
A Logic-Based Perspective on Agent
Reconfiguration: Preliminary Report

Thomas Meyer
CSIR Meraka Institute and

School of Computer Science
University of KwaZulu-Natal

South Africa
tommie.meyer@meraka.org.za

Ivan Varzinczak
CSIR Meraka Institute and

School of Computer Science
University of KwaZulu-Natal

South Africa
ivan.varzinczak@meraka.org.za

Abstract—We investigate the problem of maintaining and
reasoning with different configurations of a logic-based agent.
Given specific contexts, there may be several possible usual
configurations that the agent’s knowledge base can be in, and
that one may want to access at different times. This can happen
due to foreseeable exceptional situations one has to cater for, or
different environments in which the agent may have to operate,
or simply due to upgrades of the agent’s initial configuration. In
all these cases, there is a need for a system capable of managing
possibly conflicting versions of the knowledge base and allowing
the agent to switch between any two given configurations at run
time. Building on Franconi et al.’s framework for propositional
knowledge base versioning, here we establish the logical founda-
tions for a general semantic-based architecture of such a system.
Central to our approach is the notion of logical difference, which
allows us to determine the essential pieces of information on
which two given configurations of an agent differ.

I. INTRODUCTION

In logic-based Artificial Intelligence, the notion of knowl-
edge base is a prominent one. Knowledge bases (KBs) are
(usually finite) sets of statements specified in some formal,
machine-processable, language. Such a language is usually a
logic-based one, with a well defined formal semantics and an
associated method for performing reasoning that can be auto-
mated in computer systems. This formalization is intended to
capture or represent knowledge about some particular domain
of interest in a concise, unambiguous and useful way. The
type of knowledge that is represented can range from simple
facts about a given scenario to agents’ beliefs and knowledge
in cognitive robotics and multi-agent systems.

The practical use of knowledge bases is at the very heart
of the AI endeavor: autonomous systems designed to perform
rationally in an environment will have associated with them a
knowledge base of some kind. As an example, consider the fol-
lowing scenario depicting a nuclear power station (Figure 1).
In a particular power plant there is an atomic pile and a cooling
system, both of which can be either on or off. An agent is in
charge of detecting hazardous situations and preventing the
plant from malfunctioning.

Such an agent is equipped with a knowledge base which
can be configured to formalize both the environment and the
agent’s behavior and beliefs. For instance, the agent’s KB may
contain statements formalizing the facts that “a situation in

ON

OFF

DANGER

Fig. 1. The nuclear power station and its controlling agent [1].

which the pile is on and the cooling off is a hazardous one”,
or “the effect of switching the pile off brings about a non-
hazardous situation”, or even “if the agent believes that there
is danger, then he must perform the action of switching the
pile off”. Using this configuration of the knowledge about its
domain, the agent can then draw conclusions, i.e., query the
KB to derive implicit knowledge from the knowledge that is
explicitly stated in its KB. Examples of inferences that are
relevant to the agent are planning (how to safely shut the plant
down), introspecting (what important facts the agent ignores)
and diagnosing (what has switched the cooling system off).

It turns out that, depending on specific contexts or situations,
there may be more than one possible (and desirable) configu-
ration the agent’s knowledge base can be in. For instance, in
the event of a hazardous situation in the nuclear power plant,
the agent may be forced to switch to a configuration whose
rules override most of those of the normal configuration.
Alternatively, when the power plant is in maintenance mode,
the agent needs to be reconfigured to perform actions he is not
allowed when in normal mode. One can also argue for the case
where the knowledge engineer in charge of (re)configuring the
agent wants to be able to determine which configuration is the
most appropriate for the agent given a particular context. That
is achieved by querying which configuration entails specific
facts or a desirable behavior. One immediate consequence of
this is that the most (if not all) usual configurations should
then somehow always be available.

These scenarios raise the question of how to manage
different co-existing configurations or versions of an agent’s
knowledge base. Importantly: How to do that at run time.

One naı̈ve approach would be to assume that the agent starts
with an initial knowledge base and then let it evolve. Such
is the approach extensively investigated in the literature on
belief revision [2], [3] and belief update [4]. It works pretty
well in circumstances like the one in which, say, the agent
is moved from the nuclear power plant to a thermoelectric
one and its knowledge base must be re-configured for it
to become operable in the new environment. Nevertheless,
theory revision is computationally expensive, in particular that
of knowledge bases that are specified in more expressive
languages [5], [6], and therefore not feasible at run time. A
similar argument holds against learning (and actually one does
not even want to let an agent fiddle around with a nuclear
power plant to discover how it works). Moreover, revision
cycles as studied in traditional belief change tend to ‘forget’
previous configurations: Putting the agent’s knowledge base
back to one of its previous configurations may require a
thorough revision of the current one.

Another naı̈ve way of approaching this problem would be
to allow the agent to store more than one usual configuration
of its knowledge base. This has the obvious problem that it
can lead to logical inconsistency (two or more versions of the
knowledge base may conflict), or it may give rise to the more
general problem of undesirable implicit consequences [7], [8].

Finally, even if storing all possible configurations at the
same time were logically harmless, the amount of space
required to keep all that information would not be optimal.

All the issues raised above call for the need of a general
system allowing the knowledge engineer to maintain and
reason with different configurations of a logic-based agent.
Yet, such a general and versatile system still does not exist.

A similar problem to the one we are interested in here has
been addressed by Franconi et al. in the context of ontology
versioning [9]. However, the referred approach is propositional
in nature, whereas the design of agents requires languages
that are more expressive than classical propositional logic. In
this paper, we consider one of such logical formalisms. Our
aim is then to apply Franconi et al.’s semantic constructions
to the above motivated scenario of agent reconfiguration,
thereby extending their method to logical formalisms other
than classical propositional logic.

The remainder of the present paper is structured as follows:
After presenting the logical formalism of a modal logic
of actions in which one can formalize a particular agent’s
behavior (Section II), we recall Franconi et al.’s notion of
logical difference recasting it in the more expressive language
of multi-modal logic (Section III). This allows us to determine
the difference between two given configurations of an agent’s
knowledge base. We then define a general architecture for
logic-based agent reconfiguration (Section IV) in which the
notion of logical difference plays a central role. After a
discussion (Section V) and a comparison with related work
(Section VI), we conclude the paper with a summary of the
contributions and some open questions and threads for future
investigation.

II. LOGICAL PRELIMINARIES AND NOTATION

There is in the AI literature a fair number of logical
languages for formalizing agents and their behavior. Most
of them are essentially variants of modal logic [10] having
the multi-modal logic K as backbone. Given that, in this
work we shall consider multi-modal logic K as our underlying
formalism. In particular, we are interested in the formalization
of an agent’s beliefs about the behavior of actions, their
effects and preconditions. (All we shall say in Sections III
and IV should then transfer smoothly to other modal-based
formalisms like logics of action and belief, obligations, and
combinations thereof.)

The language of our multi-modal logic of actions is built
upon a (finite) set of atomic propositions Prop (together with
the distinguished atom ⊥), and a (finite) set of atomic actions
Act, using the logical connectives ∧, ¬, and a set of modal
operators [a], one for each a ∈ Act. Propositions are denoted
by p, q, . . ., and formulas by α, β, . . . These are constructed
according to the rule:

α ::= p | ⊥ | α ∧ α | ¬α | [a]α (1)

The other connectives (∨, →, . . .), the special atom >, and
the operator 〈a〉 are defined in terms of the others in the
usual way. Formulas of the form [a]α are used to specify the
effects of actions and they read as “after every execution of
action a, the formula α holds”. 〈a〉 is mostly used to specify
the executability of actions: 〈a〉> reads as “there is a possible
execution of action a”.

With L we denote the set of all formulas of the language
generated according to Rule (1).

As for the semantics we adopt the standard possible-world
semantics from modal logic.

Definition 1: A Kripke model is a tuple M = 〈W,R,V〉
where W is a set of possible worlds, R = 〈Ra1 , . . . ,Ran〉,
where each Rai ⊆ W × W is an accessibility relation on W,
1 ≤ i ≤ |Act|, and V : W 7→ 2Prop is a valuation function.

Definition 2 (Satisfaction): Given M = 〈W,R,V〉:
• M , w 6 ⊥ for every w ∈ W;
• M , w p iff p ∈ V(w);
• M , w α ∧ β iff M , w α and M , w β;
• M , w ¬α iff M , w 6 α;
• M , w [ai]α iff M , w′ α for all w′ s.t. (w,w′) ∈ Rai .

Given α ∈ L and M = 〈W,R,V〉, we say that M satisfies α
if there is at least one w ∈ W s.t. M , w α. We say that M
is a model of α iff M , w α for every w ∈ W. With Mod(α)
we denote the set of all models of α.

Logical consequence (semantic entailment) and logical
equivalence are denoted by |= and ≡ respectively. Given
sentences α and β, the meta-statement α |= β means
Mod(α) ⊆ Mod(β). α ≡ β is an abbreviation (in the meta-
language) of α |= β and β |= α.

A knowledge base K is a (possibly infinite) set of formulas
K ⊆ L. We extend the above notions of Mod(.), entailment
and logical equivalence to knowledge bases in the usual way:

Mod(K) is the set of all Kripke models M satisfying every
formula in K; K |= α if and only if Mod(K) ⊆ Mod(α).

Example 1: In our nuclear power plant scenario, we have
the atoms Prop = {p, c, h}, where p stands for “the atomic
pile is on”, c for “the cooling system is on”, and h for “haz-
ardous situation”. As for the actions, we have Act = {f,m},
where f stands for “flipping the pile switch”, and m for
“malfunction”. One possible specification of such a scenario
is given by the following knowledge base:

K1 =

{
(p ∧ ¬c)↔ h, h→ 〈m〉>, p→ [f]¬p,

〈f〉>, [m](¬p ∧ ¬c)

}
For the sake of presentation we do not develop here a solution
to the frame problem [11] of our own. Instead, we refer the
reader to existing modal-based solutions to the frame prob-
lem [12] and the ramification problem [13], [14] which can be
integrated into the present formalism in a straightforward way.
Unless otherwise indicated, we shall assume that all relevant
frame axioms are stated in the knowledge base.
K1 basically says that “a hazardous situation is one in which

the pile is on and the cooler off”, “a hazardous situation may
lead to a malfunction”, “if the pile is on, then flipping switches
it off”, “one can always flip the pile switch”, and finally “after
a malfunction, there is no pile or cooling system whatsoever”.
Then we can conclude for instance K1 |= p → [f]¬h, K1 |=
[m]⊥ → (¬p ∨ c), and K1 6|= [m]〈f〉¬p ∨ [f]h.

Given a knowledge base K, the set of all logical conse-
quences of K is defined as Cn(K) = {α | K |= α}. The
consequence relation Cn(.) associated with our modal logic is
a Tarskian consequence relation in the sense that it satisfies
the following properties:
• K ⊆ Cn(K) (Inclusion)
• Cn(Cn(K)) ⊆ Cn(K) (Idempotence)
• K ⊆ K′ implies Cn(K) ⊆ Cn(K′) (Monotonicity)

We finish this section with the following useful definitions:
α̂ := {β | α ≡ β}, and K̂ =

⋃
α∈K α̂. Given sentences

α1, . . . , αn we shall write {α̂1, . . . , α̂n} for α̂1 ∪ . . . ∪ α̂n.

III. LOGICAL DIFFERENCE BETWEEN CONFIGURATIONS

In this section we recast Franconi et al.’s notion of logical
difference between propositional knowledge bases [9] in the
context of our modal logic of actions.

We start by supposing that there are n different co-existing
configurations (alias versions) of an agent’s knowledge base
that we need to maintain. One way to address the problems
mentioned in the Introduction is to store a core knowledge base
(Figure 2), which may, or may not, be one of the n versions,
together with the differences (whatever that means) between
the core knowledge base and the different versions. We refer
to this stored information as the core. The goal is to give a
suitable definition of the core in such a way that from the core
it is possible to generate (i) any one of the n configurations,
and (ii) the difference between any two of the n configurations.

Given two knowledge bases K and K′, the first step in
the development of our framework is to define a notion of

Kc

K1

K2

K3

K4

K5

K6

Fig. 2. The core knowledge base, from which to access all different versions.

logical diff between K and K′. Such a notion of diff should
be syntax-independent: For example, although the knowledge
bases {[a](p ∧ q)} and {[a]p, [a](p → q)} are syntactically
different, they convey exactly the same meaning (they are
logically equivalent), and therefore there should be no logical
difference between them. Hence our logical diff should high-
light the difference in terms of the (logical) meaning between
two knowledge bases. The first step to achieve this is to require
that the knowledge bases K and K′ be closed under logical
consequence (cf. end of Section II). This gives us the first
postulate below:

(P1) K = Cn(K) and K′ = Cn(K′)
Henceforth we specify the logical diff of K and K′ as a pair

of sets of sentences 〈A,R〉. The intuition is that A contains
the sentences to be added to K, and R the sentences to be
removed from K to obtain K′. A will therefore be referred to
as the add-set of (K,K′), and R as the remove-set of (K,K′).
These two basic notions give us the following postulate:

(P2) K′ = (K ∪A) \R
In order to avoid redundancy, and to comply with the

principle of minimal change, we require that the sentences
to be added to K to obtain K′ should be contained in K′.

(P3) A ⊆ K′

Similarly, sentences to be removed from K to obtain K′
should be in K.

(P4) R ⊆ K
We require the logical diff to have a certain duality in the

sense that it can be used to generate K′ from K, or to generate
K from K′.

(P5) K = (K′ ∪R) \A
In other words, the logical diff should provide for an ‘undo’
operation when moving from one configuration of a knowl-
edge base to another: one should be able to roll back any
modification performed.

With the above postulates we have a precise definition of
logical diff between two agent’s configurations.

Definition 3: Let K and K′ be two knowledge bases, and
let − : 2L×2L 7→ 2L×2L be an operator such that K−K′ =
〈A,R〉, for A and R sets of sentences. We say that − is logical
diff compliant with respect to (K,K′) if and only if K, K′, A
and R satisfy Postulates P1–P5.

Logical diff compliance, as defined above, does not, of
course, necessarily guarantee the existence of an operator
which is logical diff compliant. The definition below provides
a specific (in this case set theoretical) construction for the
logical diff operator which we shall show to be logical diff
compliant.

Definition 4: Given knowledge bases K and K′, the ideal
logical diff of (K,K′) is the operator −i defined as K−iK′ =
〈A,R〉, where A = K′ \ K, and R = K \ K′.

Note that neither A nor R are logically closed. To witness,
consider the following example:

Example 2: Let K = Cn(K1), where K1 is the knowledge
base from Example 1, and let K′ = Cn(K2), where

K2 =

{
(p ∧ ¬c)→ h, h↔ 〈m〉>,

p→ [f]¬p,¬p→ [f]p, 〈f〉>, [m]p

}
Let K −i K′ = 〈A,R〉. Then we have

A = { ̂〈m〉> → h, ̂¬p→ [f]p, [̂m]p, ̂[m](p ∨ c)}

R =

{
̂h→ (p ∧ ¬c), ̂[m](¬p ∧ ¬c), [̂m]¬p, [̂m]¬c,
̂[m]¬p↔ ¬c, ̂[m](¬p ∨ ¬c), ̂[m](p ∨ ¬c)

}
Clearly [m]p∨¬c ∈ Cn(A), but [m]p∨¬c 6∈ A, and [m]¬p∨c ∈
Cn(R), but [m]¬p ∨ c 6∈ R. In fact, one can see that for any
〈A,R〉 obtained from the ideal logical diff between K and K′,
> 6∈ A and > 6∈ R.

As shown by Franconi et al., the ideal logical diff is the
only operator that is logical diff compliant with respect to a
given pair of knowledge bases.

Theorem 1: Let −i be the ideal logical diff of K and K′.
Then −i is logical diff compliant with respect to (K,K′).
Moreover, −i is the only operator that is logical diff compliant
with respect to (K,K′).

Proof: To prove that −i is semantic diff compliant with
respect to (K,K′) is trivial. To prove that it is unique, assume
that K, K′, A′ and R′ also satisfy Postulates P1–P5. By P3,
A′ ⊆ K′. If A′ ⊂ A, then Postulate P2 is violated, regardless
of what R′ looks like. Suppose that A′ contains an α ∈ K′\A.
Then α ∈ K, and so Postulate P5 is violated. It thus follows
that A′ = A. Similarly, if R′ ⊂ R, then Postulate P5 is
violated, regardless of what A′ looks like. And suppose R′

contains a β ∈ K \ R. Then β ∈ K′, and so P2 is violated.
Hence R′ = R.

An interesting consequence of the uniqueness of the ideal
logical diff is that its two components are disjoint.

Corollary 1: Let K −i K′ = 〈A,R〉. Then A ∩R = ∅.
This is in line with the principle of minimal change, in the

sense that one does not want to place a sentence in the add-set,
only for it to be subsequently removed (by placing it in the
remove-set) or vice versa. Observe also that the ideal logical
diff 〈A,R〉 of K and K′ is closely related to their symmetric
difference: (K′\K)∪(K\K′). Indeed, it is easily seen that the
symmetric difference of K and K′ is simply the union A∪R
of the add-set and the remove-set of (K,K′).

Observe also that, as expected, taking the logical difference
of a knowledge base with itself is the only case in which both
the add-set and the remove-set are empty.

Corollary 2: Let K −i K′ = 〈A,R〉. Then 〈A,R〉 = 〈∅, ∅〉
if and only if K = K′.

IV. A FRAMEWORK FOR AGENT RECONFIGURATION

Based on the results of the previous section, here we
present our framework for agent reconfiguration. We have a
scenario in which there are n configurations, K1, . . . ,Kn, of
an agent’s knowledge base that need to be stored, and a core
configuration Kc. The notion of difference is a symmetric one:
Given Postulates P2 and P5, the add set of (Ki,Kj) is also
the remove-set of (Kj ,Ki), and the remove-set of (Ki,Kj) is
also the add-set of (Kj ,Ki). In that sense, from now on we
shall refer to the ideal diff of (Ki,Kj) as 〈Dij , Dji〉 (and the
diff of (Kc,Ki) as 〈Dci, Dic〉), for 1 ≤ i, j ≤ n.

As we are going to see, in order to be able to access any
specific configuration of the knowledge base, it is sufficient:
• To store the core configuration Kc, and
• To store Dic and Dci for all Ki s.t. 1 ≤ i ≤ n.
Given this information, we are able to access any configu-

ration of the knowledge base. To see why, observe firstly that
by Theorem 1, Ki = (Kc ∪ Dci) \ Dic for every i such that
1 ≤ i ≤ n. Figure 3 depicts such a scenario.

Kc

• 〈Dc1, D1c〉

• 〈Dc2, D2c〉

•〈Dc3, D3c〉
•〈Dc4, D4c〉

•〈Dc5, D5c〉
•

〈Dc6, D6c〉

Fig. 3. Core configuration and diffs.

Furthermore, for 1 ≤ i, j ≤ n, we are able to generate the
ideal logical difference 〈Dij , Dji〉 of (Ki,Kj) directly from
the stored information Dic, Dci, Dcj and Djc, thanks to the
following result.

Theorem 2: For 1 ≤ i, j ≤ n,
• Dij = (Dcj \Dci) ∪ (Dic \Djc);
• Dji = (Dci \Dcj) ∪ (Djc \Dic).

Figure 4 shows the overall picture of our framework.
We conclude this section with a brief note on computational

complexity. The reconstruction of a version Ki from the core
Kc and the diff 〈Dci, Dic〉 is obviously linear in the size of the
input, since it amounts to simple set union and set difference
operations. The same holds in constructing the difference
between two versions Ki and Kj via the core. On the other
hand, computing each of the Dij’s is a computationally
expensive task and its complexity depends on that of the
entailment problem of the underlying logic. For instance, in
Franconi et al.’s framework, to determine whether a sentence

Kc

K1

Ki

Kj

Kn

〈Dc1, D1c〉

〈Dci, Dic〉

〈Dcj , Djc〉

〈Dcn, Dnc〉

〈Dn1, D1n〉

〈Dnj , Djn〉

〈D1i, Di1〉

〈Dij , Dji〉

Fig. 4. Core configuration Kc, the different co-existing alternative configura-
tions and the respective diffs w.r.t. Kc. The grey area depicts the information
that is really stored: the core and the direct diffs.

is an element of Dij or not requires two entailment tests in
propositional logic, which is NP-COMPLETE. On the bright
side, computing the diffs is a task that can be carried out offline
and therefore does not jeopardize the overall performance of
the system at run time.

V. OUTLOOK: HOW TO GET THE CORE CONFIGURATION

The observant reader will have noticed that the core config-
uration Kc is assumed not to be one of K1, . . . ,Kn. The core
knowledge base can, for instance, be chosen as the ‘average’
of K1, . . . ,Kn, i.e., a representation minimizing the overall
logical diff of Kc to each of the alternative configurations
K1, . . . ,Kn. Because such a computation can be carried out
offline, it would not have a negative impact on the overall
performance of the whole system.

On the other hand, there are good reasons to consider
choosing one of K1, . . . ,Kn as the core configuration:
• If Kc = Ki for some 1 ≤ i ≤ n, whenever Ki has to be

accessed there is no need to reconstruct it;
• By the principle of temporal locality [15], it is reasonable

to take Kc as one of the most recent versions (if not the
most recent version);

• By the principle of spatial locality [15], it is reasonable
to choose Kc as one of the Kis that are closest (in terms
of logical diff) to the most accessed configuration (if not
the most accessed one).

All these issues (and consequences thereof) rely on the
assumption that extra information of some kind is provided.
An analysis of how to choose the core knowledge base and its
impact on the efficiency of the system is beyond the scope of
this paper. Therefore, we do not develop this further here and
we assume that Kc is not one of K1, . . . ,Kn. Observe that
this assumption does not involve any loss of generality since
the basic framework remains essentially the same, regardless
of whether the core knowledge base is one of the versions Ki
of the knowledge base.

VI. RELATED WORK

To the best of our knowledge, the problem of determining
the difference between two (logical) representations of a
given domain is a quite recent topic of investigation. Besides
being of interest in its own right, the problem of managing
different configurations (versions) of a knowledge base has
other interesting specific applications. A prominent example
is the problem of ontology versioning: When developing or
maintaining an ontology collaboratively, different simultane-
ous (possibly conflicting) versions thereof might exist at the
same time (Figure 5).

O1 O2

O3

O4

O6

. . .
On

. . .

O5

Fig. 5. An initial ontology and its subsequent versions.

That can happen due to many reasons, such as different
teams working on different modules of the same ontology in
parallel, or different developers having different views of the
domain, among others. Moreover, modifications performed on
ontologies need not be incremental (monotone): information
may be added and removed frequently, and it might well
happen that the latest ontology is actually closer to one of
its preliminary versions than to its immediate predecessor.
In that respect, in order for the ontology engineers (and
users of the ontology) to be able to coordinate their work
in an efficient way, they need tools allowing them to (i)
keep track of all versions; (ii) determine to what extent two
versions of an ontology differ; (iii) revert from one ontology to
another (possibly previously agreed upon) one; and (iv) given
a particular piece of information, to determine from which of
the current versions of the ontology it can be inferred.

Given the well-know connection between modal logic K as
we studied here and the description logic ALC [16], which is
the backbone of most ontology representation languages, we
believe that our constructions should transfer smoothly to the
case of ontology versioning.

Kontchakov et al. [17] have investigated the problem of
determining the logical (semantic) diff between DL ontologies.
Their notion of diff, however, differs from ours in that (i) there
the difference between ontologies O1 and O2 is defined with
respect to their shared signature, i.e., the set of symbols of
the language that are common to both O1 and O2; and (ii)
they define diff between O1 and O2 as a refinement of O1

with respect to O2, i.e., what we call the add-set of O1 to
get O2. It can be checked that our Definition 3 encompasses
both (i) and (ii), making the symmetry of diff explicit and
also showing the properties expected from such an operation.

In the same lines of Kontchakov et al.’s work, Konev
et al. [18] investigate a notion of logical diff for lightweight

description logics and provide algorithms for determining the
refinement of an ontology with respect to another.

Franconi et al. [9] define a general framework for knowl-
edge base versioning on which we base our constructions.
There the ultimate goal is the definition of a general versioning
management system for DL ontologies. Using propositional
logic as a stepping stone, Franconi et al. give the syntactic
counterpart of the semantic constructions in terms of a specific
normal form, namely ordered complete conjunctive normal
form (oc-CNF).

VII. CONCLUSION AND FUTURE WORK

The contributions of the present paper are as follows:
• We have given a logic-based perspective on the problem

of agent reconfiguration relating it to the more general
problem of knowledge base versioning.

• We have made the first steps in generalizing Fran-
coni et al.’s propositional framework to logics that are
more expressive than classical propositional logic. By
investigating the case of a modal logic of actions, we
provided evidence supporting Franconi et al.’s conjecture
that their results hold for knowledge bases formalized in
any logic with a Tarskian consequence relation.

• We have provided an intuitive, simple and computation-
ally tractable framework with which to manage different
co-existing configurations of a logical agent.

With our framework, one does not need to store all the in-
formation regarding all existing configurations of a knowledge
base, but rather only part of it, namely, the core. Our results
show that the core corresponds precisely to the sufficient piece
of information required to reconstruct any of the configurations
of the knowledge base. They also show that the differences in
meaning between any two given configurations in the system
can be determined through the core, without direct access to
any of the versions at all. Since all our definitions are on the
knowledge level, this is the case irrespective of the underlying
syntactic representation.

Logical languages that are richer than the propositional one
have more structure — in the syntax and in the semantics.
This may reflect in additional properties of the logical diff
and its relationship with the core configuration beyond the
ones investigated by Franconi et al.’s in the propositional case
and that here we have recast in basic multi-modal logic K.
What these properties are and the impact the choice of the
underlying language can have on the overall system we leave
for future investigation. Our results in this paper provide the
basic framework with which to move from the propositional
to the more expressive cases.

Here we restrict ourselves to multi-modal logic K because
it is the backbone of most logics of action, beliefs, and
combinations thereof commonly found in the AI literature. In
that sense, we believe that our constructions can be smoothly
generalized to the case of other logics for agent design
extending K. We are currently investigating extensions of our
framework to the description logic ALC.

Although our characterization of logical diff is on the
knowledge level and applicable to any Tarskian logic, our
framework does not address the question from a computa-
tional perspective, where it becomes important to consider
the specific syntactic representation of the knowledge bases
and related information. We plan to pursue further work
by investigating which normal forms are more appropriate
as syntactical representations for knowledge base versioning.
Franconi et al.’s results for oc-CNF provide us with a basis
for such an investigation.

REFERENCES

[1] K. Britz, T. Meyer, and I. Varzinczak, “Preferential reasoning for modal
logic,” Submitted, 2011.

[2] C. Alchourrón, P. Gärdenfors, and D. Makinson, “On the logic of theory
change: Partial meet contraction and revision functions,” Journal of
Symbolic Logic, vol. 50, pp. 510–530, 1985.

[3] S. Hansson, A Textbook of Belief Dynamics: Theory Change and
Database Updating. Kluwer Academic Publishers, 1999.

[4] H. Katsuno and A. Mendelzon, “On the difference between updating a
knowledge base and revising it,” in Belief revision, P. Gärdenfors, Ed.
Cambridge University Press, 1992, pp. 183–203.

[5] I. Varzinczak, “Action theory contraction and minimal change,” in
Proceedings of the 11th International Conference on Principles of
Knowledge Representation and Reasoning (KR), J. Lang and G. Brewka,
Eds. AAAI Press/MIT Press, 2008, pp. 651–661.

[6] ——, “On action theory change,” Journal of Artificial Intelligence
Research, vol. 37, pp. 189–246, 2010.

[7] A. Herzig and I. Varzinczak, “Cohesion, coupling and the meta-theory
of actions,” in Proceedings of the 19th International Joint Conference
on Artificial Intelligence (IJCAI), L. Kaelbling and A. Saffiotti, Eds.
Morgan Kaufmann Publishers, 2005, pp. 442–447.

[8] ——, “Metatheory of actions: beyond consistency,” Artificial Intelli-
gence, vol. 171, pp. 951–984, 2007.

[9] E. Franconi, T. Meyer, and I. Varzinczak, “Semantic diff as the basis
for knowledge base versioning,” in 13th International Workshop on
Nonmonotonic Reasoning (NMR), 2010.

[10] P. Blackburn, J. van Benthem, and F. Wolter, Handbook of Modal Logic.
Elsevier North-Holland, 2006.

[11] J. McCarthy and P. Hayes, “Some philosophical problems from the
standpoint of artificial intelligence,” in Machine Intelligence, B. Meltzer
and D. Mitchie, Eds. Edinburgh University Press, 1969, vol. 4, pp.
463–502.

[12] R. Demolombe, A. Herzig, and I. Varzinczak, “Regression in modal
logic,” Journal of Applied Non-Classical Logic, vol. 13, no. 2, pp. 165–
185, 2003.

[13] D. Zhang and N. Foo, “EPDL: A logic for causal reasoning,” in
Proceedings of the 17th International Joint Conference on Artificial
Intelligence (IJCAI), B. Nebel, Ed. Morgan Kaufmann Publishers,
2001, pp. 131–138.

[14] M. Castilho, A. Herzig, and I. Varzinczak, “It depends on the context!
A decidable logic of actions and plans based on a ternary dependence
relation,” in 9th International Workshop on Nonmonotonic Reasoning
(NMR), 2002.

[15] P. Denning, “Virtual memory,” ACM Computing Surveys, vol. 2, no. 3,
pp. 153–189, 1970.

[16] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-
Schneider, Eds., The Description Logic Handbook: Theory, Implemen-
tation and Applications, 2nd ed. Cambridge University Press, 2007.

[17] R. Kontchakov, F. Wolter, and M. Zakharyaschev, “Can you tell the
difference between DL-Lite ontologies?” in Proceedings of the 11th
International Conference on Principles of Knowledge Representation
and Reasoning (KR), J. Lang and G. Brewka, Eds. AAAI Press/MIT
Press, 2008, pp. 285–295.

[18] B. Konev, D. Walther, and F. Wolter, “The logical difference problem
for description logic terminologies,” in Proceedings of the 4th Interna-
tional Joint Conference on Automated Reasoning (IJCAR), ser. LNAI,
A. Armando, P. Baumgartner, and G. Dowek, Eds., no. 5195. Springer-
Verlag, 2008, pp. 259–274.

