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Abstract. We present a decidable extension of the Description Logic SROIQ
that supports defeasible reasoning in the KLM tradition, and extends it through
the introduction of defeasible roles. The semantics of the resulting DL dSROIQ
extends the classical semantics with a parameterised preference order on binary
relations in a domain of interpretation. This allows for the use of defeasible roles
in complex concepts, as well as in defeasible concept and role subsumption, and
in defeasible role assertions. Reasoning over dSROIQ ontologies is made pos-
sible by a translation of entailment to concept satisfiability relative to an RBox
only. A tableau algorithm then decides on consistency of dSROIQ-concepts in
the preferential semantics.
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1 Introduction

SROIQ [20] is an expressive, yet decidable Description Logic (DL) that serves as
semantic foundation for the OWL 2 profile, on which several ontology languages of
various expressivity are based. However, SROIQ still allows for meaningful, decid-
able extension, as new knowledge representation requirements are identified. A case in
point is the need to allow for exceptions and defeasibility in reasoning over logic-based
ontologies [4, 3, 2, 8, 6, 7, 10, 12–14, 17, 18, 27]. Yet, SROIQ does not allow for the
direct expression of and reasoning with different aspects of defeasibility.

Given the special status of subsumption in DLs in particular, and the historical im-
portance of entailment in logic in general, past research efforts in this direction have
focused primarily on accounts of defeasible subsumption and the characterisation of
defeasible entailment. Semantically, the latter usually take as point of departure or-
derings on a class of first-order interpretations, whereas the former usually assume a
preference order on objects of the domain.

In this paper, we propose a decidable extension of SROIQ that supports defeasible
knowledge representation and reasoning over defeasible ontologies. Our proposal builds
on previous work to resolve two important ontological limitations of the preferential
approach to defeasible reasoning in DLs — the assumption of a single preference order
on all objects in the domain of interpretation, and the assumption that defeasibility is
intrinsically linked to argument form [9, 10].

We achieve this by extending SROIQ with nonmonotonic reasoning features in
the concept language, in subsumption statements and in role assertions via an intuitive
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notion of normality for roles. This parameterises the idea of preference while at the
same time introducing the notion of defeasible class membership. Defeasible subsump-
tion allows for the expression of statements of the form “C is usually subsumed by D”,
for example, “Chenin blanc wines are usually unwooded”. In our extended language
dSROIQ, we can now also refer directly to, for example, “Chenin blanc wines that
usually have a wood aroma”. We can also combine these seamlessly, as in: “Chenin
blanc wines that usually have a wood aroma are usually wooded”. Note that this can-
not be expressed in terms of defeasible subsumption alone, nor can it be expressed
w.l.o.g. using a typicality operator on concepts. This is because the semantics of the
expression is inextricably tied to the two distinct uses of the term ‘usually’. Another
defeasible construct that adds to the expressivity of dSROIQ is defeasible role inclu-
sion, e.g. “having a given geographic style usually implies having that region as origin”.
dSROIQ also includes defeasible role assertions, such as defeasible functionality or
defeasible disjointness, and defeasible number- and Self-restrictions.

The remainder of the paper is structured as follows: In Section 2 we introduce the
syntax and semantics of the extended language dSROIQ. Section 3 covers a number
of rewriting and elimination results required for effective reasoning with dSROIQ
knowledge bases, and which are needed for the tableau algorithm presented in Sec-
tion 4. The main results of the paper are Theorem 1, which reduces concept satisfiability
in dSROIQ to concept satisfiability relative to only an RBox, and Theorem 2, which
establishes the correctness of the tableau procedure. The latter result is established only
for the restriction of dSROIQ which excludes role composition in defeasible RIAs.

Space considerations prevent us from providing a summary of the required logi-
cal background. We shall therefore assume the reader’s familiarity with DLs in gen-
eral [1] and with SROIQ in particular [20], as well as with the preferential approach
to non-monotonic reasoning [23, 24, 28]. Whenever necessary, we refer the reader to
the definitions and results in the relevant literature.

2 Defeasible SROIQ

2.1 Defeasibility in RBoxes

Let R be a set of role names, and let u denote the universal role. The set of all roles
is given by R := R ∪ {r− | r ∈ R} ∪ {u}. We denote roles with r, s, . . ., possibly
with subscripts. Moreover, let inv : R −→ R be such that inv : r 7→ r−, if r ∈ R,
inv : r 7→ s, if r = s−, and inv : u 7→ u.

Let r1, . . . , rn, r ∈ R \ {u}. A classical role inclusion axiom is a statement of the
form r1 ◦ · · · ◦ rn v r. A defeasible role inclusion axiom has the form r1 ◦ · · · ◦ rn@∼ r,
read “usually, r1 ◦ · · · ◦ rn is included in r”. A finite set of role inclusion axioms (RIAs)
is called a role hierarchy and is denoted byRh.

Definition 1 ((Non-)Simple Role). Let r ∈ R and let Rh be a role hierarchy. Then r
is non-simple inRh iff:

1. There is r1 ◦ · · · ◦ rn v r or r1 ◦ · · · ◦ rn @∼ r inRh such that n > 1, or
2. There is s v r or s@∼ r inRh such that s is non-simple, or
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3. inv(r) is non-simple.

With Rn we denote the set of non-simple roles inRh. Rs := R\Rn is the set of simple
roles inRh.

Intuitively, simple roles are those that are not implied by the composition of roles.
They are needed to restrict the type of roles in certain concept constructors (see below),
thereby preserving decidability [20].

Definition 2 (Regular Hierarchy). A role hierarchy Rh is regular if there is a strict
partial order < on Rn such that:

1. s < r iff inv(s) < r, for every r, s in Rn, and
2. every role inclusion in Rh is of one of the forms: (1a) r ◦ r v r, (1b) r ◦ r @∼ r,

(2a) inv(r) v r, (2b) inv(r) @∼ r, (3a) s1 ◦ · · · ◦ sn v r, (3b) s1 ◦ · · · ◦ sn @∼ r,
(4a) r ◦ s1 ◦ · · · ◦ sn v r, (4b) r ◦ s1 ◦ · · · ◦ sn @∼ r, (5a) s1 ◦ · · · ◦ sn ◦ r v r,
(5b) s1◦· · ·◦sn◦r@∼r, where r ∈ R (i.e., a role name), and si < r, for i = 1, . . . , n.

(Regularity prevents a role hierarchy from inducing cyclic dependencies, which are
known to lead to undecidability.)

A classical role assertion is a statement of the form Fun(r) (functionality), Ref(r)
(reflexivity), Irr(r) (irreflexivity), Sym(r) (symmetry), Asy(r) (asymmetry), Tra(r) (tran-
sitivity), and Dis(r, s) (role disjointness), where r, s 6= u. A defeasible role assertion
is a statement of the form dFun(r) (r is usually functional), dRef(r) (r is usually re-
flexive), dIrr(r) (r is usually irreflexive), dSym(r) (r is usually symmetric), dAsy(r)
(r is usually asymmetric), dTra(r) (r is usually transitive), and dDis(r, s) (r and s are
usually disjoint), also with r, s 6= u. WithRa we denote a finite set of role assertions.

Given a role hierarchyRh, we say thatRa is simple w.r.t.Rh if all roles r, s appear-
ing in statements of the form Irr(r), dIrr(r), Asy(r), dAsy(r), Dis(r, s) or dDis(r, s) are
simple inRh (see Definition 1).

A dSROIQ RBox is a set R := Rh ∪ Ra, where Rh is a regular hierarchy and
Ra is a set of role assertions which is simple w.r.t.Rh.

2.2 Defeasibility in Concepts and in TBoxes

Let C be a set of (atomic) concept names disjoint from R and of which N, the set of
nominals, is a subset. We use A,B, . . ., possibly with subscripts, to denote concept
names. A nominal will also be denoted by o, possibly with subscripts.

Definition 3 (dSROIQ Concepts). The set of dSROIQ complex concepts is the
smallest set such that >, ⊥ and every A ∈ C are concepts, and if C and D are con-
cepts, r ∈ R, s ∈ Rs, and n ∈ N, then ¬C (concept complement), C u D (concept
conjunction), C t D (concept disjunction), ∀r.C (value restriction), ∃r.C (existential
restriction),

∨∼r.C (defeasible value restriction), −∼−|r.C (defeasible existential restric-
tion), ∃r.Self (self restriction), −∼−|r.Self (defeasible self restriction), ≥ ns.C (at-least
restriction), ≤ ns.C (at-most restriction), & ns.C (defeasible at-least restriction),
. ns.C (defeasible at-most restriction) are also concepts. With C we denote the set of
all complex concepts.
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Note that every SROIQ concept is a dSROIQ concept, too. We shall useC,D . . .,
possibly with subscripts, to denote complex dSROIQ concepts.

Given C,D ∈ C, C v D is a classical general concept inclusion, read “C is sub-
sumed by D”. (C ≡ D is an abbreviation for both C v D and D v C.) C @∼ D is a
defeasible general concept inclusion, read “C is usually subsumed byD”. A dSROIQ
TBox T is a finite set of general concept inclusions (GCIs), whether classical or defea-
sible.

Let I be a set of individual names disjoint from both C and R. Given C ∈ C, r ∈ R
and a, b ∈ I, an individual assertion is an expression of the form a : C, (a, b) : r,
(a, b) : ¬r, a = b or a 6= b. A dSROIQ ABoxA is a finite set of individual assertions.

LetA be an ABox, T be a TBox andR an RBox. A knowledge base (alias ontology)
is a tuple KB := 〈A,R, T 〉.

2.3 Preferential Semantics

We shall anchor our semantic constructions in the well-known preferential approach to
non-monotonic reasoning [23, 24, 28] and its extensions [5, 9, 11], especially those to
the DL case [8, 16, 25].

Let X be a set and let < be a strict partial order on X . With min<X := {x ∈ X |
there is no y ∈ X s.t. y < x} we denote the minimal elements of X w.r.t. <. With #X
we shall denote the cardinality of X .

Definition 4 (Ordered Interpretation). An ordered interpretation is a tuple O :=
〈∆O, ·O,≺O,�O〉 in which 〈∆O, ·O〉 is a SROIQ interpretation with AO ⊆ ∆O,
for every A ∈ C, AO a singleton for every A ∈ N, rO ⊆ ∆O × ∆O, for all r ∈ R,
and aO ∈ ∆O, for every a ∈ I, ≺O is a strict partial order on ∆O, and �O:=
〈�O1 , . . . ,�O#R〉, where �Oi ⊆ rOi × rOi , for i = 1, . . . ,#R, and such that ≺O and
each�Oi satisfy the smoothness condition [23]. Moreover, for any r, r1, r2 ∈ R \ {u},
O interprets orderings on role inverses and on role compositions as follows:
�Or− := {((y1, x1), (y2, x2)) | ((x1, y1), (x2, y2)) ∈�Or }, and�Or1◦r2 := {((x1, y1),
(x2, y2)) | for some z1, z2 [((x1, z1), (x2, z2)) ∈�Or1 and ((z1, y1), (z2, y2)) ∈�Or2 ],
and for no z1, z2 [((x2, z2), (x1, z1)) ∈�Or1 and ((z2, y2), (z1, y1)) ∈�Or2 ]}.
Let rO|xi := rOi ∩ ({x}×∆O) (i.e., the restriction of the domain of rOi to {x}). The in-
terpretation function ·O interprets dSROIQ concepts in the following way (whenever
it is clear which component of�O is used, we shall drop the subscript in�Oi ):

>O := ∆O; ⊥O := ∅; (¬C)O := ∆O \ CO;
(C uD)O := CO ∩DO; (C tD)O := CO ∪DO;
(∀r.C)O := {x | rO(x) ⊆ CO}; (

∨∼r.C)O := {x | min�O (r
O|x)(x) ⊆ CO};

(∃r.C)O := {x | rO(x) ∩ CO 6= ∅}; (−∼−|r.C)O := {x | min�O (r
O|x)(x) ∩ CO 6= ∅};

(∃r.Self)O := {x | (x, x) ∈ rO}; (−∼−|r.Self)O := {x | (x, x) ∈ min�O (r
O|x)};

(≥ nr.C)O := {x | #rO(x) ∩ CO ≥ n}; (≤ nr.C)O := {x | #rO(x) ∩ CO ≤ n};
(& nr.C)O := {x | #min�O (r

O|x)(x) ∩ CO} ≥ n;
(. nr.C)O := {x | #min�O (r

O|x)(x) ∩ CO ≤ n}.
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It is not hard to see that, analogously to the classical case,
∨∼ and −∼−|, as well as &

and ., are duals to each other.

Definition 5 (Satisfaction). Let O = 〈∆O, ·O,≺O,�O〉 and let r1, . . . , rn, r, s ∈ R,
C,D ∈ C, and a, b ∈ I. The satisfaction relation 
 is defined as follows:
O 
 r v s if rO ⊆ sO; O 
 r @∼ s if min�O r

O ⊆ sO;
O 
 r1 ◦ · · · ◦ rn v r if (r1 ◦ · · · ◦ rn)O ⊆ rO; O 
 r1 ◦ · · · ◦ rn @∼ r if min�O (r1 ◦
· · · ◦ rn)O ⊆ rO;
O 
 Fun(r) if rO is a function; O 
 dFun(r) if for all x, #min�O (r

O|x)(x) ≤ 1;
O 
 Ref(r) if {(x, x) | x ∈ ∆O} ⊆ rO; O 
 dRef(r) if for every x ∈ min≺O ∆

O,
(x, x) ∈ rO;
O 
 Irr(r) if rO ∩ {(x, x) | x ∈ ∆O} = ∅; O 
 dIrr(r) if for every x ∈ min≺O ∆

O,
(x, x) /∈ rO;
O 
 Sym(r) if inv(r)O ⊆ rO; O 
 dSym(r) if min�O (r

−)O ⊆ rO;
O 
 Asy(r) if rO ∩ inv(r)O = ∅; O 
 dAsy(r) if min�O r

O ∩min�O (r
−)O = ∅;

O 
 Tra(r) if (r ◦ r)O ⊆ rO; O 
 dTra(r) if min�O (r ◦ r)O ⊆ rO;
O 
 Dis(r, s) if rO ∩ sO = ∅; O 
 dDis(r, s) if min�O r

O ∩min�O s
O = ∅;

O 
 C v D if CO ⊆ DO; O 
 C @∼D if min≺O C
O ⊆ DO;

O 
 a : C if aO ∈ CO; O 
 (a, b) : r if (aO, bO) ∈ rO; O 
 (a, b) : ¬r if
O 6
 (a, b) : r; O 
 a = b if aO = bO; O 
 a 6= b if O 6
 a = b.

If O 
 α, then we say O satisfies α. O satisfies a set of statements or assertions X
(denoted O 
 X) if O 
 α for every α ∈ X , in which case we say O is a model of X .
We say C ∈ C is satisfiable w.r.t. KB = 〈A,R, T 〉 if there is a model O of KB s.t.
CO 6= ∅, and unsatisfiable otherwise.

A statement α is (classically) entailed by a knowledge base KB, denoted KB |= α,
if every model of KB satisfies α.

3 Reasoning with dSROIQ Knowledge Bases

As for classical SROIQ [20, Lemma 7], it is possible to eliminate an ABox A by
compiling all individual assertions in A as follows:

1. Let N′ := N∪{oa | a appears inA} (i.e., extend the signature with new nominals);
2. Let A′ := {a : C ∈ A} ∪ {a : ∃r.ob | (a, b) : r ∈ A} ∪ {a : ∀r.¬ob | (a, b) : ¬r ∈
A} ∪ {a : ¬ob | a 6= b ∈ A};

3. For every C ∈ C, let C ′ := C u
d

a:D∈A′ ∃u.(oa uD).

It is then easy to see that C is satisfiable w.r.t. 〈A,R, T 〉 if and only if C ′ is satisfi-
able w.r.t. 〈∅,R, T 〉, which allows us to assume from now on and w.l.o.g. that ABoxes
have been eliminated.

Next, in the same way that most of the classical role assertions can equivalently
be replaced by GCIs or RIAs, under our preferential semantics, all of our defeasible
role assertions, with the exception of dAsy(·) and dDis(·), can be reduced to defeasible
RIAs in the following way. dFun(r) can be replaced by > v. 1r.>— to be ‘usually
functional’ means only non-normal arrows can break functionality. (Note that, since
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the number restriction is unqualified, r need not be simple.) dRef(r) and dIrr(r) can,
respectively, be replaced with >@∼ ∃r.Self and >@∼ ¬∃r.Self. dSym(r) can be reduced
to r− @∼ r and dTra(r) to r ◦ r @∼ r. Furthermore, note that dAsy(r) can be reduced to
dDis(r, r−) (cf. Definition 5). Hence, from now on we can assume, w.l.o.g., that the set
of role assertionsRa contains only statements of the form Dis(r, s) and dDis(r, s).

Next, we observe that defeasible concept inclusions can be made classical by in-
troducing a new role name r≺ to encode ≺ at the object level. This is similar to the
SROIQ encoding of the typicality operator of Giordano et al. [16, 15].

Finally, we can apply the same procedure for eliminating both the TBox and the
universal role u defined for classical SROIQ [20, Lemma 8][26], extended to the
case of dSROIQ concepts. Hence, from now on we can assume TBoxes (as well as
occurrences of u therein) have been eliminated.

The next theorem summarises the reduction outlined in this section:

Theorem 1. Satisfiability of dSROIQ-concepts w.r.t. TBoxes, ABoxes and RBoxes
can be polynomially reduced to satisfiability of dSROIQ-concepts w.r.t. RBoxes in
which all role assertions are of the form Dis(r, s) and dDis(r, s).

It is known that classical RIAs with role composition on the LHS can be eliminated
via automata-based procedures [21] or regular expressions [29]. Hence, we can assume
w.l.o.g. that all classical RIAs are of the form r v s, with r, s ∈ R \ {u}. Whether
analogous procedures for getting rid of role composition on the LHS of defeasible RIAs
are devisable and, if so, feasible in practice, is an open question that we leave for future
investigation. (Roughly, the automaton used to ‘memorise’ role-paths r1, . . . , rn in the
classical case must be carefully adapted in order to also recognise preferred role-paths
so that a normal r1, . . . , rn-path warrants the existence of an s-path, whenever r1 ◦
. . . ◦ rn @∼ s follows from R). Hence, in the remainder of the paper, we shall make the
assumption that all defeasible RIAs are of the form r @∼ s, for r, s ∈ R \ {u} (and
thereforeR contains no assertions of the form dTra(·) — see above).

Furthermore, note that the special role name r≺ used in the internalisation of defea-
sible concept inclusions does not appear in

∨∼-, −∼−|-, &- or .-concepts or in defeasible
RIAs, for r≺ /∈ R.

4 A Tableau Proof Procedure for dSROIQ

We shall now present a tableau-based algorithm for deciding consistency of dSROIQ-
concepts w.r.t. an RBox. Thanks to the results in Section 3, it also allows for checking
concept satisfiability w.r.t. knowledge bases KB = 〈A,R, T 〉.

The algorithm extends that for SROIQ [20] to deal with defeasible constructs and
also works by generating a completion graph, which, if complete and clash-free (see
below), can be used to construct a (possibly infinite) model for the input concept and
the RBox.

With nnf(C) we denote the negation normal form (NNF) of C ∈ C, i.e., the result
of transformingC into an equivalent concept by pushing negation inwards and applying
De Morgan’s laws as well as the duality between ∀ and ∃, ≥ and ≤,

∨∼ and −∼−|, and &
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and .. Note that in NNF negation occurs only in front of concept names or in front of
∃r.Self or −∼−|r.Self.

If C ∈ C, sub(C) denotes the set of all (syntactic) sub-concepts of C (including C
itself), and clos(C) is the smallest set containing C that is closed under sub-concepts
and negation: clos(C) := {D | D ∈ sub(C)} ∪ {nnf(¬D) | D ∈ sub(C)}.

Definition 6 (Completion Graph). Let C ∈ C be in NNF and such that the universal
role u does not occur in C, and let R be an RBox. A completion graph for C w.r.t. R
is a directed graph G := 〈V,E,M,L,N , 6 .=〉 where V is a set of nodes, E ⊆ V × V is
a set of edges, M ⊆ E ×E is a relation on edges, L(·) is a labelling function defined
by:

1. for every v ∈ V , L(v) ⊆ clos(C) ∪ N ∪ {≤ mr.D | ≤ nr.D ∈ clos(C) and
m ≤ n} ∪ {. mr.D | . nr.D ∈ clos(C) and m ≤ n};

2. for every e = (v, v′) ∈ E, L(e) ⊆ R \ {u};
3. for every m = (e, e′) ∈M , L(m) ⊆ L(e) ∩ L(e′),

N ⊆ E×R, with (e, r) ∈ N only if r ∈ L(e), and 6 .=⊆ V ×V is a symmetric relation.

Intuitively, N tells us whether (v, v′) is a normal r-edge among those leaving v. It is
used along with M in the model-unravelling phase to construct a preference relation
for each role name. (For the sake of readability, we shall henceforth write L(v, v′)
and L((v, v′), (u, u′)) instead of L((v, v′)) and L(((v, v′), (u, u′))).) M is the explicit
construction of the skeleton of the preference relation on the edges, and is used to
construct the model resulting from the unravelling of the completion graph.

If (v, v′) ∈ E, then v′ is a successor of v, and v is a predecessor of v′. Ancestor is
the transitive closure of predecessor, and descendant is the transitive closure of succes-
sor. We say v′ is an r-successor of v if r ∈ L(v, v′). v is an r-predecessor of v′ if v′

is an r-successor of v. Neighbour (resp. r-neighbour) is the union of successor (resp.
r-successor) and predecessor (r-predecessor). If r ∈ R \ {u}, C ∈ C and v ∈ V in G,
then

rG(v, C) := {v′ | (v, v′) ∈ E, r ∈ L(v, v′), and C ∈ L(v′)}

denotes all r-successors of v with C in their label, and

rGN (v, C) := rG(v, C) ∩ {v′ | ((v, v′), r) ∈ N}

denotes (intuitively) the r-successors of v with C in their label that are accessible via
an r-edge which is minimal among r-edges leaving v.

Definition 7 (Clash). Let G = 〈V,E,M,L,N , 6 .=〉 be a completion graph. We say G
contains a clash if there are nodes v, v′, v′′, v1, . . . , vk, v′1, . . . , v

′
k ∈ V such that:

1. ⊥ ∈ L(v), or for some A ∈ C, {A,¬A} ⊆ L(v);
2. r ∈ L(v, v) and ¬∃r.Self ∈ L(v);
3. r ∈ L(v, v), ((v, v), r) ∈ N and ¬−∼−|r.Self ∈ L(v);
4. Dis(r, s) ∈ Ra, (v, v′) ∈ E and {r, s} ⊆ L(v, v′);
5. dDis(r, s) ∈ Ra, (v, v′) ∈ E, {r, s} ⊆ L(v, v′) and ((v, v′), r), ((v, v′), s) ∈ N ;
6. ≤ nr.C ∈ L(v) and {v0, . . . , vn} ⊆ rG(v, C), where vi 6

.
= vj for 0 ≤ i < j ≤ n;



8 Katarina Britz and Ivan Varzinczak

7. . nr.C ∈ L(v) and {v0, . . . , vn} ⊆ rGN (v, C), where vi 6
.
= vj for 0 ≤ i < j ≤ n;

8. ((v, v′), r) ∈ N and r ∈ L((v, v′′), (v, v′));
9. r ∈ L((vi, v′i), (vi+1, v

′
i+1)), for i = 1, . . . , k − 1, and vk = v1, v′k = v′1, or

10. for some o ∈ N, v 6 .= v′ and o ∈ L(v) ∩ L(v′).

In order to ensure termination of the algorithm in the presence of transitive roles,
we extend the standard (classical) blocking technique [19, 22] to the case of our richer
structures as follows:

Definition 8 (Blocking). Let G = 〈V,E,M,L,N , 6 .=〉 be a completion graph and v ∈
V . If L(v) ∩ N 6= ∅, then v is a nominal node; otherwise v is a blockable node. We
say v is label blocked if v has ancestors v′, u and u′ such that:

1. (v′, v), (u′, u) ∈ E and there is a path u, . . . , v′, v with u, . . . v′, v blockable;
2. L(v) = L(u), L(v′) = L(u′) and L(v′, v) = L(u′, u);
3. for all r ∈ L(v′, v), ((v′, v), r) ∈ N iff ((u′, u), r) ∈ N ;
4. for every (x, y) such that ((x, y), (v′, v)) ∈M , there is (x′, y′) such that
L(x) = L(x′), L(y) = L(y′), L(x, y) = L(x′, y′), ((x′, y′), (u′, u)) ∈ M and
L((x′, y′), (u′, u)) = L((x, y), (v′, v)).

5. for every (x, y) such that ((v′, v), (x, y)) ∈M , there is (x′, y′) such that
L(x) = L(x′), L(y) = L(y′), L(x, y) = L(x′, y′), ((u′, u), (x′, y′)) ∈ M and
L((u′, u)(x′, y′)) = L((v′, v), (x, y)).

If (1)–(5) hold, we say u blocks v. We say v ∈ V is blocked if either (a) v is label
blocked, or (b) v is blockable and there is (v′, v) ∈ E such that v′ is blocked. If v is
blocked but is not label blocked, then we say v is indirectly blocked.

LetC be the concept of which the satisfiability w.r.t. an RBoxR one wants to check,
and let o1, . . . , ok be the nominals occurring in C. The tableau algorithm is initialised
with a completion graph G = 〈{v0, v1, . . . , vk}, ∅, ∅,L, ∅, ∅〉, where L(v0) := {C},
L(vi) := {oi}, for 1 ≤ i ≤ k. We then expand G by decomposing concepts in its
nodes through the application of the expansion rules in Figures 1–3. These rules are
repeatedly applied until either no more rules are applicable or a clash (Definition 7) is
found. In either case, we say the completion graph is complete. The algorithm returns
“C is satisfiable w.r.t. R”, if the result of the application of the expansion rules to C
andR is a complete and clash-free graph, and “C is unsatisfiable w.r.t.R”, otherwise.

Note that the rules in Figure 1 are the same as the corresponding ones for SROIQ
modulo the new definitions of blocking (see Definition 8), and of merging and pruning
(see below). The rules in Figure 3 deal specifically with our new non-monotonic con-
structs. The rules in Figure 2 correspond to those classical rules that had to be modified
in the light of our richer semantics. We here detail the case of the ∃-rule, from which
the respective explanations for the Self-,≥- and NN-rules can be constructed. Unlike in
the −∼−|-rule, we cannot assume the newly added r-edge is minimal among r-successors
of v. We therefore need to consider the additional possibility that the new r-edge is not
normal. (This has to be dealt with explicitly in order to ensure soundness of the algo-
rithm.) Therefore, when creating a new r-successor, there are two possibilities: either
(i) the new edge is normal among the r-edges leaving v, in which case the result is the
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u-rule:
if C1 u C2 ∈ L(v), v is not indirectly blocked, and {C1, C2} 6⊆ L(v)
then L(v) := L(v) ∪ {C1, C2}
t-rule:
if C1 t C2 ∈ L(v), v is not indirectly blocked, {C1, C2} ∩ L(v) = ∅
then L(v) := L(v) ∪ {C′}, for some C′ ∈ {C1, C2}
∀-rule:
if ∀r.C ∈ L(v), v is not indirectly blocked, r ∈ L(v, v′), C /∈ L(v′)
then L(v′) := L(v′) ∪ {C}
ch-rule:
if ≤ nr.C ∈ L(v), v is not indirectly blocked, r ∈ L(v, v′), and {C, nnf(¬C)} ∩ L(v′) = ∅
then L(v′) := L(v′) ∪ {C′}, for some C′ ∈ {C, nnf(¬C)}
≤-rule:
if ≤ nr.C ∈ L(v), v is not indirectly blocked, #rG(v, C) > n, and

there are v1, v2 s.t. r ∈ L(v, v1) ∩ L(v, v2), C ∈ L(v1) ∩ L(v2), but not v1 6
.
= v2

then a. if v1 is a nominal node, then merge(v2, v1),
b. else if v2 is a nominal node or an ancestor of v1, then merge(v1, v2)
c. else merge(v2, v1)

o-rule:
if for some o ∈ N there are v, v′ s.t. o ∈ L(v) ∩ L(v′) and not v 6 .= v′

then merge(v, v′)

Fig. 1. Classical expansion rules for dSROIQ.

same as that of applying the −∼−|-rule, or (ii) it is not normal, in which case there must
be a most preferred r-edge, which is also more preferred than the newly created one.
(This splitting is of the same nature as that in the t-rule, fitting the purpose of a proof
by cases.) The additional index k in the ≥- and NN-rules serve a similar purpose.

The result of prune(v) in G = 〈V,E,M,L,N , 6 .=〉 is a new completion graph con-
structed from G as follows: (1) For every successor v′ of v, E := E \ {(v, v′)} and
if v′ is blockable, then prune(v′); (2) V := V \ {v}. (We assume these changes are
propagated to L, M , N and 6 .= in the expected way.)

The result of merge(v′, v) in G = 〈V,E,M,L,N , 6 .=〉 is a new completion graph
constructed from G in the following way (conditions (d)–(f) in both clauses (1) and (2)
below are used to preserve the relative normality of the edges):

1. For every u s.t. (u, v′) ∈ E:
(a) if {(v, u), (u, v)} ∩ E = ∅, then E := E ∪ {(u, v)} and L(u, v) := L(u, v′);
(b) if (u, v) ∈ E, then L(u, v) := L(u, v) ∪ L(u, v′);
(c) if (v, u) ∈ E, then L(v, u) := L(v, u) ∪ {inv(r) | r ∈ L(u, v′)};
(d) if (x, y) ∈ E and ((x, y), (u, v′)) ∈ M , then M := M \ {((x, y), (u, v′))} ∪
{((x, y), (u, v))} andL((x, y), (u, v)) := L((x, y), (u, v))∪L((x, y), (u, v′));

(e) if (x, y) ∈ E and ((u, v′), (x, y)) ∈ M , then M := M \ {((u, v′), (x, y))} ∪
{((u, v), (x, y))} andL((u, v), (x, y)) := L((u, v), (x, y))∪L((u, v′), (x, y));

(f) if ((u, v′), r) ∈ N , then N := N ∪ {((u, v), r)};
(g) E := E \ {(u, v′)};

2. For every nominal node u s.t. (v′, u) ∈ E:
(a) if {(v, u), (u, v)} ∩ E = ∅, then E := E ∪ {(v, u)} and L(v, u) := L(v′, u);
(b) if (v, u) ∈ E, then L(v, u) := L(v, u) ∪ L(v′, u);
(c) if (u, v) ∈ E, then L(u, v) := L(u, v) ∪ {inv(r) | r ∈ L(v′, u)};
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∃-rule:
if ∃r.C ∈ L(v), v is not blocked, and there is no v′ s.t. r ∈ L(v, v′) and C ∈ L(v′)
then 1. create a new node v′ and edge (v, v′) with L(v′) := {C}, L(v, v′) := {r} andN := N ∪ {((v, v′), r)}
or 2. create two new nodes v′, v′′ and new edges (v, v′), (v, v′′) with L(v′) := {C}, L(v, v′) := {r},

M := M ∪ {((v, v′′), (v, v′))}, L((v, v′′), (v, v′)) := {r} andN := N ∪ {((v, v′′), r)}
Self-rule:
if ∃r.Self ∈ L(v), v is not blocked, and r /∈ L(v, v)
then 1. add an edge (v, v), if it does not exist, L(v, v) := L(v, v) ∪ {r}, andN := N ∪ {((v, v), r)}
or 2. create a node v′ and edges (v, v), (v, v′), L(v, v) := L(v, v) ∪ {r}, L(v, v′) := {r},

M := M ∪ {((v, v′), (v, v))}, L((v, v′), (v, v)) := {r}, andN := N ∪ {((v, v′), r)}
≥-rule:
if ≥ nr.C ∈ L(v), v is not blocked, and there are no v1, . . . , vn s.t. r ∈ L(v, vi), C ∈ L(vi),

i = 1, . . . , n, and vi 6
.
= vj , for 1 ≤ i < j ≤ n, and each vi is not blocked if v is not blockable

then a. guess k ∈ {0, . . . , n},
b. create k new nodes v1, . . . , vk and edges (v, vi), for i = 1, . . . , k, with L(v, vi) := {r},
L(vi) := {C} andN := N ∪ {((v, vi), r)},

c. create 2(n− k) new nodes vk+1, . . . , vn and v′k+1, . . . , v
′
n and edges (v, vi) and (v, v′i),

for i = k + 1, . . . , n, with L(vi) := {C}, L(v, vi) := {r}, L(v, v′i) := {r},
M := M ∪ {((v, v′i), (v, vi))}, L((v, v′i), (v, vi)) := {r} andN := N ∪ {((v, v′i), r)}, and

d. set vi 6
.
= vj , for 1 ≤ i < j ≤ n

NN-rule:
if 1. ≤ nr.C ∈ L(v), v is not blockable, r ∈ L(v′, v), v′ is blockable, and C ∈ L(v′)

2. there is no m ∈ {1, . . . , n} s.t. ≤ mr.C ∈ L(v) and s.t. there are m nominal r-successors
v1, . . . , vm of v with C ∈ L(vi) and vi 6

.
= vj for all 1 ≤ i < j ≤ m

then a. guess m ∈ {1, . . . , n}, set L(v) := L(v) ∪ {. mr.C} and guess k ∈ {0, . . . ,m},
b. create k new nodes v1, . . . , vk and edges (v, vi), for i = 1, . . . , k, with L(v, vi) := {r},
L(vi) := {C, oi} with each oi ∈ N new in G andN := N ∪ {((v, vi), r)},

c. create 2(m− k) new nodes vk+1, . . . , vm and v′k+1, . . . , v
′
m and edges (v, vi) and (v, v′i), for

i = k + 1, . . . ,m, with L(v, vi) := {r}, L(vi) := {C, oi}, with each oi ∈ N new in G, L(v, v′i) := {r},
M := M ∪ {((v, v′i), (v, vi))}, L((v, v′i), (v, vi)) := {r} andN := N ∪ {((v, v′i), r)}, and

d. set vi 6
.
= vj , for 1 ≤ i < j ≤ m

Fig. 2. New classical expansion rules for dSROIQ.

(d) if (x, y) ∈ E and ((x, y), (v′, u)) ∈ M , then M := M \ {((x, y), (v′, u))} ∪
{((x, y), (v, u))} andL((x, y), (v, u)) := L((x, y), (v, u))∪L((x, y), (v′, u));

(e) if (x, y) ∈ E and ((v′, u), (x, y)) ∈ M , then M := M \ {((v′, u), (x, y))} ∪
{((v, u), (x, y))} andL((v, u), (x, y)) := L((v, u), (x, y))∪L((v′, u), (x, y));

(f) if ((v′, u), r) ∈ N , then N := N ∪ {((v, u), r)};
(g) E := E \ {(v′, u)};

3. L(v) := L(v) ∪ L(v′);
4. 6 .= := 6 .= ∪{(v, w) | v′ 6 .= w}; and
5. prune(v′).

As in the classical case, in order to ensure termination of the tableau algorithm, one
has to assign higher priorities to certain rules. Here we assume the following strategy
is adopted: The o-rule is applied with the highest priority; the NN- and dNN-rules are
applied before the ≤- and .-rules; the other rules are applied with a lower priority.

Theorem 2. Let C ∈ C and letR be an RBox.

1. The algorithm terminates if started with nnf(C) andR;
2. When exhaustively applied to nnf(C) and R, the expansion rules yield a complete

and clash-free completion graph iff C is satisfiable w.r.t.R.
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Rh-rule:
if r ∈ L(v, v′), v is not indirectly blocked and either r v s ∈ R or both r @∼ s ∈ R and ((v, v′), r) ∈ N
then L(v, v′) := L(v, v′) ∪ {s}
−∼−|-rule:
if −∼−|r.C ∈ L(v), v is not blocked and there is no v′ s.t. r ∈ L(v, v′), C ∈ L(v′) and ((v, v′), r) ∈ N
then create a new node v′ and edge (v, v′) with L(v′) := {C}, L(v, v′) := {r} andN := N ∪ {((v, v′), r)}
dSelf-rule:
if −∼−|r.Self ∈ L(v), v is not blocked and either r /∈ L(v, v) or ((v, v), r) /∈ N
then add a new edge (v, v), if required, L(v, v) := L(v, v) ∪ {r}, andN := N ∪ {((v, v), r)}∨∼-rule:
if

∨∼r.C ∈ L(v), v is not indirectly blocked, r ∈ L(v, v′), ((v, v′), r) ∈ N and C /∈ L(v′)
then L(v′) := L(v′) ∪ {C}
dch-rule:
if . nr.C ∈ L(v), v is not indirectly blocked, r ∈ L(v, v′), ((v, v′), r) ∈ N and

{C, nnf(¬C)} ∩ L(v′) = ∅
then L(v′) := L(v′) ∪ {C′}, for some C′ ∈ {C, nnf(¬C)}
&-rule:
if & nr.C ∈ L(v), v is not blocked, and there are no v1, . . . , vn s.t. r ∈ L(v, vi), ((v, vi), r) ∈ N ,

C ∈ L(vi), for i = 1, . . . , n, and s.t. vi 6
.
= vj , for 1 ≤ i < j ≤ n, and each vi is not blocked

if v is not blockable
then create n new nodes v1, . . . , vn with L(v, vi) = {r},N := N ∪ {((v, vi), r)}, L(vi) = {C},

for i = 1, . . . , n, and set vi 6
.
= vj , 1 ≤ i < j ≤ n

.-rule:
if . nr.C ∈ L(v), v is not indirectly blocked, #rGN (v, C) > n, and there are v1, v2 s.t.

r ∈ L(v, v1) ∩ L(v, v2), ((v, v1), r), ((v, v2), r) ∈ N , C ∈ L(v1) ∩ L(v2) but not v1 6
.
= v2

then a. if v1 is a nominal node, then merge(v2, v1), else
b. if v2 is a nominal node or an ancestor of v1, then merge(v1, v2)
c. else merge(v2, v1)

dNN-rule:
if 1. . nr.C ∈ L(v), v is not blockable, r ∈ L(v′, v), v′ is blockable and C ∈ L(v′)

2. there is no m ∈ {1, . . . , n} s.t. . mr.C ∈ L(v) and s.t. there are m nominal nodes v1, . . . , vm with
(v, vi) ∈ E, r ∈ L(v, vi), ((v, vi), r) ∈ N , C ∈ L(vi), for i = 1, . . . ,m, and with vi 6

.
= vj ,

for all 1 ≤ i < j ≤ m
then a. guess m ∈ {1, . . . , n} and set L(v) := L(v) ∪ {. mr.C}

b. create m new nodes v′1, . . . , v′m with L(v, v′i) := {r},N := N ∪ {((v, v′i), r) | 1 ≤ i ≤ n},
L(v′i) := {C, oi}, with oi ∈ N new in G, i = 1, . . . ,m, and set v′i 6

.
= v′j , 1 ≤ i < j ≤ m

Fig. 3. Defeasible expansion rules for dSROIQ.

5 Summary and Future Work

The main contributions of the present paper are: (i) a meaningful extension of SROIQ
with defeasible reasoning constructs in the concept language, in both concept and role
inclusions, and in role assertions, together with an intuitive KLM-style preferential se-
mantics; (ii) a translation of the entailment problem w.r.t. dSROIQ knowledge bases
to concept satisfiability relative to an RBox only, and (iii) a terminating, sound and
complete tableau-based algorithm for checking concept satisfiability w.r.t. dSROIQ
RBoxes.

As for the next steps, we have (i) extending the tableau procedure to allow role
composition in defeasible RIAs, (ii) an analysis of the computational complexity of con-
cept satisfiability for dSROIQ, (iii) an investigation of the correspondence between
dSROIQ and an extension of the OWL 2 RDF semantics3, and (iv) the definition of
an appropriate notion of non-monotonic entailment for dSROIQ ontologies.

3 https://www.w3.org/TR/2012/REC-owl2-rdf-based-semantics-20121211
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