which we
denote by rankKB(C, r). We extend this to subsumption statements, and asso-
ciate with every context r and contextual defeasible concept inclusion C @∼rD
a rank, denoted rankKB(C @∼rD, r) and abbreviated as rankKB(C @∼rD):

1. Let rankKB(C, r) = 0 if C is not exceptional in the context of r and KB,
and let rankKB(C @∼rD) = 0 for every defeasible statement having C as
antecedent, with rankKB(C, r) = 0. The set of statements in D with rank 0
is denoted as Drank

0 .
2. Let rankKB(C, r) = 1 if C does not have a rank of 0 in the context of r and

it is not exceptional in the knowledge base KB1 composed of T and the
exceptional part of D, that is, KB1 := 〈T ,D \ Drank

0 〉. If rankKB(C, r) =
1, then let rankKB(C @∼rD) = 1 for every statement C @∼rD. The set of
statements in D with rank 1 is denoted Drank

1 .
3. In general, for i > 0, a tuple 〈C, r〉 is assigned a rank of i if it does not have

a rank of i − 1 and it is not exceptional in KBi := 〈T ,D \
⋃i−1
j=0Drank

j 〉.
If rankKB(C, r) = i, then rankKB(C @∼rD) = i for every statement C @∼rD.
The set of statements in D with rank i is denoted Drank

i .
4. By iterating the previous steps, we eventually reach a subset E ⊆ D such

that all the statements in E are exceptional (since D is finite, we must
reach such a point). We define the rank of the statements in E as ω, and
the set E is denoted Drank

ω .

Following on the procedure above, D is partitioned into a finite sequence
〈Drank

0 , . . . ,Drank
n ,Drank

ω 〉 (n ≥ 0), where Drank
ω may possibly be empty. So,

through this procedure we can assign a rank to every context-based defeasible
subsumption statement.

The application of the ranking procedure will be illustrated in the example
presented in Section 4.4, but first, we present the main correspondence result
of this section in Theorem 1 below.

The following result establishes that the ranking procedure correctly cap-
tures the semantic representation in the model OKB⊕ :

Lemma 14 Let KB be a modularly satisfiable defeasible knowledge base, let
C ∈ LdALC, let r ∈ R be satisfiable, and let i ≤ ω. If rankKB(C, r) = i, then
hOKB⊕ (C, r) = i.

For a concept C to have a rank of ω in the context r corresponds to it not
being satisfiable in the domain of r in any model of KB, i.e., KB |=mod C u
∃r.> v ⊥. This is stated in Corollary 6 below, which follows from Lemma 14.
A special case of the corollary is obtained when KB |=mod > v ∃r.>, as is
the case in Lemma 2 and Corollary 1. This is made explicit by the property
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(CC), which adds the classical ramifications of incoherencies that follow from
defeasible statements in the defeasible TBox, to the TBox.

Corollary 6 Let C ∈ LdALC and let r ∈ R be satisfiable. Then rankKB(C, r) =
ω if and only if KB |=mod C u ∃r.> v ⊥.

Given C ∈ LdALC , we abbreviate the rank rankKB(C, r′) of C in the context
provided by a new role name r′ introduced as in Lemma 2, by rankKB(C).
Adapting Lehmann and Magidor’s construction for propositional logic [43],
the contextual rational closure of a knowledge base KB is now defined as
follows:

Definition 13 (Contextual rational closure) Let C,D ∈ LdALC and let
r ∈ R. Then C @∼rD is in the rational closure of a defeasible knowledge
base KB if

rankKB(C uD, r) < rankKB(C u ¬D, r) or rankKB(C u ¬D) = ω.

Informally, the above definition says that C @∼rD is in the rational closure
of KB if the modular models of the knowledge base tell us that, in the context
of r, some instances of C uD are more plausible than all instances of C u¬D.
If r is satisfiable and C is disjoint from the domain of r in all modular models
of KB (cf. Corollary 6), C @∼rD reverts to C v D and is evaluated as such.
If r is unsatisfiable, the same reduction follows from the observation that all
objects are incomparable w.r.t. r in any modular model of KB.

Theorem 1 Let KB be a modularly satisfiable defeasible knowledge base. For
every C,D ∈ LdALC and every r ∈ R, C @∼rD is in the rational closure of KB
if and only if KB |=rat C @∼rD.

4.4 Rational reasoning with context in dALC ontologies

The following example shows how ranks are assigned to concepts in a defeasible
TBox, and used to determine rational entailment. We first consider only a
single context hasE ∈ R with intuition ‘has employment’, and then extend the
example to demonstrate the strength of reasoning with multiple contexts.

Let KB = T ∪ D with T = {Intern v Employee, Employee v ∃hasE.>} and

D =

Employee@∼hasE∃access.Classified,
Intern@∼hasE¬∃access.Classified,
Intern u Graduate@∼hasE∃access.Classified


Examining the concepts on the LHS of each subsumption in D, we get that:

1. rankKB(Employee, hasE) = 0, since it is possible to instantiate Employee
with a typical individual. Hence it follows from Definition 12 that Employee
is not exceptional in KB.
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2. rankKB(Intern, hasE) 6= 0 and rankKB(Intern u Graduate, hasE) 6= 0, since
it is not possible to instantiate either with a typical individual. That is,
KB |=mod > @∼hasE¬Intern and KB |=mod > @∼hasE¬(Intern u Graduate). It
therefore follows from Definition 12 that both concepts are exceptional
in KB.

3. KB1 is composed of T and D \ Drank
0 , which consists of the defeasible

subsumptions in D except for Employee@∼hasE∃access.Classified;
4. rankKB(Intern, hasE) = 1, since Intern is not exceptional in KB1;
5. rankKB(Intern u Graduate, hasE) 6= 1, since InternuGraduate is exceptional

in KB1;
6. KB2 is composed of T and {Intern u Graduate@∼hasE∃access.Classified};
7. Intern u Graduate is not exceptional in KB2 and therefore rankKB(Intern u

Graduate, hasE) = 2.

There are algorithms to compute rational closure [29,32,38,44] that can be
adapted to account for context, but one can also apply Definition 13 to deter-
mine rational entailment. For example, since rankKB(InternuGraduate, hasE) =
2 and rankKB(Intern u ¬Graduate, hasE) = 1, we find that interns are usually
not graduates: KB |=rat Intern@∼hasE¬Graduate.

The context hasE is used to indicate that it is an individual’s typicality in
the context of employment which is under consideration. Now suppose that KB
in the above example is extended to KB′ = T ′ ∪ D′, where T ′ = {Intern v
Employee, Employee v ∃hasE.>, Graduate v ∃hasQ.>} and

D′ =


Employee@∼hasE∃access.Classified,
Intern@∼hasE¬∃access.Classified,
Intern u Graduate@∼hasE∃access.Classified,
ResearchAssociate@∼hasE¬Employee,
ResearchAssociate@∼hasQGraduate


The context hasQ is used here to indicate that it is an individual’s typicality

w.r.t. qualification which is under consideration. In our example, the rankings
calculated above are not affected by the additional information, and can be
recalculated as above. In addition, rankKB′(ResearchAssociate, hasE) = 0 and
rankKB′(ResearchAssociate, hasQ) = 0, since ResearchAssociate can be instan-
tiated with a typical individual relative to both contexts. It now follows that:

• In the context hasQ, interns who are also research associates are usually
graduates: KB′ |=rat ResearchAssociate u Intern@∼hasQGraduate. This follows
because rankKB′(ResearchAssociate u Intern u Graduate, hasQ) = 0, whereas
rankKB′(ResearchAssociate u Intern u ¬Graduate, hasQ) = 1.

• In the context hasE, interns who are also research associates are usually
not graduates: KB′ |=rat ResearchAssociate u Intern @∼hasE¬Graduate. This
follows because rankKB′(ResearchAssociate u Intern u Graduate, hasE) = 2,
whereas rankKB′(ResearchAssociate u Intern u ¬Graduate, hasE) = 1.
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On the other hand, suppose we were restricted to a single context hasE,
i.e., let KB′′ = T ′′ ∪ D′′, where T ′′ = T and

D′′ =


Employee@∼hasE∃access.Classified,
Intern@∼hasE¬∃access.Classified,
Intern u Graduate@∼hasE∃access.Classified,
ResearchAssociate@∼hasE¬Employee,
ResearchAssociate@∼hasEGraduate


We then only get that KB′′ |=rat ResearchAssociate u Intern@∼hasE¬Graduate.

Which one of these rational entailments is more intuitively correct can per-
haps be understood better by looking at the postulates for non-monotonic rea-
soning in Lemmas 3 and 6, which provide a more intuitive perspective and in-
sight than calculating rankings. Looking at models of KB′, in particular OKB′⊕ ,
it follows from (RM) that KB′ |=rat ResearchAssociate u Intern @∼hasQGraduate.
That is, in the context of qualification, since research associates are usually
graduates, so are intern research associates. Also in KB′, applying (RM) to
Intern@∼hasE¬Graduate we get InternuResearchAssociate@∼hasE ¬Graduate. That
is, in the context of employment, since interns are usually not graduates, nei-
ther are intern research associates. Note also that neither of these entailments
is warranted by modular entailment.

In contrast, in models of KB′′, including OKB′′⊕ , the former deduction is
blocked: we can apply (RW) to ResearchAssociate @∼hasE¬Employee to obtain
ResearchAssociate@∼hasE¬Intern. The application of (RM) is now blocked by the
axiom ResearchAssociate@∼hasE¬Intern, hence we cannot conclude that KB′′ |=rat

ResearchAssociate u Intern@∼hasEGraduate.
This example illustrates that even subtle modelling changes can have unex-

pected effects. Reasoning with contexts can add to the challenges of ontology
modelling, and requires clear design principles.

5 Concluding remarks

In this paper, we have made a case for a parameterised notion of defeasible
concept inclusion in description logics. We have shown that preferential roles
can be used to take context into account, and to deliver a simple, yet powerful,
notion of contextual defeasible subsumption. Technically, this addresses an
important limitation in previous defeasible extensions of description logics,
namely the restriction in the semantics of defeasible concept inclusion to a
single preference order on objects. Semantically, it answers the question of
the meaning of multiple preference orders, namely that they reflect different
contexts.

We have presented context as an explanation of the intuition underlying
the introduction of multiple preference orders on objects, with defeasibility
introducing a new facet of contextual reasoning not present in deductive rea-
soning. This offers a semantic treatment of contextual defeasible subsumption
which requires no extended vocabulary or further extension of the concept
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language, yet is informed by the semantic constraints resulting from the use of
role names in the concept language. In contrast, an account of deductive rea-
soning with contexts in knowledge representation is not intrinsically linked to
defeasible reasoning. The integration of defeasible description logics with such
an account of contextual knowledge representation in description logics, for
example, (possibly non-monotonic) contextualized knowledge repositories [13,
39] or two-sorted description logics of context [40], is orthogonal to our work,
and has not yet been attempted.

Building on previous work in the KLM tradition, we have shown that re-
stricting the preferential semantics to a modular semantics allows us to define
the notion of rational entailment from a defeasible knowledge base, and to
compute the rational closure of a knowledge base as an instance of rational
entailment. Future work should consider the implementation of contextual
rational closure, as well as the addition of an ABox. Much work is also re-
quired on the modelling side once a stable implementation exists. Contextual
subsumption provides the user with more flexibility in making defeasible state-
ments in ontologies, but comprehensive case studies are required to evaluate
the approach.
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A Proofs

Lemma 1 Let O = 〈∆O, ·O,�O〉, r ∈ R and let ≺Or be as in Definition 3. Then ≺Or is a
well-founded strict partial order on ∆O.

Proof We show that ≺Or is (i) transitive, (ii) irreflexive and (iii) antisymmetric.
(i) Suppose (x, y) ∈≺Or and (y, z) ∈≺Or . Then ∃(x, u) ∈ rO and ∃(y, v) ∈ rO such

that (∀(z, v′) ∈ rO)[((x, u), (y, v)) ∈�Or and ((y, v), (z, v′)) ∈ �Or ]. Since �Or is transitive,
(x, z) ∈≺Or . Hence ≺r is transitive.

(ii) Suppose (x, x) ∈≺Or , then ∃(x, y) ∈ rO such that ((x, y), (x, y)) ∈�Or , which con-
tradicts the irreflexivity of �Or . Hence ≺Or is irreflexive.

(iii) Suppose (x, y) ∈≺Or and (y, x) ∈≺Or . Then ∃(x, z) ∈ rO and ∃(y, u) ∈ rO such
that ((x, z), (y, u)) ∈�Or and ((y, u), (x, z)) ∈�Or , which contradicts the asymmetry of �.
Hence ≺Or is asymmetric (antisymmetric and irreflexive).

That ≺Or is well-founded follows from the well-foundedness of �Or . ut

Lemma 2 Let O = 〈∆O, ·O,�O〉, and let ≺ be a well-founded strict partial order on ∆O.
Let O′ be an extension of O with fresh role name r′ ∈ R added, such that:

O′ 
 > v ∃r′.>;
�O′
r′ := {((x, z), (y, v)) | x ≺ y and (x, z), (y, v) ∈ r′O

′
}.

Let ≺O′
r′ be as in Definition 3. Then ≺ =≺O′

r′ .

Proof Suppose (x, y) ∈ ≺. Then x and y are both in the domain of rO
′
, and ((x, z), (y, v)) ∈

�O′r for all (x, z), (y, v) ∈ rO′ . Hence (x, y) ∈ ≺O′r . Conversely, suppose that (x, y) ∈ ≺O′r .
Then (∃(x, z) ∈ rO′ )(∀(y, v) ∈ rO′ )[((x, z), (y, v)) ∈ �O′r ]. Since y is in the domain of rO

′
,

we have (x, y) ∈ ≺. ut

Lemma 3 For every r ∈ R, @∼r is a preferential subsumption relation on concepts in
that the following rules (a.k.a. the DL version of the well-known KLM-style postulates or
properties) hold for every ordered interpretation O, i.e., whenever O satisfies the antecedent,
it satisfies the consequent as well:

(Ref) C @∼rC (LLE)
C ≡ D, C @∼rE

D @∼rE
(And)

C @∼rD, C @∼rE
C @∼rD u E

(Or)
C @∼rE, D @∼rE
C tD @∼rE

(RW)
C @∼rD, D v E

C @∼rE
(CM)

C @∼rD, C @∼rE
C uD @∼rE

Proof We show that @∼r is preferential for every ordered interpretation O.

(Ref): Let x ∈ ∆O be such that x ∈ min≺Or
CO. Then x ∈ CO and therefore O 
 C @∼rC.

(LLE): Assume that O 
 C@∼rE and O 
 C ≡ D. Then min≺Or
CO ⊆ EO and CO = DO. It

follows that min≺Or
CO = min≺Or

DO. Hence min≺Or
DO ⊆ EO, and therefore O 
 D@∼rE.
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(And): Assume that O 
 C@∼rD and O 
 C@∼rE. Then min≺Or
CO ⊆ DO and min≺Or

CO ⊆
EO, and then min≺Or

CO ⊆ DO ∩ EO, from which follows min≺Or
CO ⊆ (D u E)O. Hence

O 
 C @∼rD u E.

(Or): Assume that C @∼rE and D @∼rE. Let x ∈ min≺Or
(C t D)O. Then x is minimal in

CO ∪DO, and therefore either x ∈ min≺Or
CO or x ∈ min≺Or

DO. In either case x ∈ EO.
Hence O 
 C tD @∼rE.

(RW): Assume that O 
 C @∼rD and O 
 D v E. Then min≺Or
CO ⊆ DO and DO ⊆ EO.

Hence min≺Or
CO ⊆ EO and then O 
 C @∼rE.

(CM): Assume that O 
 C@∼rD and O 
 C@∼rE. Then min≺Or
CO ⊆ DO and min≺Or

CO ⊆
EO. Let x ∈ min≺Or

(C uD)O. We show that x ∈ min≺Or
CO.

Suppose this is not the case. Since ≺Or is well-founded, there must be x′ ∈ min≺Or
CO

such that x′ ≺Or x. Because O 
 C @∼rD, x′ ∈ DO, and then x′ ∈ CO ∩ DO, i.e., x′ ∈
(C u D)O. From this and x′ ≺Or x it follows that x is not minimal in (C u D)O, which is
a contradiction. Hence x ∈ min≺Or

CO. From this and min≺Or
CO ⊆ EO, it follows that

x ∈ EO. Hence O 
 C uD @∼rE. ut

Lemma 5 Let O be a modular interpretation, r ∈ R and let ≺Or be as in Definition 3.
Then ≺Or is a modular order.

Proof It follows from Lemma 1 that ≺Or is a well-founded strict partial order. To prove
modularity, we show that the incomparability relation of ≺Or is transitive:

Let x := min�Or
rO|x. That is, x is the set of �Or -minimal elements of rO restricted to

domain {x}. Now suppose x and y are incomparable in ≺Or , and y and z are incomparable
in ≺Or . Since �Or is modular, all elements of x ∪ y are incomparable in �Or . Similarly, all
elements of y ∪ z are incomparable. It then follows from the modularity of �Or that all
elements of x∪ z are incomparable in �Or . Therefore x and z are incomparable in ≺Or . ut

Lemma 6 For every r ∈ R, @∼r is a rational subsumption relation on concepts in that
every modular interpretation O satisfies the following rational monotonicity property:

(RM)
C @∼rE, C 6@∼r¬D

C uD @∼rE

Proof Assume we have that O 
 C @∼rE and O 
 C 6 @∼r¬D. From the latter it follows
that there is x ∈ min≺Or

CO such that x ∈ DO, and hence x ∈ (C u D)O. Let x′ ∈
min≺Or

(C uD)O. We shall first prove that x′ ∈ min≺Or
CO. Since x ∈ (C uD)O, x 6≺Or x′.

That is, either x′ ≺Or x or x and x′ are incomparable. Now suppose there is some x′′ ∈ CO
such that x′′ ≺Or x′. Since ≺Or is modular, x′′ ≺Or x, which contradicts the minimality of x
in CO. Therefore x′ ∈ min≺Or

CO. From x′ ∈ min≺Or
CO and O 
 C @∼rE follows x′ ∈ EO.

Hence O 
 C uD @∼rE. ut

Lemma 10 Let ∆ be a fixed, countably infinite set. For every KB, every C,D ∈ LdALC
and every r ∈ R, KB |=mod C @∼rD if and only if O 
 C @∼rD, for every O ∈ Mod∆(KB).

Proof Let ∆ be a countably infinite domain. For the only-if part, if KB |=mod C @∼rD, then
obviously O 
 C @∼rD for every O ∈ Mod∆(KB). For the if part, assume KB 6|=mod C @∼rD.
Then, thanks to Lemma 8, there is a modular interpretation Ofin with a finite domain
that is a model of KB and a counter-model of C @∼rD. Given Ofin, we can extend it to a
model of KB that is a counter-model of C @∼rD with a countably infinite domain. Now, let
O′ = 〈∆′, ·O′ ,�O′ 〉 be a modular model of KB and a counter-model of C @∼rD, with ∆′

countably infinite. It is easy to build an isomorphic modular interpretationO = 〈∆, ·O,�O〉,
once we have defined a bijection b : ∆′ −→ ∆, which must exist, being both ∆′ and ∆
countably infinite sets. We can define ·O and �O in the following way:
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• For every A ∈ C and every x ∈ ∆′, b(x) ∈ AO iff x ∈ AO′ ;
• For every r ∈ R and every x, y ∈ ∆′, (b(x), b(y)) ∈ rO iff (x, y) ∈ rO′ ;
• For every r ∈ R and every x, y, v, z ∈ ∆′, (b(x), b(y))�Or (b(v), b(z)) iff (x, y)�O′r (v, z).

It is easy to prove by induction on the construction of the concepts that, for every
C ∈ LdALC and every x ∈ ∆′, x ∈ CO

′
iff b(x) ∈ CO. Moreover, note that x ≺O′r y

iff b(x) ≺Or b(y), where ≺O′r and ≺Or are obtained respectively from �O′r and �Or as in
Definition 3. Therefore, x ∈ min≺O′r

(CO
′
) iff b(x) ∈ min≺Or

(CO). Hence, there is a KB-
model which is a counter model for C @∼rD with ∆ as its domain. ut

Lemma 11 If KB is modularly satisfiable, then OKB⊕ is a modular interpretation.

Proof Since KB is modularly satisfiable, Mod∆(KB) 6= ∅, and therefore ∆O
KB
⊕ 6= ∅. Since

∆ is countably infinite, and each model is defined over a finite vocabulary, there are only
countably many such models. The disjoint union of domains is therefore also countably
infinite. Moreover, it is easy to see that (i) for every A ∈ C, AO

KB
⊕ ⊆ ∆O

KB
⊕ ; (ii) for every

r ∈ R, rO
KB
⊕ ⊆ ∆O

KB
⊕ ×∆O

KB
⊕ , and (iii) for every a ∈ I, aO

KB
⊕ ∈ ∆O

KB
⊕ . Finally, from the

definitions of Mod∆(KB) and of hO(x, y, r) and the construction of �
OKB⊕
r , it follows that

�
OKB⊕
r is also a modular well-founded order. ut

Lemma 14 Let KB be a modularly satisfiable defeasible knowledge base, let C ∈ LdALC,
let r ∈ R be satisfiable, and let i ≤ ω. If rankKB(C, r) = i, then hOKB⊕

(C, r) = i.

Proof First, assume i 6= ω. Given KB = T ∪ D, let rankKB(C, r) = i, and let Drank
≥i be the

subset of D containing the defeasible subsumption statements with a ranking value of at
least i. Let O′ be a modular model of T ∪Drank

≥i such that hO′ (C, r) = 0. Such a model must
exist, since rankKB(C, r) = i, that is, C is not exceptional in T ∪ Drank

≥i (cf. Definition 12).
We can assume that O′ has a finite domain, given the finite-model property (Lemma 7).
For each defeasible subsumption C @∼rD ∈ D \ Drank

≥i , let OCuD ∈ Mod∆(KB) be a model
of KB satisfiying C u D. (It can be shown by induction that such a model exists for each
such defeasible subsumption.) We define a new interpretation O′′ = 〈∆O′′ , ·O′′ ,�O′′ 〉 in
the following way:

1. ∆O
′′
is the disjoint union of the domains∆OCuD , for every C@∼rD ∈ D\Drank

≥i , together

with ∆O
′
;

2. For every A ∈ C and every x ∈ ∆O′′ , x ∈ AO′′ if one of the two following cases holds:
either x ∈ ∆OCuD for some C @∼rD ∈ D \ Drank

≥i and x ∈ AOCuD , or x ∈ ∆O
′
and

x ∈ AO′ ;
3. For every r ∈ R and every x, y ∈ ∆O′′ , (x, y) ∈ rO′′ if one of the two following cases

holds: either x, y ∈ ∆OCuD for some C@∼rD ∈ D\Drank
≥i and (x, y) ∈ rO′′ , or x, y ∈ ∆O′

and (x, y) ∈ rO′ ;
4. For every r ∈ R and every (x, y) ∈ rO

′′
(and we know rO

′′ 6= ∅, by hypothesis),
hO′′ (x, y, r) = j if one of the two following cases holds:
• either x, y ∈ ∆OCuD for some C @∼rD ∈ D \ Drank

≥i and hOCuD (x, y, r) = j,

• or x, y ∈ ∆O′ and hO′ (x, y, r) = j − i.

The height of each object in ∆O
′′
is defined as usual. In particular, notice that:

(∗) For every x ∈ ∆O′′ , hO′′ (x, r) = j if either x ∈ ∆OCuD for some C@∼rD ∈ D\Drank
≥i

and hOCuD (x, r) = j, or x ∈ ∆O′ and hO′ (x, r) = j − i.

It can be proven thatO′′ is a model ofKB: first we prove by induction on the construction
of concepts that, for every D ∈ LdALC and every x ∈ ∆O′′ , x ∈ DO′′ if and only if the
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corresponding object falls under D in the original model; then we prove that for every
concept D and every r ∈ R, hO′′ (D, r) = min{hO(D, r) | O ∈

⋃
E @∼rF∈D\Drank

≥i
{OEuF } ∪

{O′}} (which corresponds to the principle of presumption of typicality). Since we have
assumed hO′ (C, r) = 0, in the construction of O′′ (see (∗) above), we must have j = i, and
therefore hO′′ (C, r) = i.

Since D \ Drank
≥j is finite, O′′ is obtained from the composition of a finite set of models

with ∆ as domain and a model with a finite domain, that is, O′′ has a countably infinite do-
main. That implies that there is a model O∆ of KB that is isomorphic to O′′ and that has ∆
as domain. So O∆ takes part in the construction of the big modular interpretation OKB⊕ ,
and therefore hOKB⊕

(C, r) = i.

Assume now that i = ω. Let j be any natural number, i.e., j < ω. Moreover, let O′ be
a modular model of T ∪ Drank

≥j , i.e., O′ satisfies the statements in the original knowledge
base minus those DCIs that have been removed up to rank j − 1 by the ranking procedure.
Since C is exceptional in T ∪ Drank

≥j , we have T ∪ Drank
≥j |=mod > @∼r¬C (cf. Definition 12)

and therefore the height of any object in CO
′
, if any, cannot be 0, and then we must have

hO′ (C, r) > 0. Hence C cannot have any typical object at height j, in any modular model
of the original knowledge base. In particular, that is true of the big modular interpretation,
and since j is a natural number, we must have hOKB⊕

(C, r) = ω. ut

Theorem 1 Let KB be a modularly satisfiable defeasible knowledge base. For every C,D ∈
LdALC and every r ∈ R, C @∼rD is in the rational closure of KB if and only if KB |=rat

C @∼rD.

Proof Let KB be a modularly satisfiable defeasible knowledge base and let OKB⊕ be its
associated big modular interpretation. Moreover, let C,D ∈ LdALC and r ∈ R.

First of all, we observe that, if C is disjoint from the domain of r, including if either r
or C is unsatisfiable, then OKB⊕ 
 C @∼rD if and only if OKB⊕ 
 C v D if and only if
hOKB⊕

(C u ¬D, r′) = ω, where hOKB⊕
(C u ¬D, r′) is the height of C u ¬D in the context of

a new role r′ with domain ∆O
KB
⊕ introduced as in Lemma 2.

For the only-if part, assume C @∼rD is in the rational closure of KB. Then, by the
definition, we have rankKB(C uD, r) < rankKB(C u ¬D, r) or rankKB(C u ¬D) = ω. From
this and Lemma 14, it follows immediately that hOKB⊕

(C u D, r) < hOKB⊕
(C u ¬D, r) or

hOKB⊕
(Cu¬D, r′) = ω, which by Corollary 4 gives us OKB⊕ 
 C@∼rD, and therefore KB |=rat

C @∼rD.

For the if part, we note that the converse of Lemma 14 follows directly from the lemma.
The proof of the theorem can now be completed by following the argument above in the
converse direction. ut


