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Abstract. We introduce Propositional Typicality Logic (PTL), a logic for rea-
soning about typicality. We do so by enriching classical propositional logic with
a typicality operator of which the intuition is to capture the most typical (or nor-
mal) situations in which a formula holds. The semantics is in terms of ranked
models as studied in KLM-style preferential reasoning. This allows us to show
that rational consequence relations can be embedded in our logic. Moreover we
show that we can define consequence relations on the language of PTL itself,
thereby moving beyond the propositional setting. Building on the existing link
between propositional rational consequence and belief revision, we show that the
same correspondence holds for rational consequence and belief revision on PTL.
We investigate entailment for PTL, and propose two appropriate notions thereof.
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1 Introduction and Motivation

The preferential and rational consequence relations first studied by Lehmann and col-
leagues in the 90’s play a central role in nonmonotonic reasoning [13, 14]. This has
been the case due to at least three main reasons. Firstly, they are based on semantic
constructions that are elegant and neat. Secondly, they provide the foundation for the
determination of the important notion of entailment in this context. Finally they also
offer an alternative perspective on belief change [9].

A curious aspect of such consequence relations (and corresponding belief revision
constructions) is that they are crucially, albeit tacitly, based on a notion of typicality.
However, in the corresponding underlying language it is not possible to refer directly to
such a notion. In this paper, we fill this gap with the introduction of an explicit operator
to talk about typicality. Intuitively, our new syntactic construction allows us to single out
those most typical situations in which a formula holds. The result is a more expressive
language allowing us, for instance, to make statements of the form “the most typical αs
are most typical βs”, which is not possible in the aforementioned frameworks.
? This work is based upon research supported by the National Research Foundation. Any opin-

ion, findings and conclusions or recommendations expressed in this material are those of the
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The remainder of the paper is structured as follows: After some preliminaries (Sec-
tion 2), we define and investigate PTL, a propositional typicality logic extending propo-
sitional logic (Section 3). The semantics of PTL is in terms of ranked models as studied
in the literature on preferential reasoning. This allows us to embed propositional KLM-
style consequence relations in our new language. In Section 4 we show that, although
the addition of the typicality operator increases the expressivity of the logic, the nest-
ing of the typicality does not. In Section 5 we investigate the link between AGM belief
revision and PTL. We show that propositional AGM belief revision can be expressed in
terms of typicality, and also that it can be lifted to a version of revision on PTL. We then
move to an investigation of rational consequence relations in terms of PTL (Section 6).
We show that propositional rational consequence can be expressed in PTL, that it can
be extended to PTL in terms of PTL itself, and that the propositional connection be-
tween rational consequence and revision carries over to PTL. In Section 7 we raise the
question of what an appropriate notion of entailment for PTL is, and propose at least
two candidates. After a discussion of and comparison with related work (Section 8), we
conclude with a summary of the contributions and directions for further investigation.

2 Preliminaries

We work in a propositional language over a finite set of atomsP , denoted by p, q, . . . (In
later sections we adopt a richer language.) Propositional formulas (and in later sections,
formulas of the richer language) are denoted by α, β, . . ., and are recursively defined in
the usual way: α ::= p | ¬α | α∧α. The other truth-functional connectives are defined
in terms of ¬ and ∧ in the usual way. We use > as an abbreviation for p ∨ ¬p, and ⊥
for p ∧ ¬p, for some p ∈ P . With L we denote the set of all propositional formulas.

We denote by U the set of all valuations v : P −→ {0, 1}. Satisfaction of α ∈ L
by v ∈ U is defined in the usual truth-functional way. With Mod(α) we denote the set
of all valuations satisfying α. Given sentences α and β, α |= β (α entails β) means
Mod(α) ⊆ Mod(β). We extend the notions of Mod(·) and entailment to knowledge
bases in the usual way: for a finiteK ⊆ L, Mod(K) is the set of all valuations satisfying
every formula in K, and K |= α if and only if Mod(K) ⊆ Mod(α).

A propositional defeasible consequence relation |∼ is defined as a binary relation
on the formulas of the underlying (finitely generated) propositional logic. |∼ is said to
be preferential if it satisfies the following set of properties [13]:

(Ref) α |∼ α (LLE)
|= α↔ β, α |∼ γ

β |∼ γ
(And)

α |∼ β, α |∼ γ
α |∼ β ∧ γ

(Or)
α |∼ γ, β |∼ γ
α ∨ β |∼ γ

(RW)
α |∼ β, |= β → γ

α |∼ γ
(CM)

α |∼ β, α |∼ γ
α ∧ β |∼ γ

If, in addition to the properties of preferential consequence, |∼ also satisfies the follow-
ing Rational Monotonicity property, it is said to be a rational consequence relation [14]:

(RM)
α |∼ β, α 6|∼ ¬γ
α ∧ γ |∼ β
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The semantics of (propositional) rational consequence is in terms of ranked models.
These are partially ordered structures in which the ordering is modular.

Definition 1. Given a set S, ≺ ⊆ S × S is modular if and only if there is a ranking
function rk : S −→ N such that for every s, s′ ∈ S, s ≺ s′ if and only if rk(s) < rk(s′).

Definition 2. A ranked model R is a pair 〈V,≺〉, where V ⊆ U and ≺ ⊆ V × V is a
modular order over V .3

Definition 3. Let α ∈ L and let R = 〈V,≺〉 be a ranked model. With JαK we denote
the set of valuations satisfying α in R, defined as follows:

JpK := {v ∈ V | v(p) = 1}, J¬αK := V \ JαK, Jα ∧ βK := JαK ∩ JβK

Given a ranked model R, the intuition is that valuations lower down in the ordering
are more preferred than those higher up. Hence, a pair (α, β) is in the consequence
relation defined by R (denoted as α |∼R β) if and only if min≺JαK ⊆ JβK, i.e., the
most preferred (with respect to ≺) α-valuations are also β-valuations.

Lehmann and Magidor provided a representation result for the propositional case,
establishing that a defeasible consequence relation |∼ on L is rational if and only if it is
defined by some ranked model [14, 9].

3 Propositional Typicality Logic

We introduce now a propositional typicality logic, called PTL, which extends propo-
sitional logic with a typicality operator a (read ‘bar’). The language of PTL, denoted
by L, is recursively defined by: α ::= p | ¬α | α∧α | α. (As before, the other connec-
tives are defined in terms of ¬ and ∧, and > and ⊥ are abbreviations.) Intuitively, α is
understood to refer to the typical situations in which α holds. The semantics is in terms
of ranked models and we extend the notion of satisfaction from Definition 3 as follows:

Definition 4. Let α ∈ L and let R = 〈V,≺〉. Then JαK := min≺JαK.

Given α ∈ L and R a ranked model, we say that α is true in R (denoted as R  α)
if JαK = V . For K ⊆ L, R  K if R  α for every α ∈ K. α is valid, denoted as |= α,
if R  α for every ranked model R.

Note that for every ranked model R and α ∈ L, there is a β ∈ L (i.e., a propositional
formula) such that R  α↔ β. That is to say, given R, every α can be expressed as a
propositional formula (β) in R. Of course, this does not mean that propositional logic
is as expressive as PTL, since the formula β used to express α in the ranked model R
depends on R. Rather, the relationship between PTL and propositional logic is similar
to the relationship between modal logic and propositional logic in the sense that both
modal logic and PTL add to propositional logic an operator that is not truth-functional.
(In Section 8 we discuss in more detail the relationship between PTL and modal logic.)

Next is a property which shows that if R  α, then R consists of only α-worlds in
which all worlds are incomparable (alias equally preferred) according to ≺.

3 This is not Lehmann and Magidor’s [14] original definition of ranked models but a characteri-
zation of rational consequence can be given in terms of ranked models as we present here [9].
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Proposition 1. Let R = 〈V,≺〉. Then (1)≺= ∅ iff there is an α ∈ L such that R  α;
(2) for every α ∈ L, R  α iff for every β ∈ L such that R  α→ β, R  β.

One of the consequences of this result is that if α is true in a ranked model, then so is α
(but the converse, of course, does not hold).

Another useful property of typicality is that it allows us to express (propositional)
rational consequence, as defined in Section 2.

Proposition 2. For α, β ∈ L, α |∼R β if and only if R  α→ β.

Proposition 2 shows that the introduction of typicality into the object language al-
lows us to express rational consequence. This forms part of our argument to show that
our semantics for typicality is the correct one, but it does not provide a justification for
introducing all the additional expressivity obtained from typicality. To provide such a
justification we turn to the notion of defeasible incompatibility. Intuitively, α and β are
said to be incompatible if they are contradictory. Therefore with an appropriate defini-
tion of defeasible incompatibility we should be able to capture the idea of α and β being
defeasibly incompatible. There seems to be at least four different ways of expressing de-
feasible incompatibility, none of which are equivalent (with respect to ranked models),
but all of which would be propositionally equivalent if the typicality operator were re-
moved: (i) (α→ ¬β)∧(β → ¬α); (ii)> → ¬(α∧β); (iii) ¬(α ∧ β), and (iv) ¬(α∧β).
Observe that (i) can be expressed as two |∼-statements (α |∼ ¬β and β |∼ ¬α), that
(ii) can be expressed in terms of |∼, but that (iii) and (iv) cannot.

Furthermore, although it may be useful to be able to express all four of these op-
tions, our contention is that the notion of defeasible incompatibility is correctly cap-
tured by option (iv), one of the options that cannot be expressed in terms of |∼. To
see why, note firstly that option (i) is ruled out because it is too strong. It expressly
forbids typical α-situations to be β-situations (and forbids typical β-situations to be
α-situations). We could consider weakening it so that typical α-situations are only for-
bidden to be typical β-situations (and similarly with the roles of α and β reversed),
i.e., to (α → ¬β) ∧ (β → ¬α). That looks reasonable indeed, but it is easy to see
that this statement is equivalent to each of its two conjuncts α → ¬β and β → ¬α,
and also to option (iv). To see why option (ii) does not fit the bill either, it is best to
consider its representation in terms of |∼: > |∼ ¬(α ∧ β). From this we do not always
get γ |∼ ¬(α ∧ β). Thus, in a sense, option (ii) is too weak since it ignores, for the
most part, the context in which defeasible incompatibility is supposed to hold. For op-
tion (iii), from Proposition 1 it follows that if ¬(α ∧ β) holds, then so does ¬(α ∧ β),
which is clearly too strong. Finally, observe that option (iv) is interpreted to mean that
the most typical α-situations and the most typical β-situations are incompatible, which
corresponds best to the informal notion of defeasible incompatibility. In summary then,
it seems that to express defeasible incompatibility correctly, it is necessary to go beyond
rational consequence, but sufficient to introduce typicality into the object language.

Finally, observe that Proposition 2 shows that rational consequence for proposi-
tional logic can be expressed in PTL. In Section 6 we shall see that it is also possible to
express, in PTL itself, the extended notion of rational consequence for the language L.
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4 Typicality Unraveled

In the previous section we have argued for the need to include typicality explicitly in
the object language. The observant reader would have noticed that L allows for the
arbitrary (finite) nesting of the typicality operator. An important point to consider is
whether this much expressivity is needed, and whether it is not perhaps sufficient to
restrict the language to non-nested applications of typicality.

In this section we show that once typicality is added to the language, nesting does
not increase the expressivity any further, provided that we are allowed to add new propo-
sitional atoms. We shall thus be working with languages in which the set of proposi-
tional atoms P may vary, and more specifically, with languages with respect to a given
knowledge base. So, given a knowledge base K, we denote by PK the set of proposi-
tional atoms occurring in K. Furthermore, by a ranked model on PK we mean a ranked
model built up using only the propositional atoms occurring in PK.

Now, given any K ⊆ L we: (i) Show how to transform every β ∈ L into a for-
mula β̂ containing no nested instances of the bar operator (and therefore also how to
transform K into a knowledge base K̂, containing no nested instances of the bar oper-
ator); (ii) Show how to construct an auxiliary set of formulas Ê, containing no nested
instances of the bar operator, regulating the behavior of the newly introduced proposi-
tional atoms, and (iii) Show how to transform every ranked model R on PK into its
“appropriate representative” R̂ on PK̂ such that, for every β ∈ L, β is true in R if and
only if β̂ is true in R̂. Using these constructions we show that K̂ ∪ Ê is the non-nested
version of K in the sense that the ranked models in which K̂ ∪ Ê are true are precisely
the “appropriate representatives” of the ranked models in which K is true.

To be more precise, let K ⊆ L, let SK denote all subformulas of K, and let BK =
{α ∈ SK | α ∈ L}. So BK contains all occurrences of subformulas in K containing
a single bar. Informally, the idea is to substitute (all occurrences of) every element α
of BK with a new atom pα, and to require that pα be equivalent to α. In doing so we
reduce the level of nesting in K by a factor of 1. Now, let EK = {pα ↔ α | α ∈ BK},
and for every β ∈ L, let βK be obtained from β by the simultaneous substitution in β of
(every occurrence of) every α ∈ BK by pα (observe that βK = β if β is a propositional
formula). We refer to βK as the K-transform of β. Also, let K = {βK | β ∈ K}. The
idea is that K ∪ EK is a version of K with one fewer level of nesting.

Example 1. Let K = {p ∧ q → r, p ∨ r, p ∧ q ∨ r}. Then BK = {p ∧ q, p, r} and
EK = {pp∧q ↔ p ∧ q, pp ↔ p, pr ↔ r}. Now (p ∧ q → r)K = pp∧q → r, (p ∨ r)K =

pp ∨ r, (p ∧ q ∨ r)K = p ∧ q ∨ pr. Hence K = {pp∧q → r, pp ∨ r, p ∧ q ∨ pr}. Ob-
serve that K has a nesting level of 3, while K has a nesting level of 2.

Let R = 〈V,≺〉 be a ranked model on PK. We define R = (V,≺) on PK as
follows: for all v ∈ V , let v be a valuation on PK such that (i) v(p) = v(p) for every
p ∈ PK, and (ii) for every pα ∈ (PK \ PK), v(pα) = 1 if and only if v ∈ JαK in R.
And for all v, v′ ∈ V , v ≺ v′ if and only if v ≺ v′. So R is an extended version of R
with every valuation v in R replaced with an extended valuation v in which the truth
values of atoms occurring in v remain unchanged, and the truth values of the new atoms
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are constrained by the requirement that every pα be equivalent to α (for α ∈ BK). We
refer to R as the K-extended version of R. From this we obtain the following result.

Proposition 3. For every ranked model R onPK, R satisfiesEK. Conversely, a ranked
model R′ on PK satisfies EK if and only if there is a ranked model R on PK such that
R = R′. Furthermore, let R be a ranked model on PK. Then R satisfies K if and only
if R  K. Also, for all β ∈ L, R  β if and only if R  β.

The proposition above shows that the K-extended version of a ranked model R is the
only “appropriate representative” of R in the class of ranked models based on the ex-
tended language of K. Also, the K-extended versions of the ranked models based on
the language of K are the only ones satisfying EK.

As mentioned above, the move from K to K ensures that we can reduce the level of
nesting of a by a factor of 1. To arrive at a set K̂ not containing any nested occurrences
of a we just need to iterate the transform process a sufficient number of times. So, we
define K̂ as follows: Let K0 = K, and for i > 0, let Bi = BKi−1 , Ki = Ki−1, and let
n = min<{i | Bi+1 = ∅}. We then let K̂ = Kn. So for every i = 1, . . . , n, Ki has
one fewer level of nesting of a than Ki−1 until we get to Kn = K̂, which has no nested
occurrences of a. Similarly, for every β ∈ L, we define β̂ as follows: Let β0 = β, for
i = 1, . . . , n, let βi = βKi−1 , and let β̂ = βn. We refer to β̂ as the full K-transform
of β. In a similar vein, we let Ê =

⋃i=n−1
i=0 EKi .

Example 2. Continuing Example 1, let K0 = K. Then B1 = BK0 = BK, and K1 =

K with E0 = EK; B2 = BK1 = {q ∨ pr}, and E1 = {pq∨pr ↔ q ∨ pr}. Now

K2 = K1 = K = {pp∧q → r, pp ∨ r, p ∧ pq∨pr}. In the 2nd iteration, B3 = BK2 =

{pp ∨ r, p ∧ pq∨pr} with E2 = {ppp∨r ↔ pp ∨ r, pp∧pq∨p
r

↔ p ∧ pq∨pr}. Then K3 =

K2 = {pp∧q → r, pp
p∨r, pp∧p

q∨pr }. In the next iteration, B4 = ∅. Hence n = 3, and

K̂ =

{
pp∧q → r, pp

p∨r,

pp∧p
q∨pr

}
, Ê =

{
pp∧q ↔ p ∧ q, pp ↔ p, pr ↔ r, pq∨p

r ↔ q ∨ pr,
pp

p∨r ↔ pp ∨ r, pp∧pq∨p
r

↔ p ∧ pq∨pr

}

Finally, for any ranked model R on PK, we define its full K-extended version R̂ as
follows: Let R0 = R, and for i = 1, . . . , n, Ri = Ri−1. Then we let R̂ = Rn.

Using Proposition 3 we then obtain the result we require.

Theorem 1. For every R on PK, its fullK-extended version R̂ satisfies Ê. Conversely,
a ranked model R′ on PK̂ satisfies Ê if and only if there is a ranked model R on PK
such that R′ = R̂. Furthermore, let R be a ranked model R on PK. Then R  K if
and only if R̂  K̂. Also, for all β ∈ L, R  β if and only if R̂  β̂.

5 Belief Revision and Typicality

Given the well-known link between propositional rational consequence and AGM belief
revision [1], as developed by Gärdenfors and Makinson [9], it is perhaps not surprising
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that propositional AGM belief revision can be expressed using the typicality operator.
In this section we make this claim precise. The formal representation of propositional
AGM revision we provide below is based on that of Katsuno and Mendelzon [12].

The starting point is to fix a non-empty subset V of U (as done by Kraus et al. [13]),
and to assume that everything is done within the context of V . In that sense, V becomes
the set of all valuations available to us. This is slightly more general than the Katsuno-
Mendelzon framework which assumes V to be equal to U , but is a special case of the
original AGM approach. To reflect this restriction, we use ModV(α) to denote the set
Mod(α) ∩ V . In the same vein, in the postulates below, validity is understood to be
modulo V . That is, for α ∈ L we let |= α if and only if ModV(α) = V .

Next, we fix a knowledge base κ ∈ L (i.e., represented as a propositional formula)
such that ModV(κ) 6= ∅. A revision operator ◦ on L for κ is a function from L to L.
Intuitively, κ ◦ α is the result of revising κ by α (clearly the models of κ ◦ α should be
in V). An AGM revision operator ◦ on L for κ is a revision operator on L for κ which
satisfies the following six properties:

(R1) |= (κ ◦ α)→ α
(R2) If 6|= ¬(κ ∧ α), then |= (κ ◦ α)↔ (κ ∧ α)
(R3) If 6|= ¬α, then 6|= ¬(κ ◦ α)
(R4) If |= κ1 ↔ κ2 and |= α1 ↔ α2, then |= (κ1 ◦ α1)↔ (κ2 ◦ α2)
(R5) |= ((κ ◦ α) ∧ β)→ (κ ◦ (α ∧ β))
(R6) If 6|= ¬(κ ◦ α) ∧ β, then |= (κ ◦ (α ∧ β))→ ((κ ◦ α) ∧ β)

A ranked model R = 〈V,≺〉 is defined as κ-faithful if and only if min≺ V =
ModV(κ). A revision operator ◦R (on L) is defined by a κ-faithful ranked model R if
and only if ModV(κ ◦R α) = min≺ModV(α). Katsuno and Mendelzon [12] proved
that for V = U , (i) every revision operator ◦R defined by a κ-faithful ranked model R
is an AGM revision operator (on L), and (ii) for every AGM revision operator ◦ (on L)
for κ, there is a κ-faithful ranked model R such that ModV(κ ◦ α) = ModV(κ ◦R α).

We show that ◦ can be expressed in L using typicality. The key insight is to identify
the knowledge base κ to be revised with the formula>, while κ◦α is identified with α.

Proposition 4. Let R = 〈V,≺〉 be any κ-faithful ranked model (with κ ∈ L). Then
Jκ ◦R αK = JαK (for every α ∈ L). Conversely, let ◦ be any AGM revision operator
(on L) for κ. Then there is a κ-faithful ranked model R such that ModV(κ ◦ α) = JαK.

This result shows that propositional AGM revision can be embedded in L. But we
can take this a step further and extend revision to apply to the language L as well.
So, with V still fixed, we let RV = {R | R = 〈V,≺〉} and we fix a κ ∈ L such
that R 6 ¬κ for some R ∈ RV . The definition of a revision operator ◦ is then the
same as above, except that it is now with respect to L. And the definition of an AGM
revision operator on L is then one which satisfies (R1)–(R6), but with validity in the
postulates understood to be modulo RV (that is, for α ∈ L, |= α if and only if R  α
for every R ∈ RV .) This gives us a representation result similar to that of Katsuno and
Mendelzon, but with the revision operator defined on L.

Theorem 2. Let R be a κ-faithful ranked model. Then ◦R is an AGM revision operator
on L for κ. Conversely, for every AGM revision operator ◦ on L for κ there is a κ-
faithful ranked model R such that ModV(κ ◦ α) = ModV(κ ◦R α).
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6 Rational Consequence on L

We have seen in Section 5 that typicality can be used to express propositional AGM
belief revision, as well as AGM belief revision defined for PTL. From Proposition 2 we
know that rational consequence for propositional logic can be expressed in PTL. In this
section we complete the picture by showing that (i) rational consequence for PTL can
be expressed in PTL itself, a result analogous to Theorem 2, and (ii) that the expected
connection between rational consequence and AGM revision for PTL does indeed hold.

As in Section 5, we start by fixing a set V ⊆ U . In this case, however, V is allowed
to be empty as well. Then we let |∼ be a binary relation onL. We say that |∼ is a rational
consequence relation on L if and only if it satisfies the seven rationality properties from
Section 2. In this case (as in Section 5) |= is understood to be validity modulo RV :
|= α if and only if for every R ∈ RV , R  α. As was done in Section 2, given a
ranked model R, a pair (α, β) is in the consequence relation defined by R (denoted as
α |∼R β) if and only if min≺JαK ⊆ JβK. In this case, however, α and β are taken to be
elements of L and not just of L. From this we get the following:

Theorem 3. Every |∼R defined by some R is a rational consequence relation on L.
Conversely, for every rational consequence relation |∼ on L there exists a ranked
model R such that |∼R = |∼.

It is worth mentioning that the proof of Theorem 3 makes use of Theorem 2, as well as
the connection between AGM revision and rational consequence for PTL in the style of
Gärdenfors and Makinson [9], which we now proceed to describe. First we consider the
following additional property on defeasible consequence relations:

(Cons) > 6|∼ ⊥

It is easy to see that for a ranked model R = 〈V,≺〉,> |∼R ⊥ if and only if V = ∅.
By insisting that (Cons) holds, we are restricting ourselves to ranked models in which
V 6= ∅, a restriction that is necessary to comply with postulate (R3) for AGM belief
revision. So, we consider only the case where the (fixed) set V is non-empty.4

Intuitively, given a rational consequence relation |∼ and a belief revision operator ◦
for a knowledge base κ, the idea is to (i) associate κ with all βs such that > |∼ β holds
and (ii) to associate the consequences of κ ◦ α with all the βs such that α |∼ β holds.

For a rational |∼ on L, let C |∼ = {α ∈ L | > |∼ α} and let K|∼ be the set of
logically strongest formulas (moduloRV ) to be defeasibly concluded from >. That is,

K|∼ = {α ∈ C |∼ | for all β ∈ C |∼, if |= β → α, then |= α→ β}.5

Theorem 4. Let |∼ be a rational consequence relation on L also satisfying (Cons), and
let κ ∈ K|∼. There is an AGM revision operator ◦ on L for κ such that α |∼ β if and
only if |= (κ ◦ α) → β. Conversely, let κ be any element of L such that 6|= ¬κ, and
let ◦ be an AGM revision operator on L for κ. Then there is a rational consequence
relation |∼ on L also satisfying (Cons) such that α |∼ β if and only if |= (κ ◦ α)→ β.

4 It is easy to see that if V = ∅, thenL×L is the only rational consequence relation satisfying all
seven rationality properties, that R = 〈∅, ∅〉 is the only ranked model, and that |∼R= L× L.

5 Where |= is understood to mean validity moduloRV .
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7 Entailment for PTL

In this section we focus on what is perhaps the central question concerning PTL from
the perspective of knowledge representation and reasoning: What does it mean for a
PTL formula to be entailed by a (finite) knowledge base K? Formally, we view an
entailment relation as a binary relation |=∗ from the power set of the language under
consideration (in this case L) to the language itself. Its associated consequence relation
is defined as: Cn∗(K) = {α | K |=∗ α}. Before looking at specific candidates, we
propose some desired properties for such an entailment relation. The obvious place to
start is to consider the properties for Tarskian consequence below.

(Inclusion) K ⊆ Cn∗(K)
(Idempotency) Cn∗(K) = Cn∗(Cn∗(K))
(Monotonicity) If K1 ⊆ K2, then Cn∗(K1) ⊆ Cn∗(K2)

Inclusion and Idempotency are both properties we want to have satisfied, but Mono-
tonicity is not. To see why not, it is enough to refer to the classic example in nonmono-
tonic reasoning: Let K1 = {p → b, b → f} (penguins are birds, and birds typically
fly), and let K2 = K1 ∪ {p → ¬f} (add to K1 that penguins typically do not fly).
We want p → f ∈ Cn∗(K1) (penguins typically fly as a consequence of K1), but we
want p → f 6∈ Cn∗(K2) (penguins typically fly not as a consequence of K2), thereby
invalidating Monotonicity.

In addition to Inclusion and Idempotency we require |=∗ to behave classically when
presented with propositional information only (below |= denotes classical entailment):

(Classic) If K ⊆ L, then for every α ∈ L, K |=∗ α iff K |= α

Therefore, we also require that the classical consequences of a knowledge base ex-
pressed in L be classically closed (below Cn(·) refers to classical consequence of L):

(Classic Closure) Cn∗(K) ∩ L = Cn(Cn∗(K) ∩ L)

We now consider an obvious candidate for entailment: the standard Tarskian notion
of entailment applied to the semantics of PTL:

K |=T α iff every ranked model R satisfying K also satisfies α

It is easy to show that |=T satisfies Inclusion, Idempotency, Classic, and Classic Clo-
sure. However, it also satisfies Monotonicity, which eliminates it from contention as a
viable form of entailment. Moreover, there is an additional argument against the use
of |=T as well, one that is based on an adaptation of a result obtained by Lehmann and
Magidor in the propositional case [14]. To make the argument, we first present a result
showing that all formulas of L can be rewritten as statements of rational consequence:

Lemma 1. For every R and α ∈ L, R  α if and only if R  ¬α → ⊥ if and only if
¬α |∼R ⊥. Conversely for every R and α, β ∈ L, α |∼R β if and only if R  α→ β.

We can therefore think of L as a language for expressing defeasible consequence
on L with |∼ viewed as the only main connective. More precisely, let L|∼ = {α |∼ β |
α, β ∈ L}, and for any ranked model R, let R  α |∼ β if and only if α |∼R β. The
next result shows that the languages L and L|∼ are equally expressive.
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Proposition 5. For every R and α |∼ β ∈ L|∼, R  α |∼ β if and only if R  α→ β.
Conversely, for every R and α ∈ L, R  α if and only if R  ¬α |∼ ⊥.

L|∼ is similar to the language for conditional knowledge bases studied by Lehmann
and Magidor, but with the propositional component replaced by L (i.e., |∼ ⊆ L × L).

Based on this we restate entailment in terms of the language L|∼, and propose an
additional property that any appropriate notion of entailment should satisfy. Let K be a
(finite) subset of L|∼, let |=∗ be a (potential) entailment relation from P(L|∼) to L|∼,
and let |∼∗K be a defeasible consequence relation on L obtained from |=∗ as follows:
α |∼∗K β if and only if K |=∗ α |∼ β.

(Rationality) For every finite K ⊆ L|∼, the consequence relation |∼∗K obtained from
|=∗ should be a rational

Rationality is essentially the property for the entailment of propositional conditional
knowledge bases proposed by Lehmann and Magidor [14], but applied to L|∼. Based
on their results, it follows that |=T (defined on L|∼) does not satisfy Rationality. In fact,
analogous to one of their results, we have the following result.

Proposition 6. For finite K ⊆ L|∼, let |∼K= {(α, β) | α |∼ β ∈ K}, and let |∼P be
the intersection of all preferential consequence relations on L containing |∼K. For the
consequence relation |∼TK obtained from |=T , it follows that |∼∗K = |∼P is a preferential
consequence relation, but not necessarily a rational consequence relation.

Since L and L|∼ are equally expressive, Proposition 6 provides additional evidence
that |=T is not an appropriate form of entailment.

7.1 Rational Closure for PTL

Having shown that |=T is not an appropriate form of entailment for PTL, we now turn
our attention to a proposal for an appropriate version of entailment. It is the notion of the
rational closure of a conditional knowledge base, proposed by Lehmann and Magidor
for the propositional case, applied to L|∼.

Definition 5. Let |∼0 and |∼1 be rational consequence relations. |∼0 is preferable to
|∼1 (written |∼0� |∼1) if and only if

• there is an α |∼ β ∈ |∼1 \ |∼0 s.t. for all γ s.t. γ ∨ α |∼0 ¬α and for all δ s.t.
γ |∼0 δ, we also have γ |∼1 δ;

• for every γ, δ ∈ L, if γ |∼ δ is in |∼0 \ |∼1, then there is an assertion ρ |∼ ν in
|∼1 \ |∼0 s.t. ρ ∨ γ |∼1 ¬γ.

The motivation for� here is essentially that for the same ordering for the proposi-
tional case provided by Lehmann and Magidor [14]. Given K ⊆ L, the idea is now to
define the rational closure as the most preferred (with respect to�) of all those rational
consequence relations which include K.



PTL: A Propositional Typicality Logic 11

Lemma 2. Let K be a finite subset of L|∼ and let |∼K= {(α, β) | α |∼ β ∈ K}.
There is a unique rational consequence relation containing |∼K which is preferable
(with respect to�) to all other rational consequence relations containing |∼K.

This allows us to define the rational closure |=rc of a knowledge base on L|∼.

Definition 6. For finite K ⊆ L|∼, let |∼K= {(α, β) | α |∼ β ∈ K}, and let |∼rc be
the (unique) rational consequence relation containing |∼K which is preferable (with
respect to�) to all other rational consequence relations containing |∼K. Then α |∼ β
is in the rational closure of K (written as K |=rc α |∼ β) if and only if α |∼rc β.

Definition 6 gives us a notion of rational closure forL|∼. SinceL andL|∼ are equally
expressive, we can use Definition 6 to define rational closure for L as well:

Definition 7. Let K ⊆ L, α ∈ L, and let K|∼ = {¬β |∼ ⊥ | β ∈ K}. α is in the
rational closure of K (written as K |=rc α) if and only if ¬α |∼ ⊥ is in the rational
closure of K|∼.

It is not hard to show that rational closure satisfies Inclusion, Idempotency, Clas-
sic, Classic Closure, and Rationality, but not Monotonicity. It is therefore a reasonable
candidate for entailment for PTL.

7.2 Minimum Entailment for PTL

In this section we turn our attention to another proposal for entailment for L based
on a semantic construction. It is inspired by a proposal by Giordano et al. [10]. The
idea is to define a partial order on a certain subclass of ranked models satisfying a
knowledge base K ⊆ L, with models lower down in the ordering being viewed as
more ‘conservative’, in the sense that one can draw fewer conclusions from them, and
therefore being more preferred. For K ⊆ L, let VK be the elements of U permitted
by K: VK = {v | v ∈ V for some R = 〈V,≺〉 s.t. R  K}. And let RK = {R =
〈VK,≺〉 | R  K}. Now, for any R = 〈VK,≺〉 ∈ RK, let VR

0 = min≺ VK, and
for i > 0 let VR

i = min≺

(
VK \ (∪j=i−1j=0 V R

j )
)

. So VR
0 contains the elements of VK

lowest down w.r.t.≺, VR
1 contains the elements of VK just above VR

0 w.r.t.≺, etc. Next,
for every v ∈ VK we define the height of v in R as hR(v) = i if and only if v ∈ VR

i .
And based on that, we define the partial order � on RK as follows: R1 � R2 if and
only if for every v ∈ VK, hR1(v) ≤ hR2(v). From this we get:

Proposition 7. For every K ⊆ L, the partial order � on the elements of RK has a
unique minimum element.

This allows us to provide a definition for the minimum entailment of a knowledge base.

Definition 8. LetK ∈ L, α ∈ L, and RK be the (unique) minimum element ofRK w.r.t.
the partial order � on RK. Then α is in the minimum entailment of K (K |=min α) if
and only if RK  α.
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It can be shown that minimum entailment satisfies Inclusion, Idempotency, Classic,
Classic Closure, and Rationality, but not Monotonicity. As for rational closure, it is
a reasonable candidate for entailment for L. In fact, the connection between rational
closure and minimal entailment may even be closer than that. There is strong evidence
to support the conjecture that they actually coincide.

8 Related Work

To the best of our knowledge, the first attempt to formalize a notion of typicality in
the context of defeasible reasoning was that by Delgrande [8]. Given the relationship
between our constructions and those by Kraus et al., most of the remarks in the com-
parison made by Lehmann and Magidor [14, Section 3.7] are applicable in comparing
Delgrande’s approach to ours and we do not repeat them here.

Crocco and Lamarre [7] as well as Boutilier [2] have also explored the links between
defeasible consequence relations and notions of normality similar to ours. In particu-
lar, Boutilier showed that nonmonotonic consequence can be embedded in conditional
logics via a binary modality ⇒. Here we have considered a unary operator. The links
between our a and the conditional⇒ remain to be explored, though. Our conjecture at
the moment is that they provide for the same expressivity.

In a description logic setting, Giordano et al. [11] also study notions of typicality.
Semantically, they do so by placing an (absolute) ordering on objects in first-order do-
mains in order to define versions of defeasible subsumption relations in the description
logic ALC. The authors moreover extend the language of ALC with an explicit typi-
cality operator T of which the intended meaning is to single out instances of a concept
that are deemed as ‘typical’. That is, given an ALC concept C, T(C) denotes the most
typical individuals having the property of being C in a particular DL interpretation.

Giordano et al.’s approach defines rational versions of the DL subsumption rela-
tion v. Nevertheless, they do not provide representation results and do not address the
question of entailment either. In a recent paper [5] we have addressed precisely these
issues in DLs. Even though here we have investigated typicality in a propositional set-
ting, we expect that our representation result and constructions for the rational closure
(as well as the links with belief revision) can be lifted to the DL case.

Britz et al. [3] investigate another embedding of propositional preferential reasoning
in modal logic. In their setting, the modular ordering is an accessibility relation on
possible worlds, axiomatized via a modal operator 2. Our typicality operator can be
defined in terms of their modality as α ≡def 2¬α ∧ α. The modal sentence 2¬α ∧ α
says that the worlds satisfying it are α-worlds and whatever world is more preferable
than these is a ¬α-world. In other words, these are the minimal α-worlds. The general
case of defining Britz et al.’s modality in terms of our typicality operator is not possible,
but in a finitely generated language as we consider here, the logics become identical.

Britz and Varzinczak [6] investigate another aspect of defeasibility by introducing
(non-standard) modal operators allowing us to talk about relative normality in acces-
sible worlds. With their defeasible versions of modalities, it is possible to make state-
ments of the form “α holds in all of the normal (typical) accessible worlds”, thereby
capturing defeasibility of what is ‘expected’ in target worlds. This allows for the def-
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inition of a family of modal logics in which defeasible modes of inference can be ex-
pressed, and which can be integrated with existing |∼-based modal logics [4].

9 Concluding Remarks

The contributions of this work are as follows: (i) We present the logic PTL which pro-
vides a formal account of typicality with which to capture the most typical situations
in which a given formula holds; (ii) We show that we can embed the (propositional)
KLM framework within PTL, and we also define rational consequence on PTL itself;
(iii) We establish a connection between rational consequence and belief revision, both
on PTL, and (iv) We investigate appropriate notions of entailment for PTL and propose
two candidates.

For future work we are interested in algorithms for computing the appropriate forms
of entailment for PTL, specifically algorithms that can be reduced to validity checking
for PTL. It follows indirectly from results by Lehmann and Magidor [14] that this type
of entailment has the same worst-case complexity of validity checking for PTL. Given
the links with modal logic, we know that this is at least in PSPACE. Finally we plan to
extend PTL to more expressive logics such as description logics and modal logics.
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