KR 2020

17th International Conference on Principles of
Knowledge Representation and Reasoning

18th INTERNATIONAL WORKSHOP ON
NON-MONOTONIC REASONING

NMR 2020
Workshop Notes

Maria Vanina Martinez
Universidad de Buenos Aires and CONICET, Argentina

Ivan Varzinczak
CRIL, Univ. Artois & CNRS, France

Preface

NMR is the premier forum for results in the area of non-monotonic reasoning. Its aim
is to bring together active researchers in this broad field within knowledge represen-
tation and reasoning (KR), including belief revision, uncertain reasoning, reasoning
about actions, planning, logic programming, preferences, argumentation, causality,
and many other related topics including systems and applications.

NMR has a long history — it started in 1984, and has been held every two years
since then. The present edition is the 18th workshop in the series and it aims at
fostering connections between the different subareas of non-monotonic reasoning and
providing a forum for emerging topics.

This volume contains the papers accepted for presentation at NMR 2020, the 18th
International Workshop on Non-Monotonic Reasoning, held virtually on September
12-14, 2020, and collocated with the 17th International Conference on Principles of
Knowledge Representation and Reasoning (KR 2020). There were 26 submissions,
each of which have been reviewed by two program-committee members. The commit-
tee has decided to accept all 26 papers. The program also includes two invited talks
by Francesca Tony (Imperial College, London) and Andreas Herzig (IRIT CNRS,
Toulouse). The latter was part of a joint session with the workshop on Description
Logics (DL 2020).

12 September 2020 Maria Vanina Martinez
Buenos Aires and Lens Ivan Varzinczak

Contents

Counting with Bounded Treewidth: Meta Algorithm and Run-
time Guarantees
J. K. Fichte and M. Hecher

Paraconsistent Logics for Knowledge Representation and Reason-
ing: advances and perspectives
W. Carnielli and R. Testa

Towards Interactive Conflict Resolution in ASP Programs
A. Thevapalan and G. Kern-Isberner

Towards Conditional Inference under Disjunctive Rationality
R. Booth and I. Varzinczak,

Treewidth-Aware Complexity in ASP: Not all Positive Cycles are
Equally Hard
J. Fandinno and M. Hecher

Towards Lightweight Completion Formulas for Lazy Grounding
in Answer Set Programming
B. Bogaerts, S. Marynissen, and A. Weinzierl

Splitting a Logic Program Efficiently
R. Ben-Eliyahu-Zohary

Interpreting Conditionals in Argumentative Environments
J. Heyninck, G. Kern-Isberner, M. Thimm, and K. Skiba

Inductive Reasoning with Difference-making Conditionals
M. Sezgin, G. Kern-Isberner, and H. Rott

Stability in Abstract Argumentation
J.-G. Mailly and J. Rossit

Weak Admissibility is PSPACE-complete
W. Dvordk, M. Ulbricht, and S. Woltran

Cautious Monotonicity in Case-Based Reasoning with Abstract
Argumentation
G. Paulino-Passos and F. Toni

A Preference-Based Approach for Representing Defaults in First-
Order Logic
J. Delgrande and C. Rantsoudis

Probabilistic Belief Fusion at Maximum Entropy by First-Order
Embedding
M. Wilhelm and G. Kern-Isberner

Stratified disjunctive logic programs and the infinite-valued se-
mantics
P. Rondogiannis and I. Symeonidou

Information Revision: The Joint Revision of Belief and Trust
A. Yasser and H. Ismail

Algebraic Foundations for Non-Monotonic Practical Reasoning
N. Ehab and H. Ismail

BKLM - An expressive logic for defeasible reasoning
G. Casini, T. Meyer, and G. Paterson-Jones

Towards Efficient Reasoning with Intensional Concepts
J. Heyninck, R. Gongalves, M. Knorr, and J. Leite

Obfuscating Knowledge in Modular Answer Set Programming
R. Gongalves, T. Janhunen, M. Knorr, J. Leite, and S. Woltran . . .

A framework for a modular multi-concept lexicographic closure
semantics
L. Giordano and D. Theseider Dupre’

An Approximate Model Counter for Answer Set Programming
F. Everardo, M. Hecher, and A. Shukla

A Survey on Multiple Revision
F. Resina and R. Wassermann

A Principle-based Approach to Bipolar Argumentation
L. Yu and L. van der Torre

Discursive Input/Output Logic: Deontic Modals, Norms, and Se-
mantic Unification
A, Farjamio

Kratzer Style Deontic Logics in Formal Argumentation
H. Dong, B. Liao, and L. van der Torre

Program Committee

Ofer Arieli
Christoph Beierle
Alexander Bochman
Richard Booth
Arina Britz
Giovanni Casini
James Delgrande
Juergen Dix
Wolfgang Faber
Jorge Fandinno
Bettina Fazzinga
Eduardo Fermé
Martin Gebser
Laura Giordano
Lluis Godo Lacasa
Andreas Herzig
Aaron Hunter
Anthony Hunter
Katsumi Inoue
Tomi Janhunen
Souhila Kaci
Antonis Kakas
Gabriele Kern-Isberner
Sébastien Konieczny
Thomas Lukasiewicz
Marco Maratea
Thomas Meyer

Nir Oren

Odile Papini

Xavier Parent
Ramon Pino Perez
Laurent Perrussel
Ricardo O. Rodriguez
Ken Satoh

Gerardo Simari
Guillermo R. Simari
Christian Strafler
Matthias Thimm
Leon van der Torre
Renata Wassermann
Emil Weydert
Stefan Woltran

Academic College of Tel-Aviv, Israel
FernUniversitaet Hagen, Germany

Holon Institute of Technology, Israel
Cardiff University, United Kingdom
Stellenbosch University, South Africa
Université du Luxembourg

Simon Fraser University, Canada

Clausthal University of Technology, Germany
Alpen-Adria-Universitiat Klagenfurt, Germany
Potsdam University, Germany

Advanced Analytics on Complex Data - ICAR CNR, Italy
Universidade da Madeira, Portugal

University of Potsdam, Germany

Universite of Piemonte Orientale, Italy

IITA - CSIC, Spain

IRIT-CNRS, France

British Columbia Institute of Technology, Canada
University College London, United Kingdom

National Institute of Informatics, Japan

Aalto University, Finland

Université Montpellier 2, France

University of Cyprus

Technische Universitaet Dortmund, Germany
CRIL-CNRS, France

University of Oxford, United Kingdom

DIBRIS, University of Genova, Italy

University of Cape Town, South Africa

University of Aberdeen, United Kingdom
Aix-Marseille Université, France

Université du Luxembourg

Universidad de Los Andes, Venezuela

Université de Toulouse, France

Universidad de Buenos Aires, Argentina

National Institute of Informatics and Sokendai, Japan
Universidad Nacional del Sur and CONICET, Argentina
Universidad del Sur in Bahia Blanca, Argentina
Ruhr-Universitaet Bochum, Germany

Universitiat Koblenz-Landau, Germany

Université du Luxembourg

Universidade de Sao Paulo, Brazil

Université du Luxembourg

Vienna University of Technology, Austria

7

Additional Reviewers

Flavio Everardo University of Potsdam, Germany
Pedro Cabalar ~ Corunna University, Spain
[gor Camara Universidade de Sao Paulo, Brazil

Counting with Bounded Treewidth: Meta Algorithm and Runtime Guarantees

ES

Johannes K. Fichte' , Markus Hecher?
'Faculty of Computer Science, TU Dresden, 01062 Dresden, Germany
2Institute of Logic and Computation, TU Wien, FavoritenstraBe 9-11, 1040 Wien, Austria
johannes.fichte @tu-dresden.de, hecher @dbai.tuwien.ac.at

Abstract

In this paper, we present a meta result to construct algorithms
for solution counting in various formalisms in knowledge rep-
resentation and reasoning (KRR). Our meta algorithm em-
ploys small treewidth of the input instance, which yields
polynomial-time solvability in the input size for instances
of bounded treewidth when considering various decision prob-
lems in graph theory, reasoning, and logic. For many results,
there are explicit dynamic programming algorithms or results
based on the well-known Courcelle’s theorem that allow to
decide a problem in time linear in the input size and some
function in the treewidth. We follow this line of research,
however, consider a much more elaborate question: counting
and projected solution counting (PSC). PSC is a natural gener-
alization to counting all solutions where we consider multiple
indistinguishable solutions as one single solution.

Our meta result allows to extend already existing given dy-
namic programming (DP) algorithms by introducing only a
single-exponential blowup in the runtime on top of the ex-
isting DP algorithm. The technique is widely applicable for
problems in KRR. Exemplarily, we present an application to
projected solution counting on QBFs, which often also serves
as a canonical counting problem for the polynomial hierarchy.
Finally, we present a list of problems on which our result is
applicable and where the single-exponential blowup caused
by the approach cannot be avoided under ETH (exponential
time hypothesis). This completes the picture of recently ob-
tained results in argumentation, answer set programming, and
epistemic logic programming.

Introduction

Counting solutions is a well-known task in mathematics,
computer science, and other areas (Domshlak and Hoff-
mann 2007; Gomes, Sabharwal, and Selman 2009; Sang,
Beame, and Kautz 2005). For instance, in mathematical
combinatorics one characterizes the number of solutions to
combinatorial problems by means of mathematical expres-
sions, e.g., generating functions (Doubilet, Rota, and Stanley
1972). Another example are applications to machine learning
and probabilistic inference (Chavira and Darwiche 2008).

*This work has been supported by the Austrian Science Fund
(FWF), Grants P32830 and Y698 and the Vienna Science and Tech-
nology Fund, Grant WWTF ICT19-065. Markus Hecher is also
affiliated with the University of Potsdam, Germany.

The computational complexity of counting has been stud-
ied since the late 70s (Durand, Hermann, and Kolaitis 2005;
Hemaspaandra and Vollmer 1995; Valiant 1979). Unsurpris-
ingly, counting is at least as hard as solving the corresponding
decision problem, because one can trivially solve the decision
problem by counting and checking whether the count differs
from zero (Hemaspaandra and Vollmer 1995).

While it suffices to count the number of solutions, many ap-
plications employ combinatorial solvers in practice by encod-
ing the application into ASP, SAT, QBF, or ILP (Gaggl et al.
2015; Duenas-Osorio et al. 2017). There, we often need aux-
iliary constructions (variables) in the encodings that are not
necessarily in a functional dependency. If we are interested
in the solutions with respect to certain variables, the standard
concept is projection, which is extensively used in the area
of databases (Abiteboul, Hull, and Vianu 1995) as well as
in declarative problem specifications (Duenas-Osorio et al.
2017; Gebser, Kaufmann, and Schaub 2009). Projected Solu-
tion Counting (PSC) then asks for the number of solutions
after restricting each solution to parts of interest (projection
set). In other words, multiple solutions that are identical with
respect to the projection set, count as single projected solu-
tion. Recently, there is growing interest in PSC, as witnessed
by a variety of results in areas such as logic (Aziz 2015;
Aziz et al. 2015; Capelli and Mengel 2019; Fichte et al. 2018;
Lagniez and Marquis 2019; Sharma et al. 2019), reliability
estimation (Duefias-Osorio et al. 2017), answer set program-
ming (Fichte and Hecher 2019), and argumentation (Fichte,
Hecher, and Meier 2019). Interestingly, the projected so-
lution counting is often harder than counting problems, in
contrast to decision problems, where projecting the solution
to a projection set obviously does not change the complexity
of the decision problem.

To deal with the high computational complexity and de-
signing solving algorithms assuming that the input instance
has a certain structure, ideas from parameterized algorith-
mics proved valuable (Cygan et al. 2015). In particular,
treewidth (Bodlaender and Kloks 1996) was successfully
applied to solution counting for a range of problems (Cur-
ticapean 2018; Fichte et al. 2017; Fioretto et al. 2018;
Kangas, Koivisto, and Salonen 2019; Pichler, Riimmele, and
Woltran 2010; Samer and Szeider 2010). Some recent results
also address projected solution counting when parameterized
by treewidth (Capelli and Mengel 2019; Fichte et al. 2018;

Fichte, Hecher, and Meier 2019).

A definability based approach for problems that can be
encoded into monadic second-order logic have also been con-
sidered, e.g., (Arnborg, Lagergren, and Seese 1991). Still,
a generic approach to facilitate the development of algo-
rithms for counting problems of bounded treewidth is miss-
ing. We address this research question and present a meta
algorithm for solving PSC by utilizing small treewidth of the
Gaifman graph (Gaifman 1982). It works for various graph
problems, for problems in logic and reasoning, including
problems located higher on the polynomial hierarchy such
as QBFs. Our meta algorithm allows for extending exist-
ing dynamic programming (DP) algorithms by causing only
a single-exponential blowup in the treewidth on top of the
existing DP. In fact, if we consider all solutions as distinguish-
able by taking an unrestricted projection set, the considered
projection counting question simplifies to simple counting.
Hence, our results immediately apply to simple counting.

Contributions. We give the following contributions.

1. We establish a novel meta approach to solve PSC for vari-
ous problems. We simply assume that the input is given in
terms of a finite structure, for which a dynamic program-
ming algorithm (DP) for computing the solutions to the
considered problem exists, and build a generic algorithm
on top of the DP that solves PSC.

2. Since not every DP algorithm can be used to also solve
PSC, we provide sufficient conditions under which a DP
algorithm can be used in our framework for PSC.

3. For various PSC problems, we list complexity upper
bounds that can be obtained from our framework, which
completes the recently established lower bounds (Fichte,
Hecher, and Pfandler 2020) for treewidth when assum-
ing ETH (exponential time hypothesis). As running
example, we illustrate the applicability of our frame-
work on PSC for quantified Boolean formulas (QBFs),
which spans the canonical counting problems #3,QSAT
and #I1,QSAT (Durand, Hermann, and Kolaitis 2005) on
the polynomial counting hierarchy.

Related Work. Gebser, Kaufmann, and Schaub (2009)
considered projected solution enumeration for conflict-driven
solvers based on clause learning. Aziz (2015) introduced
techniques to modify modern solvers for logic program-
ming in order to count projected solutions. Recently,
Fichte et al. (2018) gave DP algorithms for PSC in SAT and
showed lower bounds under ETH. This algorithm was then
extended to related formalisms (Fichte and Hecher 2019;
Fichte, Hecher, and Meier 2019). Our algorithm also tra-
verses a tree decomposition multiple times and runs in linear
time, while being single-exponential in the maximum num-
ber of records computed by the DP algorithm. However, we
generalize the results by (i) providing a general framework to
solve PSC (ii) generalizing the PSC algorithm such that it can
take a DP algorithm as input to solve various problems, and
(iii) establishing necessary conditions for DP algorithms to be
employed in our framework. For implementations of decision
and counting problems on QBFs, one could adapt existing
DP algorithms (Chen 2004) or use alternative approaches

10

based on knowledge compilation (Charwat and Woltran 2019;
Capelli and Mengel 2019).

Preliminaries

Basics and Computational Complexity. We assume fa-
miliarity with standard notions in computational complexity
and use counting complexity classes as defined by Durand,
Hermann, and Kolaitis (2005). For parameterized complexity,
we refer to standard texts (Cygan et al. 2015). Let n € N be
a natural number (including zero), then [n] := {1,...,n}.
Further, for all ¢ € N, we define tower : N x N — N
by tower(1,n) = 2" and tower({ 4 1,n) = 2tower(t:n),
Given a family of finite sets X;, Xo, ..., X,,, the gen-
eralized combinatorial inclusion-exclusion principle (Gra-
ham, Grotschel, and Lovasz 1995) states that the number
of elements in the union over all subsets is ‘U;;lX j’ =

power set of X consisting of all subsets Y with() C Y C X.
Let 5 be a sequence of elements of X. When we address
the i-th element of the sequence § for a given positive inte-
ger i, we write §(;y. Similar, for a set U of sequences we let
U(i) = {g(i) ‘ §e U}.

Quantified Boolean Formulas (QBFs). We assume famil-
iarity with notations and problems for quantified Boolean
formulas (QBF), their evaluation and satisfiability (Biere et al.
2009). Literals are variables or their negations. For a Boolean
formula F', we denote by var(F') the set of variables of F. A
term is a conjunction of literals and a clause is a disjunction
of literals. F'is in conjunctive normal form (CNF) if F'is a
conjunction of clauses. We identify F’ by its set of sets of
literals. From now on assume that a Boolean formula F' is in
CNF, and each set in " has at most three literals. Let £ > 0 be
integer. A quantified Boolean formula () (Biere et al. 2009)
of quantifier depth / is of the form Q1V1.Q2V5. - - Q. V. F
where quantifier Q; € {V,3} for1 <i </land Q; # Q;+1
for 1 < j < ¢ — 1. Further, sets V; are disjoint, non-empty
sets of Boolean variables and F' is a Boolean formula such
that U¢_,V; = var(F). We let mat(Q) := F be the matrix
of Q. An assignment is a mapping ¢ : X — {0, 1} defined
for a set X of variables. Sometimes we compactly denote
assignments by {z | € X, (x) = 1}, i.e., the sets of vari-
ables that are set to true. Given a QBF () and an assignment ¢,
then Q[¢] is a QBF that is obtained from), where every oc-
currence of any = € X in mat(Q) is replaced by ¢(x), and
variables that do not occur in the result are removed from pre-
ceding quantifiers accordingly. QBF Q evaluates to true (or
is valid) if ¢ = 0 and the Boolean formula mat(Q) evaluates
to true, denoted = mat(Q). Otherwise (¢ # 0), we distin-
guish according to Q1. If @1 = 3, then @ evaluates to true if
and only if there exists an assignment ¢ : V3 — {0, 1} such
that Q[¢] evaluates to true. If Q1 =V, then Q[:] evaluates to
true if for any assignment ¢ : V7 — {0, 1}, Q[¢] evaluates to
true. Deciding validity of a given QBF is PSPACE-complete
and (believed) harder than SAT (Stockmeyer and Meyer
1973).

Example 1. Let F:={c1,ca,c3,c4}, where c; = —a V b,

co = cV-ec3=-bV-dVe c =bVdVe and

Q := Jc,d,eNa.3b.F. Take assignment v : {c,d,e} —
{0,1}, where 1 := {c,e}. Then, formula Q|i] evaluates to
true, because for any assignment ' : {a} — {0,1} there
ist” < {b} — {0,1} with " := {b} such that ((F[])[«'])[.”]
evaluates to true. Similarly, for ¢ : {c,d,e} — {0,1},
where ¢ =, formula Q[(] evaluates to true. In total, there
are only four assignments over domain {c, d, e} witnessing
validity of Q, namely v, (, and assignments {c} and {c, d, e}.

Finite Structures and Projected Solution Counting. A
vocabulary o is a set of relation symbols, where each such
symbol R € o is of arity ar(R) > 0. Let D be a finite set
of elements, referred to by domain. By relation, we mean a
set R C D) A finite o-structure T = (D, (R) peo)
consists of a domain D and a set of relations for every
symbol R in 0. We denote by algs(c) the ser of finite
o-structures and refer by ||o| to the size of 0. Given fi-
nite o-structures Z = (D,R) and Z' = (D’,R’) and a
vocabulary £ C ¢. In order to access relation R for sym-
bol R € o, we let Ry, := R. Then, the structure I; re-
stricted to & is the structure that consists of relation symbols
from 7 that occurin &, i.e., Z¢ := (D, (R) ¢,). Further, we
define the intersection NI’ of both o-structures as the struc-
ture that consists of an intersection over each relation, i.e.,
In7 =(DbnD, (RR N RIR)Rea>'

Assume some integer ¢ > 1. For QBFs, we define
the primal vocabulary by oqer := {DEPTH, FORALL,
EXISTS, NEG, POS, INCL'AUSE}, containing binary relation
symbols only. Given QBF Q = Q1V71.Q2V5. - Q,V, . F.
Then, the oqge-structure Q of @ is given by O
(var(F), (R) g pone)» Where DEPTH {¢}, FORALL
{(v,1) | Qi=Y,v € V;}, EXISTS = {(v,%) | Q;=3,v € Vi },
NEG = {(v,¢) | c € F,—w € ¢},P0S = {(v,¢) |c € F,v €
¢}, and INCLAUSE = {(u,v) | ¢ € F,{u,v} C var(c)}.
Note that in the definition above we place constant sym-
bols for integers 0 < i < ¢, which we need below when
decomposing the input. Instead of the constants that occur
in tuples, we can also use multiple relation symbols of the
form DEPTH,, FORALL;, and EXISTS;. Since this results in a
vacuous overhead, we treat them as given above.

We say that @ is the corresponding QBF of Q and we
sometimes use Q instead of () for brevity. Let ¢ be an as-
signment for var(F'). Then, we define the solution vocab-
ulary & = {T} of arity 1 and the &;-structure is given
by (1, (1))-

Example 2. Consider QBF @ from Example 1. Then,

we construct the oqer-structure from Q as Q=

(mat(Q) U var(mat(Q)), (R) seoqq)» Where DEPTH={3},

EXISTS:{(C, 1)a (d7 1)7 (67 1)a (b7 3)}’ FORALL:{(O’7 2)}’

NEG={(a, 1), (¢, c2), (b,c3), (d, c3)}, POS={(b, c1), (¢, ca2),
(e,c3), (b,cq),(d,cq), (e,cq)}. Observe that Q is the corre-
sponding QBF of Q. Further, assignment . of Example 1 is

represented using Er-structure ({c, e}, ({c, e})).

Similar in algorithms and specifications that use logic for
verification (Gurevich 1995) as well as in descriptive com-
plexity, we define problems in a very general way using finite

11

structures. This then allows us to use these problems for
projected solution counting. Formally, a problem (specifica-
tion) P = (0, &, sol) consists of disjoint vocabularies o and £
and a function sol : algs(c) x algs(£) — {0, 1}. We consider
a o-structure Z as instance, a {-structure S as solution, and
sol as the solution checker. The solution checker sol then
returns 1 if and only if structure S is a solution of instance Z.
From a problem specification, we define a (meta) prob-
lem #PSOLS(P) for projected solution counting as follows.
We define the counting vocabulary ., consisting of only
one symbol sc of arity 1 that we use for the solution count,
i.e., & = {sc}. Then, formally, we let #PSOLS(P)
(0 UE, &, psols). Instances are (o U &)-structures, solutions
are &g.-structures, and psols is the solution checker. Since
projected solution counting requires to specify a projection
over solutions (¢-structures) to P, we also give a projec-
tion ZI¢ as input which is defined by P := Z,. Then, the
number s of projected solutions is obtained by projecting
each solution of input instance Z,, to projection P, i.e., s =
{S'MP|S € algs(§),sol(Z,,S8") =1}|. Now we can
simply define the solution checker as psols(Z,S) = 1 if
and only if § is the &s.-structure containing relation sc with
just s, ie., S = ({s}, (sc)).

For our running example with QBFs, we can now in-
stantiate the definitions from above to specify the problem
QSAT := (oqgr,&r, sol). Recall from above that the in-
stances are oqgr-structures Q and solutions are &p-struc-
tures S. Naturally, from the definitions of QSAT we set
sol as follows: sol(Z,S) := 1 if and only if the QBF Q
corresponding to instance Z = Q evaluates to true under the
assignment corresponding to S. If we restrict our oqgg-struc-
ture Q such that the corresponding QBFs of the instances are
of quantifier depth ¢, where the first quantifier starts with 3,
we call the resulting problem >, QSAT. Naturally, we define
#3QSAT := #PSOLS(X,QSAT).

Example 3. Consider QBF (), oqgg-structure Q
(D, (R) teogg) from Example 1. The problem #%,QSAT =
(oqer U &r, Ese, psols) additionally assumes a projection
as part of the instances. This projection is given as
part of the (oqer U &r)-structure. Hence, consider pro-
Jection T = {d,e}, our instance of #X,QSAT is given
byl = (D,RRE(UQBFU&Q. Consequently, projection P =
e, = (D,({d,e})). Recall the four assignments 0, {c}
{c, e}, and {c,d, e} from Example I under which Q evalu-
ates to 1. When we project these assignments to {d, e}, we
are left with only three assignments (), {e}, and {d,e}. As
a result, ({3}, ({3})) is the only solution to instance I of
problem #3,QSAT.

Proposition 1 (Hemaspaandra and Vollmer, 1995). The prob-
lem #3QSAT is #3y P-complete.

Tree Decompositions (TDs) of Finite Structures. For a
tree T and a node ¢ of T', we let children(¢) be the sequence
of all child nodes of ¢ in arbitrary but fixed order. Let Z =
(D,R) be a o-structure. A free decomposition (TD) of 7
isapair T = (T,x) where T = (N, A) is a tree rooted
at root(7") and x a mapping that assigns to each node t € N

aset x(t) C D, called bag, such that the following conditions
hold: (i) D = U,y x(t) and for each R € o, we have
R C x(t)*™ for some t € N; and (ii) for each r, s, and
t such that s lies on the path from r to ¢, we have x(r) N
X(t) C x(s). This definition of a TD of 7 is the same as
a TD of the Gaifman graph (Gaifman 1982) of Z. Then,
width(7) := maxsen |x(t)] — 1. The treewidth tw(G) of
G is the minimum width(7") over all TDs 7 of G. We denote
the bags x<; below t by x<; = U,/ o X (), where T'[t] is
the sub-tree of T' rooted at t.

For a node t € N, we say that type(t) is leaf if
children(t) = (); join if children(t) (t',t") where
x(t) x(#) x(t") # 0, int (“introduce™) if
children(t) = (¢), x(t') € x(t) and |x(¢)| = [x(¥')| + 1;
rem (“removal”) if children(t) = (¢'), x(t') 2 x(t) and
[x(t)| = |x(t)| + 1. We use nice TDs, where for every node
t € N, type(t) € {leaf,join,int,rem} and bags of the root
node and leaf nodes are empty, which can be obtained in
linear time without increasing the width (Kloks 1994).

Dynamic Programming on TDs of Finite
Structures

Algorithms that utilize treewidth to solve problems typically
proceed by dynamic programming along the TD (in post-
order) where at each node of the tree information is gath-
ered (Bodlaender and Kloks 1996) in a table by a table algo-
rithm A. More generally, a table is a set of records, where a
record 1 is a sequence of fixed length. The actual length, con-
tent, and meaning of the records depend on the algorithm A.
Since we later traverse the tree decomposition repeatedly
running different algorithms, we explicitly state A-record if
records of this type are syntactically used for algorithm A
and similar A-table for tables. In order to access tables com-
puted at certain nodes after a traversal as well as to provide
better readability, we attribute tree decompositions with an
additional mapping to store tables. Formally, a tabled tree
decomposition (TTD) of graph G is a pair T = (T, x,7)
where (7', x) is a tree decomposition of G and 7 is a mapping
which maps nodes ¢t of T' to tables. When a TTD has been
computed using algorithm A, after traversing, we call the
decomposition the A-TTD of the input instance.

Let7 = (T,x,) beaTTD of a o-structure Z = (D, R) fora
problem P = {0, &, sol) and ¢ in T'. Then, we define the bag-
relations Ry = (RN x(t)"™)c,. The bag-structure T,
is given by Z; := (x(t), R+). This allows to define the bag-
domain below t by D<; = U,/ ,, 7y X(t"), bag-relations be-
low t by R<; = (RnDX(™)
by I<; := (D<t, R<i)-

Observation 1. Given a finite structure T (D,-,R)
over 0 and a TD T = (T,x). Then, for n = root(T),
Dgn = D, Rgn = R, andISn =17

Let o be a vocabulary, P = (0,&, sol) a problem, and A
a table algorithm for solving P on instances over o. Then,
dynamic programming (DP) on tree decompositions of finite
structures performs the following steps for o-structure Z:

Beo and bag-structure below t

1. Compute a TTD (7, x,t) of Z. Later, we traverse a

12

Listing 1: Algorithm DP4(Z,7): Dynamic programming on
TTD T, cf., (Fichte et al. 2017).

In: Problem instance Z, TTD T = (T, x, ¢) of Z such that n is

the root of 7" and children(t) = (t1, ..., t¢).

Out: A-TTD (T, x, o) with A-table mapping o.
1 0 < empty mapping
2 for iterate t in post-order(T,n) do
3 LO(t) — Ay (It, L(t), <0(t1), ..
4 return (T, x,0)

- o(te)))

TD (T, x) multiple times, where ¢ is a table mapping from
an earlier traversal. Therefore, ¢« might be empty at the
beginning of the first traversal.

2. Run algorithm DPy (see Listing 1). It takes a TTD T =
(T, x,¢) and traverses T in post-order. At each node ¢
of T it computes a new A-table o(t) by executing the
algorithm A. The algorithm A has a “local view” on the
computation and can access only ¢, atoms in the bag x(t),
bag-structure Z;, and child A-table o(t") for child nodes ¢'.

3. Output the A-tabled tree decomposition (7', x, 0).
4. Print the result by interpreting o(n) for root n = root(T).

Usually when giving a dynamic programming algorithm,
one only describes algorithm A. Hence, we focus on this
algorithm in the following and call A table algorithm.

Table Algorithm for >,QSAT

Next, we briefly present table algorithm QALG that al-
lows us to solve problem ¥,QSAT. To this end, consider
a QBF Q = 3Vy.---Q,V,.F its oqpe-structure Q and a
tabled tree decomposition 7 = (T, x,¢) of Q. Then, al-
gorithm DPgay,¢ solves X,QSAT, where algorithm QALG
stores in table o(t) (nested) records of the form (I, A). The
first position of such a record consists of an assignment [re-
stricted to V1 N x(¢). The second position consists of a nested
set A of sequences that are of the same form as records
in o(t). Intuitively, [is an assignment restricted to variables
in V4. For a nested sequence (I’, A’) in A, assignment I’ is
restricted to variables in V5 N x(¢) and so on. The innermost
sequence (I*,{)) stores assignments restricted to V; N x(¢).
In other words, the first position () of any @ € o(t) charac-
terizes a bag-relation T for symbol T € &;.

Before we discuss algorithm QALG in more details,
we introduce some auxiliary notation. In order to eval-
uate quantifiers we let checkForall(Q, (1)) return true
if and only if either Q1 = 3, or for every ¢ € 7y,
we have that QALG,(Q, ({@})) outputs something dif-
ferent from (, i.e., we need for each record of 7, a
“succeeding record” for the parent node of t. Analo-
gously, we let checkForall(Q, (71, 72)) be true if and only
if either (1 3, or for every 4 € 71 and U €
75, we have QALG,(Q, ({i@},m2)) # 0 as well as
QALG,(Q, (11,{7})) # 0. Intuitively, this reports whether
records are missing in order to satisfy QBFs having outer-
most universal quantifier.

Listing 2 presents table algorithm QALG, which works
as follows. The algorithm computes the nested records re-
cursively, which are of the same depth as the quantifier

Listing 2: Table algorithm QALG, (Qy, (71, ..
by previous work (Chen 2004).

In: Node ¢, bag-structure Q; = (Dy, R+), and sequence
(71,...) of QALG-tables of children of .
Out: QALG-table 7.
Q1Vi---Q¢Vi.F < corresponding QBF of Q;
if¢{=0thent; <
else if type(t) = leaf then
|7e < {(0, QALG(Q2V2 - - QeVe.F, ()))}
else if type(t) = int and a € X is introduced then
Tt < {<]7-A,> | <[7~A> € 7—17'] € {I}U{Ij | ac ‘/1}7
= mat(Q:[J]), A'=QALG,(Q:[J], (A)), A'#0,
checkForall(Q¢[J], (A))}
7 else if type(t) = rem and a & X is removed then
8 ln — {{1, ,QALG,(Q:[1], (A)}) | (I, A) € T }
else if type(t) = join then
T {(I, A" | (I, A1) € 11,{I, As) € T2,
IZQALGt(Qt [I]v <~’417 A2>)7 Al#wv
checkForall(Q4[I], (A1, A2))}

.)), influenced

= 7 T OV SR

10

11 return 7

S&=SU{e}, Sc =5\ {e} and R},
tion R ; is replaced by the relation V.

Ny outputs ‘R where rela-

depth ¢. For leaf nodes, i.e., nodes ¢t with type(t) = leaf,
we construct a record of the form (@, {(@, {...})}), which
is a nested record of depth ¢, cf., Line 4. Note the recur-
sive call to QALLG and the base (termination) case in Line 2.
Intuitively, whenever a variable « is introduced (inf), we de-
cide whether we assign a to true and only keep records, cf.,
Line 6, where all clauses of the matrix of the corresponding
QBEF of Q; are satisfied. Further, we need to guarantee that
the universal quantifiers are still satisfiable, which is ensure
by checkForall. When removing (rem) a variable a, we re-
move a from our records accordingly, cf., Line 8. If the node
is of type join, we combine two records in two different child
tables and ensure the satisfiability of the universal quanti-
fier by means of checkForall. Intuitively, we are enforced
to agree on assignments I, and on the ones in A, which is
established in Line 10.

Example 4. Recall OBF @ from Example 1. Observe that
by the construction of Q, we have (u,v) € INCLAUSE for
every two variables u,v of a given clause. Consequently,
it is guaranteed (Kloks 1994) that in any TD of Q, we
have for each clause at least one bag containing all its
variables. In the light of this observation, Figure 1 de-
picts a TD T = (T, x) of Q, assuming that clauses are
implicitly contained in those bags, which contain all of its
variables. The figure illustrates a snippet of tables of the
TTD (T, x, T), which we obtain when running DPgaLg on
instance Q and TTD T according to Listing 2. Note that
for the ease of presentation, we write X instead of (X, ().
Further, for brevity we write T; instead of T(t;) and identify
records by their node and identifier i in the ﬁgure For ex-
ample, record g2 = (192, Ag.2) € Tg refers to the second
record of table g for node tg; similarly we write for table Ts,
e.g., As1.0.1 to address {a}.

In the following, we briefly discuss selected records of
tables in 7. Node ti1 is of type leaf. Therefore, table T
equals table 15 which both have only one record, consist-

i Alh i ((112.i,A12.1)
1[(7, b O, {0, {{o7HD
zgm, {((z) {%Hﬁi}) 2l@, {<®;1{2®,{b}}>}>
i((11 ., Ax:) 3 T11.i,A11.4) = 4
i@, (@ {0, (o1, R IURIG ;
O Bih1), e Q{,L},ﬁiw
a7 {dy, {0, {0HH 3
. ATS> na (), {(0,{0,{p})})4
(I10.:, A10.i) %
(0, {(@,{0, {61 1), =
a 0, 0, {{b 1
— b (M- <‘,§’ (; é,}@ii}g
(Io.i, Ag.) \i (77 :: 2 =
"}7 5 2 {(} - =
({71, @ATH PN LI e T —
(7. {0, {0 1)a 0, 10, {0

13

Figure 1: Selected tables of 7 obtained by DPgarc on TTD 7.

ing of the empty assignment for each depth d > 0, and a
set of assignments that contain an empty set, recursively
constructed with decreasing depth in Line 4. Node t5 is of
type int and introduces variable a. Line 6 makes sure that
results in 5 contains only record {0, {(0,{0}), {a}, {0})}),
thereby guessing on the assignment of a for the second
(universal) quantifier of Q. Node ts is of type int and
introduces b. Then, bag-relations R, at node l3 con-
tain INCLAUSE={(a,b)}, POS={(b,c1)},NEG={(a,c1)},
i.e., we need to ensure clause c; = —a V b is satisfied
in ts. This is done in Line 6, as well as making sure that
we keep for universally quantified variable a all its assign-
ments. Node t4 is of type rem. Here, we restrict the records
(see Line 8) such that they contain only variables occurring
in bag x(t4) = {b}. Basic conditions of a TD ensure that
once a variable is removed, it does not occur in any bag
at an ancestor node, i.e., we encountered all clauses for a.
Nodes ts,tg,t7, and tg are symmetric to nodes t1,12,ts,
and ty. We proceed similar for nodes tg — t15. At node t13
we join tables T4 and T12 according to Line 10, where we
only match agreeing assignments such that no assignment
involving universally quantified variable a is lost. At the root
node t14, it is then ensured that we have those records only
that lead to witnessing assignments. Since T14 is not empty,
formula Q) is valid.

We can reconstruct wimessing assignment {c, e} by com-
bining parts I of the yellow highlighted records, as shown in
Figure 1.

Lemma 1 (Chen, 2004). Given a QBF Q of quantifier
depth L anda TTD T = (T, x,) of Q of width k with g nodes.
Then, algorithm DPgurg runs in time O(tower (¢, k + 5) - g).

A recent result establishes that one cannot significantly im-
prove the running time of the algorithm above assuming that
the exponential time hypothesis (ETH). ETH (Impagliazzo,
Paturi, and Zane 2001) states that there is some real s > 0
such that satisfiability of a given 3-CNF formula F' cannot
be decided in time 2°°1¥1 . || ||,

Proposition 2 (Fichte, Hecher, and Pfandler, 2020). Un-

[1. Create TTD T of Z,]

Store results
in table m¢

I

no| Visit next node ¢
of T in post-order

i
2.1. DPy for P i
‘ Purge non-solutions in 7 ~ v (3. Output projected count ‘

Figure 2: Algorithm PSCy consists of DP4 and DP4pg;.

der ETH, problems ¥,QSAT for given QBF @ of quantifier
depth { cannot be solved in time tower((,o(k)) - 2°UIQID,
using treewidth k of structure Q.

Projected Solution Counting

In this section, we present a generic dynamic program-
ming algorithm (PSC,) and table algorithm (APRJ) that
allows for solving projected solution counting, namely, prob-
lem #PSOLS(P). Therefore, we let P = (0, &, -) be a prob-
lem, which we extend to projected counting, Z = (D, -) a
o U E-structure, P :=Z; the considered projection, and A
a table algorithm that solves P by dynamic programming.
Since we reuse the output of algorithm A (tabled tree de-
composition) to solve the actual projected solution counting
problem, we let 7 = (T, x, 7) be an A-TTD of instance Z,,
for problem P. By convention, we take ¢ as a node of 7.

Generic Algorithm PSC,

Next, we define a new meta algorithm (PSCy,) for a given
table algorithm A. Core ideas that lead to algorithm PSC, are
based on an algorithm for Boolean satisfiability (Fichte et al.
2018), which we lift to many much more general problems
in KRR that can be defined using finite structures. Before
we discuss our approach, we provide a notion to reconstruct
solutions from a tabled tree decomposition that has been com-
puted using a table algorithm A. This requires to determine
for a given record its predecessor records in the corresponding
child tables. Let therefore children(t) = (¢1,...,t¢). Given
asequence § = (S1,...,5¢), welet {3h) :=({s1},...,{se}).
For a given A-record u, we define the originating A-records
of @ in node ¢ by A-origins(¢, @) :={5 | § € 7(t1) X --- X
T(te), @ € At(Zy, {5}))}. We extend this to A-table p by
A-origins(t, p) := e, A-origins(t, @). These origins al-
low us to collect records that are extendable to solutions of P
and combine them accordingly. Given any descendant node ¢/
of ¢, we call every record ¢ € «(¢') that appears in some A-
records, when recursively following every A-origins(t, p)
back to the leaf nodes, involved in p.

Example 5. Recall QBF Q, TTD (T,x,7), and ta-
bles Ti9, 711 from Example 4 and Figure 1. Con-
sider record U11.1,U112 € @ T11. Observe that
A-origins(t11,d11.1) = {@11.1}, which is in contrast to
A-origins(t11, @1.2) = {@0.2, U10.4}

Figure 2 illustrates an overview of the steps of PSCy4. First,
we compute a TD 7 = (T, x) of Z,. Then, we traverse
the TD a first time by running DP, (Step 2.I), which outputs
a TTD Teons = (T, x, 7). Afterwards, we traverse Tons in

14

Listing 3: Table algorithm APRJ(vy,Z:, (71, ..
jected solution counting, c.f., (Fichte et al. 2018).

.)) for pro-

In: Purged table mapping v, bag-projection Py = (Z)¢,
sequence (71, . ..) of APRJ-tables of children of ¢.
Out: APRJ-table 7 of records {p, ¢), where p C v, ¢ € N.
1 me{{p,ipsc(t, p, (m1,...)))| p € sub-bucketsp, (1)}
2 return m;

pre-order and remove all records from the tables that cannot
be extended to a solution (“Purge non-solution records”). In-
tuitively, these records are those that are not involved in 7(n)
when recursively following A-origins(n, 7(n)) the root n
back to the leaf nodes of T'. In other words, we keep only
records @ of table 7(t), if @ is involved in 7(n), i.e., if &
participates in constructing a solution to our problem P. We
call the table mapping v purged table mapping and let the
resulting TTD be Tpureed = (T, X, V).

Step 2.II forms the main part of PSCy. By DPjpRrj, we
traverse Tpureed to count solutions with respect to the projec-
tion and obtain Tyj = (7, x, 7). From the table m(n) at
the root n of T', we can directly read the projected solution
count of Z. In the following, we only describe table algo-
rithm APRJ as the traversal in DPpgj is the same as before.
Records are of the form (p,c,) € 7(t), where p C v(t)
is an A-table, and c is a non-negative integer. For a set p
of records, the intersection projected solution count ipsc is,
vaguely speaking, the number “projected” solutions to Z,,
all records in p have in common. That is the cardinality of
the intersection of solutions to Z<; restricted to the given
projection P for the set p of involved records. In the end, we
are interested in the projected solution count (psc) of p, i.e.,
the cardinality of the union of solutions to Z<, restricted to P
for records p.

In the remainder, we additionally let v be the purged
table mapping, m be the APRJ-table mapping as used
above, and p C v(t). The relation =p C p X p consid-
ers equivalent records with respect to the projection P by
=p ::{(ﬁa 27) | ﬁa v € Ps <D7ﬁ(1)> np= <D717(1)> M P}
Let bucketsp(p) be the set of equivalence classes induced
by =p on set p of records, i.e., bucketsp(p) :=(p/ =p) =
{la]p | @ € p}, where [u]lp = Uz, {V | V=pu}, and
sub-bucketsp(p) :={S |0 C S C B, B € bucketsp(p)}.

Example 6. Consider again QBF (@), projection P,
TTD (T, x, T), and tables 11, 111 from Example 4 and Fig-
ure 1. During purging, records uij.3 and ui1.3 are re-
moved, as highlighted in gray. This results in tables vy
and v11. Then, the set vi9/ =p of equivalence classes
is bucketsp(v10) = {{u1o1}, {uid2}, {uid.a}}, whereas
vii/=p = {{wi1, w12}, {uiia}}

Later, we require to access already computed projected
counts in tables of children of a given node ¢. Therefore,
we define the stored ipsc of a table p C v(t) in table 7 (¢)
by s-ipsc(m(t), p) =%, cyenryC- We extend this to a se-
quence § = (m(t1),...,m(t¢)) of tables of length ¢ and
aset O = {{p1,--.,pe),(P1s---,P}),-..} of sequences
of £ tables by s-ipsc(s,0) = [Lc(i. o S-iPsc(s(), Og))-
In other words, we select the i-th position of the sequence

4 (o134, c13.4) T: t iflp1a.i, C14.1))
f(0, A13.1 },1) i3 n i4\ 0, 0 ,3
Z((/),.A13.2>},2> -==" 14
3[({{0, A13.1), 0) ’i—ZPlz.u C12.1)
\#} T(<£)7-A12.1 },1) 12
it e
R RO
(<P11.i7 Cll.iyi‘
(w Anp},) T
O e
n 0 Anayy, @ 2
I . L ATy)2
2ld{et Aon)}, D)) ” T
3& < ([,rt},A9,4>},1> J qu;;Alo.l }, 1;0. y
2({ {27}1.4}7.2,}, 0 |nr ({d,e}, A10.4)},1))
3[{(0, A7.1}, 1) (s 1, cs.i)i
| (e}, Az.2)}, | {0, As 1)), 1) |1
e A AT T As 1D)2

Figure 3: Tables of 7 obtained by DPproy on TTD 7T and purged
table mapping v of .

together with sets of the ¢-th positions from the set of se-
quences.

Intuitively, when we are at a node ¢ in algorithm DPpRy
we have already computed (") of Ty for every node t’
below ¢. Then, the projected solution count of p C v(t) is
obtained by applying the inclusion-exclusion principle to the
stored projected solution count of origins.

Definition 1. For table p and node t, the projected solution
count psc is

pse(t, p (n(tr), .. =3 —109"D s ipse((m(ty), .
PC OCA-origins(t,p)

),0).

Vaguely speaking, psc determines the A-origins of table p,
iterates over all subsets of these origins and looks up the
stored counts (s-ipsc) in the AIPRJ-tables over the children ¢;
of node .

Finally, we provide a definition to compute ipsc, which
can be computed at a node ¢ for given table p C v(t) by
computing the psc for children ¢; of ¢ using stored ipsc values
from tables 7 (t;), subtracting and adding ipsc values for
subsets) C ¢ C p accordingly.

Definition 2. For table p and node t, the intersection pro-
jected solution count ipsc(t, p,) :=1 if type(t) = leaf and
ipsc(t, p, s) :=| psc(t, p, 8)+ Ly, (— 1)1 -ipse(t, ¢, 5)|
where s = (m(t1), .. .), otherwise.

In other words, if a node is of type leaf the ipsc is one,
since bags of leaf nodes are empty. Otherwise, we compute
count of given table p C v(t) with respect to P, by exploiting
the inclusion-exclusion principle on A-origins of p such that
we count every projected solution only once. Then we have
to subtract and add ipsc values (“all-overlapping” counts) for
strict subsets (of table p.

Listing 3 presents the table algorithm APRJ, which
stores m(¢) consisting of every sub-bucket of the given ta-
ble v(t) together with its ipsc. In the end, the solution
to #PSOLS(P) is given by s-ipsc({m(n)), v(n)).

15

Example 7. Recall OBF Q, TTD T=(T, x, 7), and tables 11,

., T14 from Example 4 and Figure 1. Recall that for some
nodes t, there are records among different QAILG-tables that
are removed (highlighted gray in Figure 1) during purging,
i.e., not contained in purged table mapping v. By purging
we avoid to correct stored counters (backtracking) whenever
a record has no “succeeding” record in the parent table.
Next, recall Example 3 and consider Q, projection P, and
the resulting instance I of #X,QSAT. We discuss selected
tables obtained by DPppgry(Z, (T, x,v)). Figure 3 depicts
selected tables of w1, . .., w14 obtained after running DP spry
for projected counting. We assume that record i in table m,
corresponds 1o v; = (pt.i, Cr.i) where pr; C v(t).

Since type(t1) leaf, we have m = ({tu1.1},1).

Intuitively, at t, the record Uy, belongs to one
bucket. Similarly for nodes ts, ts,ty, and ts.
Node tg introduces ¢, which results in table mg =
{{ug1}, 1), {us2}, 1), {uc1, ug2}, 1)}, where ugy =
0, A1) and uge = ({c},As2) with ug1,uss € Ts.
Consequently, cs.1 = ipsc(te, {uc'1}) = psc(ts, {ug1}) =
s ipsc((m) {us1}) = 1; analogously for ugs. Further,

c6.3 = ipsc(le, {uci1,u62}) = |psc(ts, {uc1,us2}) —
ipsc(te, {ug.1}) — ipsc(ts, {ug2})| = [1 —1—1] =
Similarly for table 77 as given, but v; has two buckets, as
well as for s, g of Figure 3.

Next, we discuss how to compute table w11,
given table 1. For record vi11 we com-
pute the count ci1.1 = ipsc(t11, {uiia} =
psc(ti, {u1i.1}=s-ipsc({m10), {u10.1})=1. Analogously,

for record vi7., where ci1.2 ipsc(tiy, {uii2})=1
In order to obtain vi13, we compute cy1.3
ipsc(ti1, {wii.1, u11.2}) | psc(tir, {uit.1,u11.2}) —
ipSC(tll, {uf{.l}) — ipSC(tll, {uﬁg})| = |2 —-1- 1| = 0.
We continue for tables w15 and 3. In the end, the projected
solution count of Q) is given in the root node t14 and corre-

sponds to S—ipSC(<7T14>, {uﬁl}) = C13.1 + C13.2 —C13.3 = 3

Runtime Analysis

Next, we present asymptotic upper bounds on the runtime of
our Algorithm DP4pgy. To this end, we assume ~y(n) to be
the number of operations that are required to multiply two n-
bit integers, which can be achieved in time O(n - logn -
loglogn) (Knuth 1998). If unit costs for multiplication of
numbers are assumed, then y(n) = 1.

Theorem 1 (x'). Given instance I of problem P and
a TTD Tpurged (T,x,v) of T of width k with g
nodes. Then, DPupgry runs in time O(2*™ - g - y(|Z|]))
where m :=max(|{v(t) | t € N}|).

Corollary 1 (x). Given an instance Q of #%X,QSAT of
treewidth k. Then, PSCoarg runs in time O(tower({ + 1,k +
) -v(|Qll) - g), where ¢ is the quantifier depth of QBF of Q.

From recent results stated in Proposition 2, we can conclude
that one cannot significantly improve the runtime assuming
that the exponential time hypothesis (ETH) holds.

[T

"Proofs of statements marked with “x” will be made available in

an author self-archived copy.

Corollary 2. Under ETH, the problem #3%,QSAT cannot
be solved in time tower (£ + 1, 0(k)) - 2°U<ID for instance Q
of treewidth k and quantifier depth (.

Formalization of suitable Table Algorithms

In order to use our algorithm for variable problems P, we
need to characterize the suitable table algorithms for P. To
this end, we formalize the content of a table at a node t.
Therefore, we define a record up to node ¢ as follows: A
record U up to t is of the form & = (4, ..., 4,) such that
for each ¢ with 1 < ¢ < g, either 4; only contains elements
of the sub-tree rooted at ¢, i.e., @; C x<(¢), or @; is a set of
records up to t. A set of records up to ¢ is referred to by a
table pup to t.

Formalizing Tables. Correctness of a table algorithm A
for a problem P is typically established using a set C of con-
ditions (Fichte et al. 2017; Jakl, Pichler, and Woltran 2009;
Pichler, Riimmele, and Woltran 2010) that hold for every
table that is computed using algorithm A. Let therefore p
be a table up to ¢, and C be a set of conditions, which de-
pend only on sub-tree T[t] of T rooted at t. Then, & € p
is referred to as A-solution up to t consistent with C if it
ensures C. However, we need to restrict this set such that it
allows us to characterize the solutions to P. Therefore, we
need the definition of sufficient conditions, which, vaguely
speaking, make sure that parts of the record, while potentially
containing auxiliary data, correspond to the (relations of)
solutions.

Definition 3. A set C of conditions is called suffi-
cient for A, if the set of solutions of any instance T’
of problem P, and any TD T' of I' are character-
ized as follows: The set {1y | wisan A-solution
up to root n' of T' consistent with C} corresponds to set
{R |8 ={,,R),S is a solution to instance T'}.

However, these table algorithms A do not store records up
to a node. Instead, such algorithms store “local” records that
only mention contents restricted to the bag of a node. To this
end, we need the following definitions. Given a table p =
{01,...,05} upto t and a set P C x(t). Then the table p
restricted to P is given by p|p :={01|p, ..., Us|p}, where
for v; € p, if 0; C x<(t), then 9;|p :=0; N P. Otherwise,
if 731 = <ﬂ1, . ,’LALq>, then ’(A)Z|p I:<ﬁ1|P7 . 7aq|P>- This
allows us to formalize the fable p at node t, which is given
by p ::mx(t)-

Characterization of Correctness. In the following, we
let C be such a set of sufficient conditions for A and u be
an A-solution up to ¢ consistent with C. Then, |,) at is
referred to as A-record solution at node t consistent with C.
We say @ is a corresponding A-solution up to ¢ of @, y).

Intuitively, to characterize correctness, we need some kind
of monotonicity among bag relations over &, i.e., it is not
allowed that some table records defer or change decisions at
some descendant node about domain elements in relations
that are part of solutions. Therefore, we rely on the following
notion of compatibility.

16

Definition 4 (Compatibility). Let children(t) = (t1,...,ts),
@ = (S,...) be an A-solution up to t and © = (', ...) be
an A-solution up to t;. Then, G is compatible with v (and
vice-versa) if 0(1) < (1) = (1)l to)-

For a table algorithm that correctly models the solutions to
any instance of P, we require both soundness, indicating that
computed records are not wrong, and completeness, which
ensures that we do not miss records.

Definition 5 (Soundness). Algorithm A is referred to as
sound, if for any TTD T of any instance I' of P, any node
t' of T' with children(t') = (t1, ..., ts), any A-record solu-
tion w at t', and any A-record solutions v; at t; for 1 < i </,
we have: If (v1,...,v¢) € A-origins(t',u), then u is also
an A-record solution at node t' and u is compatible with v;.

Definition 6 (Completeness). Algorithm A is referred to as
complete, if for any TTD T’ of any instance I' of P, any
node t' of T' with children(t') = (t1,...,ts), £ > 1, any
A-record solution u at node t', and any corresponding A-
solution t up to t' (of u), we have: For every 1 < i < (, there
exists s = (v1, ..., vp) where v; is an A-record solution at t;
such that s € A-origins(t, u), and v; is a corresponding A-
solution up to t; (of v;) that is compatible with .

These definitions finally allow us to define table algorithms
to capture the solutions to instances of problem P. This
ensures, besides soundness and completeness, that checking
conditions in C can be done in polynomial time.

Definition 7 (Correctness). Algorithm A is referred to as
correct for problem P, if A is both sound and complete. Fur-
ther, for any TD T' = (T, X') of any instance I' of P over o,
and any node t' € N’, any resulting A-TTD (-,-,0), we
have: (i) We can verify for every A-record u at node t' of
table o(t') in time |u|°® whether record u is an A-record
solution at t', by using only A-record solutions in o(-) for
children of t'. In other words, for every corresponding A-
solution @ up to t' of record u, the conditions C hold. (ii)
Ift' = root(T"), or type(t') = leaf, then |v(t')| < 1 for
purged table mapping v of o.

Remark: Condition (2) hardly restricts correctness, since
bags of the leaves and root are empty by definition, as we use
nice TDs. In fact, reasonable table algorithms that compute
solutions to problems P are correct, because the form of
the table data structure, the correctness condition, and the
monotonicity criteria via compatibility notion are very weak
notions on top of the existing algorithm. In particular, these
conditions still allow for solving (Bliem, Pichler, and Woltran
2013) monadic second order logic using TDs.

Proposition 3. Algorithm QALG is correct.

Proof (Idea). Correctness of QALLG can be established by
adapting the original proof (Chen 2004) and establishing
conditions C similar to invariants for other formalisms (Samer
and Szeider 2010). O

Results for our Meta Algorithm PSC,. Finally, we state
that new table algorithm APRJ is indeed correct assuming a
correct table algorithm A is given.

Runtime tower(i, O (k)) - | Z||°") of #PSoLs(P)

Origin Problem P i—9 i — 3 i— 4 i—5 Py
Graphs VERTEXCOVER AV

Graphs DOMINATINGSET AY

Graphs INDEPENDENTSET AV

Graphs 3-COLORABILITY AV

Logic SAT AA[1],V[1]

Logic % 1QSAT, IT,_;QSAT, { > 2 AA[BLV[2]
Logic Programs | ASP A A[1],V[1,2]

Epistemic LPs | CANDIDATE WORLD VIEWS A,V[2,5]

Epistemic LPs WORLD VIEWS A,V[2,5]
Reasoning ABDUCTION, CIRCUMSCRIPTION A.V[2]

Argumentation | CREDpyeferreds CREDgemi-st, CREDgtage AN[4],V]2,4]

Table 1: Runtime upper (A, A) and lower (¥, V) bounds (ETH) of #PSOLS(P) for selected problems P. Z refers to an instance of #PSOLS(P),
k to the treewidth of Z. (A, V) indicates previously known bounds. For problem definitions, we refer to the problem compendium
of (Fichte, Hecher, and Pfandler 2020). Due to space reasons, we abbreviate references above as follows: [1]: (Fichte et al. 2018), [2]:
(Fichte, Hecher, and Pfandler 2020), [3]: (Chen 2004), [4]: (Fichte, Hecher, and Meier 2019), [5]: (Hecher, Morak, and Woltran 2020)

Theorem 2 (x). Given a correct algorithm A for problem P
and an instance I of P. Then, Algorithm PSCy is correct
and s-ipsc({m(n)),v(n)) outputs for TD-root n of the in-
stance, consisting of T and any projection P, the solution to
problem #PSOLS(P).

Corollary 3. Algorithm PSCqalg is correct and outputs for
any given instance of #3,QS AT its projected solution count.

As a side result we immediately obtain a meta algorithm
for counting. This includes problems P, where the corre-
sponding DP algorithm A might compute more involved
records such that a trivial extension of A to facilitate counters
might count duplicate solutions.

Corollary 4. Given an instance (D,(Rpc,)) of prob-
lem P = (0,¢,-) and correct table algorithm A for P. If
we set R:=D"™ for each R € ¢ and run algorithm PSCy
on instance (D, (Rpc,ue)), the value s-ipsc((m(n)),v(n))
for TD-root n is the number of solutions to P.

Table 1 gives a brief overview of selected problems P and
their respective runtime upper bounds (A) obtained via DP,,
as well as lower bounds (¥, V) under the exponential time
hypothesis (ETH).

Conclusion and Future Work

We introduced a novel framework and meta algorithm for
counting projected solutions in a variety of domains. We use
finite structures for specifying the problem and the graph rep-
resentations on which we run dynamic programming. With
this general tool at hand to describe problems, we employ
dynamic programming (DP) on tree decompositions of the
Gaifman graph (primal graph) of the input given in the finite
structure. Conveniently, we can reuse already established DP
algorithms and impose very weak conditions for their usage
for projected counting. Interestingly, a very general tech-
nique that describes implementations of counting techniques
(without projection) in a similar fashion, namely relational
algebra, is also useful and competitive in practice (Fichte et
al. 2020). Further, we completed the picture of previously

17

established lower bounds for projected solution counting
problems (under ETH) by also providing the corresponding
upper bounds that are achieved with our framework. While
we did not elaborate in detail, our work still allows different
graph representations such as the incidence graph.

The presented research opens up a variety of new questions.
We believe that an implementation for projected counting can
be quite interesting. Another interesting direction for future
work is to extend the existing counting framework to pro-
jected solution enumeration with linear delay. We believe
that projected counting or enumeration can be a promising
extension for well-known graph problems, yielding new in-
sights and wider applications as it was already the case for
abstract argumentation (Fichte, Hecher, and Meier 2019).

References

Abiteboul, S.; Hull, R.; and Vianu, V. 1995. Foundations of
Databases: The Logical Level. Addison-Wesley, 1st edition.

Arnborg, S.; Lagergren, J.; and Seese, D. 1991. Easy prob-
lems for tree-decomposable graphs. J. Algorithms 12(2):308—
340.

Aziz, R. A.; Chu, G.; Muise, C.; and Stuckey, P. 2015.
#(3)SAT: Projected Model Counting. In SAT’15, 121-137.
Springer.

Aziz, R. A. 2015. Answer Set Programming: Founded
Bounds and Model Counting. Ph.D. Dissertation, University
of Melbourne.

Biere, A.; Heule, M.; van Maaren, H.; and Walsh, T., eds.
2009. Handbook of Satisfiability, volume 185 of Frontiers in
Artificial Intelligence and Applications. 10S Press.

Bliem, B.; Pichler, R.; and Woltran, S. 2013. Declarative
dynamic programming as an alternative realization of cour-
celle’s theorem. In IPEC’13, volume 8246 of LNCS, 28—40.
Springer.

Bodlaender, H. L., and Kloks, T. 1996. Efficient and construc-

tive algorithms for the pathwidth and treewidth of graphs. J.
Algorithms 21(2):358-402.

Capelli, F., and Mengel, S. 2019. Tractable QBF by knowl-
edge compilation. In STACS’19, volume 126 of LIPIcs, 18:1—
18:16. Dagstuhl.

Charwat, G., and Woltran, S. 2019. Expansion-based QBF
solving on tree decompositions. Fundam. Inform. 167(1-
2):59-92.

Chavira, M., and Darwiche, A. 2008. On probabilistic
inference by weighted model counting. Artificial Intelligence
172(6-7):772—799.

Chen, H. 2004. Quantified constraint satisfaction and
bounded treewidth. In ECAI’04, 161-170. IOS Press.

Curticapean, R. 2018. Counting problems in parameterized
complexity. In IPEC’1S, volume 115 of LIPIcs, 1:1-1:18.
Dagstuhl. 978-3-95977-084-2.

Cygan, M.; Fomin, F. V.; Kowalik, L.; Lokshtanov, D.;
Déniel Marx, M. P,; Pilipczuk, M.; and Saurabh, S. 2015.
Parameterized Algorithms. Springer.

Domshlak, C., and Hoffmann, J. 2007. Probabilistic planning
via heuristic forward search and weighted model counting. J.
Artif. Intell. Res. 30.

Doubilet, P.; Rota, G.-C.; and Stanley, R. 1972. On the
foundations of combinatorial theory. vi. the idea of generating
function. In Berkeley Symposium on Mathematical Statistics
and Probability, 2: 267-318.

Dueiias-Osorio, L.; Meel, K. S.; Paredes, R.; and Vardi,

M. Y. 2017. Counting-based reliability estimation for power-
transmission grids. In AAAI’17, 4488-4494. AAAI Press.

Durand, A.; Hermann, M.; and Kolaitis, P. G. 2005. Subtrac-
tive reductions and complete problems for counting complex-
ity classes. Theoretical Computer Science 340(3):496-513.
Fichte, J. K., and Hecher, M. 2019. Treewidth and counting
projected answer sets. In LPNMR’19, volume 11481 of
LNCS, 105-119. Springer.

Fichte, J. K.; Hecher, M.; Morak, M.; and Woltran, S. 2017.
Answer set solving with bounded treewidth revisited. In
LPNMR’17, volume 10377 of LNCS, 132-145. Springer.

Fichte, J. K.; Hecher, M.; Morak, M.; and Woltran, S. 2018.
Exploiting treewidth for projected model counting and its
limits. In SAT’18. Springer.

Fichte, J. K.; Hecher, M.; Thier, P.; and Woltran, S. 2020.
Exploiting database management systems and treewidth for
counting. In PADL’20, volume 12007 of LNCS, 151-167.
Springer.

Fichte, J. K.; Hecher, M.; and Meier, A. 2019. Counting com-
plexity for reasoning in abstract argumentation. In AAAI’19,
2827-2834. AAAI Press.

Fichte, J. K.; Hecher, M.; and Pfandler, A. 2020. Lower
bounds for QBFs of bounded treewidth. In LICS 20, 410-424.
ACM.

Fioretto, F.; Pontelli, E.; Yeoh, W.; and Dechter, R. 2018. Ac-
celerating exact and approximate inference for (distributed)
discrete optimization with GPUs. Constraints 23(1):1-43.
Gaggl, S. A.; Manthey, N.; Ronca, A.; Wallner, J. P.; and
Woltran, S. 2015. Improved answer-set programming encod-
ings for abstract argumentation. TPLP 15(4-5):434-448.

18

Gaifman, H. 1982. On local and nonlocal properties. In
Proceedings of the Herbrand Symposium, volume 107 of
Studies in Logic and the Foundations of Mathematics, 105—
135. Elsevier.

Gebser, M.; Kaufmann, B.; and Schaub, T. 2009. Solu-
tion enumeration for projected boolean search problems. In
CPAIOR’09, volume 5547 of LNCS, 71-86. Springer.
Gomes, C. P; Sabharwal, A.; and Selman, B. 2009. Chapter
20: Model counting. In Handbook of Satisfiability, volume
185 of Frontiers in Artificial Intelligence and Applications.
IOS Press. 633—654.

Graham, R. L.; Grotschel, M.; and Lovasz, L. 1995. Hand-
book of combinatorics, volume 1. Elsevier.

Gurevich, Y. 1995. Evolving algebras 1993: Lipari guide. In
Specification and Validation Methods. OUP. 9-36.

Hecher, M.; Morak, M.; and Woltran, S. 2020. Structural
decompositions of epistemic logic programs. In AAAI’20,
2830-2837. AAAI Press.

Hemaspaandra, L. A., and Vollmer, H. 1995. The satanic
notations: Counting classes beyond #P and other definitional
adventures. SIGACT News 26(1):2—-13.

Impagliazzo, R.; Paturi, R.; and Zane, F. 2001. Which prob-
lems have strongly exponential complexity? J. of Computer
and System Sciences 63(4):512-530.

Jakl, M.; Pichler, R.; and Woltran, S. 2009. Answer-set pro-
gramming with bounded treewidth. In IJCAI’09, volume 2,
816-822.

Kangas, K.; Koivisto, M.; and Salonen, S. 2019. A faster
tree-decomposition based algorithm for counting linear ex-
tensions. In IPEC’18, volume 115 of LIPIcs, 5:1-5:13.
Dagstuhl.

Kloks, T. 1994. Treewidth. Computations and Approxima-
tions, volume 842 of LNCS. Springer.

Knuth, D. E. 1998. How fast can we multiply? In The
Art of Computer Programming, volume 2 of Seminumerical
Algorithms. Addison-Wesley, 3 edition. chapter 4.3.3, 294—
318.

Lagniez, J.-M., and Marquis, P. 2019. A recursive algorithm
for projected model counting. In AAAI’19, 1536-1543. AAAI
Press.

Pichler, R.; Riimmele, S.; and Woltran, S. 2010. Count-
ing and enumeration problems with bounded treewidth. In
LPAR’10, volume 6355 of LNCS, 387-404. Springer.
Samer, M., and Szeider, S. 2010. Algorithms for proposi-
tional model counting. J. Discrete Algorithms 8(1):50—64.
Sang, T.; Beame, P.; and Kautz, H. 2005. Performing
bayesian inference by weighted model counting. In AAAI’05.
AAALI Press.

Sharma, S.; Roy, S.; Soos, M.; and Meel, K. S. 2019. Ganak:
A scalable probabilistic exact model counter. In IJCAI’19,
1169-1176. 1JICAL

Stockmeyer, L. J., and Meyer, A. R. 1973. Word problems
requiring exponential time. In STOC’73, 1-9. ACM.
Valiant, L. 1979. The complexity of enumeration and relia-
bility problems. SIAM J. Comput. 8(3):410-421.

Paraconsistent Logics for Knowledge Representation and Reasoning:
advances and perspectives

Walter Carnielli'?34, Rafael Testa',

!Centre for Logic, Epistemology and the History of Science
Institute for Philosophy and Human Sciences
University of Campinas (UNICAMP)

3 Advanced Institute for Artificial Intelligence (AI2)

~ “Modal Institute .
walterac @unicamp.br, rafaeltesta@gmail.com

Abstract

This paper briefly outlines some advancements in paraconsis-
tent logics for modeling knowledge representation and rea-
soning. Emphasis is given on the so-called Logics of Formal
Inconsistency (LFIs), a class of paraconsistent logics that for-
mally internalize the very concept(s) of consistency and in-
consistency. A couple of specialized systems based on the
LFIs will be reviewed, including belief revision and proba-
bilistic reasoning. Potential applications of those systems in
the AI area of KRR are tackled by illustrating some exam-
ples that emphasizes the importance of a fine-tuned treatment
of consistency in modeling reputation systems, preferences,
argumentation, and evidence.

1 Introduction

Non-classical logics find several applications in artificial in-
telligence, including multi-agent systems, reasoning with
vagueness, uncertainty, and contradictions, among others,
mostly akin with the area of knowledge representation and
reasoning (Thomason 2020). Regarding this latter, there
is a plethora of aims and applications in view when repre-
senting a knowledge of an agent, including fields beyond
Al like software engineering, databases and robotics. Sev-
eral logics have been studied for the latter purposes, includ-
ing non-monotonic, epistemic, temporal, many-valued and
fuzzy logics. This paper highlights the use of paraconsistent
logics in some inconsistency-tolerant frameworks, introduc-
ing the family of Logics of Formal Inconsistency (LFIs) (ad-
vanced in the literature to be presented) for representing rea-
soning that makes use of the very notion of consistency and
inconsistency, suitably formalized within the systems.

2 Reasoning under contradiction
2.1 The informative power of contradictions

Contradictory information is not only frequent, and more so
as systems increase in complexity, but can have a positive
role in human thought, in some cases not being totally un-
desirable. Finding contradictions in juridical testimonies, in
statements from suspects of a crime or in suspects of tax
fraud, for instance, can be an effective strategy — contradic-
tions can be very informative in those cases (Carnielli and
Coniglio 2016).

19

Indeed, the so called Bar-Hillel-Carnap paradox has al-
ready suggested half century ago the collapse between the
notions of contradiction and semantic information: the less
probable a statement is, the more informative it is, and so
contradictions carry the maximum amount of information
(Carnap and Bar-Hillel 1952). However, and in the light
of standard logic, contradictions are “too informative to be
true” as a famous quote by the latter has it.

To face the task of reasoning under contradictions, a field
where human agents excel, is a difficult philosophical prob-
lem for standard logic, which is forced to equate triviality
and contradiction, and to regard all contradictions as equiv-
alent. However, skipping all technicalities in favor of a
clear intuition (technical details can be found in (Mendonca
2018)), the Bar-Hillel-Carnap observation is not paradoxical
for LFIs.

2.2 The beginings of Paraconsistent Logics
(modern era)

The idea of a non-Aristotelian logic was advanced in a lec-
ture in 1919 by Nicolai A. Vasiliev, where he proposed a
kind of reasoning free from the laws of excluded middle and
contradiction — called Imaginary Logic as an analogy with
Lobachevsky’s imaginary geometry. Such a logic would be
valid, as the former has it, only for reasoning in “imaginary
worlds” (Vasiliev 1912).

A more concrete example of a system for reasoning
with contradictions can be found in the Discussive Logic
(Jaskowski 1948), advanced as a formal answer to the puz-
zling situation posed by J. Lukasiewicz: which logic ap-
plies in the situation where one has to defend some judg-
ment A, also considering not-A for the sake of the argument?
Jaskowski’s strategy is to avoid the combination of conflict-
ing information by blocking the rule of adjunction. The idea
is making room for A and —A without entailing A A —A4,
since the classic explosion actually still holds in the form of
AN —-AF B. In terms of reasoning, it has a straightforward
meaning: each agent must still be consistent! Jaskowski’s
intuitions contributed to the proposal of the society se-
mantics and to general case, the possible-translations se-
mantics. A discussion on some conceptual points involv-
ing society semantics and their role on collective intelli-

gence can be found in (Carnielli and Lima-Marques 2017;
Testa 2020).

Another precursor, with a multi-valued approach, is the
Logic of Nonsense (Halldén 1949) that, despite its name,
captured a meaningful form of reasoning — aiming in study-
ing logical paradoxes by means of 3-valued logical matrices
(closely related to the Nonsense Logic introduced in 1938 by
A. Bochvar). An analogous approach is made by F. Asenjo,
who introduced a 3-valued logic as a formal framework for
studying antinomies by means of 3-valued Kleene’s truth-
tables for negation and conjunction, where the third truth-
value is distinguished (Asenjo 1966). The same logic has
been studied by G. Priest, from the perspective of matrix
logics, in the form of the so-called Logic of Paradox (LP)
(Priest 1979).

With respect to a constructive approach to intuitionistic
negation, D. Nelson proposed an extension of positive in-
tuitionistic logic with a strong negation — a connective de-
signed to capture the notion of “constructible falsity”. By
eliminating the explosion, Nelson obtained a (first-order)
paraconsistent logic (Nelson 1959).

Focusing on the status of contradictions in mathematical
reasoning, N. da Costa advanced a hierarchy of paracon-
sistent systems C,, (for n > 1) tolerant to contradictions,
where the consistency of a formula A (in his terminology,
the ‘well-behavior’ of A) is defined in C; by the formula
A° = =(AA—-A). Let A' =40 A° and A" Tl= ¢ (A™)°.
Then, in C", the following holds: (i) the well behavior
is denoted by A =4, ;ALY A - A AT (i) A, A I B
in general, but A A —A B always holds; and (iii)
A B (A#B)™ and A™) - (= A)™),

By concentrating on the non-triviality of the systems
rather than on the absence of contradictions, da Costa de-
fined a logic to be paraconsistent with respect to — if it can
serve as a basis for —-contradictory yet non-trivial theories
(da Costa 1974):

Definition 1. IT3a3F(T F aandT' F —~aand T' I/)

2.3 Motivations: main approaches

Preservationism Similar to the way discussive logic has
it, there is a clear distinction between an inconsistent data
set, like {A,—~A} (which is considered tractable), with a
contradiction in the form A A —A (intractable). Thus, given
an inconsistent collection of sentences (in an already defined
logic L, usually classical logic), one should not try to reason
about that collection as a whole, but rather focus on inter-
nally consistent subsets of premises. (Schotch, Brown, and
Jennings 2009).

Relevant Logics Relevant logics are mainly concerned
with a meaningful connection between the premises and the
conclusion of an argument, thus not accepting for example
inferences like B - A — B. This strategy induces a para-
consistent character in the resulting deductions, since A and
—A, as premisses, do not necessarily have a meaningful con-
nection with an arbitrary conclusion B (Anderson, Belnap,
and Dunn 1992).

20

Adaptive Logics Human reasoning can be better under-
stood as endowed with many dynamic consequence rela-
tions. Adaptive reasoning recognizes the so-called abnor-
malities to develop formal strategies to deal with them:
for instance, an abnormality might be an inconsistency
(inconsistency-adaptive logics), or it might be an inductive
inference, and a strategy might be excluding a line of a proof
(by marking it), or to change an inference rule. (Batens
2001).

Dialetheism A dialetheia is a sentence A, such that both
it and its negation — A are true. Assuming that falsity is the
truth of negation, a dialetheia then is a sentence which is
both true and false. Dialetheism, accordingly, is the meta-
physical view that there are dialetheia, i.e., that there are
true contradictions. As such, dialetheism opposes the Law
of Non-Contradiction in the forma of —(A A —A) (Priest
1987). A system admitting ‘both’ as a truth-value, for in-
stance, is the aforementioned Logic of Paradox.

Inconsistent (or rather Contradictory) Formal Systems
The main idea is that there are situations in which contradic-
tions can, at least temporarily, be admissible if their “behav-
ior can be somehow controlled”, as da Costa has it (op. cit.).
Contemporaneously, (Carnielli and Marcos 2002) extended
and further generalized such notions, giving rise to the so
called Logics of Formal Inconsistency, to be presented in
the next section.

3 Logics of Formal Inconsistency- LFIs

3.1 Contradiction, consistency, inconsistency, and
triviality

LFIs are a family of paraconsistent logics designed to ex-
press the notion(s) of consistency and inconsitency (some-
times defining one another, sometimes taken as primitive,
depending on the strength of the axioms) within the object
language by employing a connective “o” (or “e”), in which
oa: means that “« is consistent” (and e« means that “« is in-
consistent”), further expanding and generalizing da Costa’s
hierarchy of C systems. Accordingly, the principle of explo-
sion is not valid in general, although this law is not abolished
but restricted to the so-called “consistent sentences”, a fea-
ture captured by the following law, which is referred to as
the “principle of Gentle Explosion” (PGE):

«, —a, o = 3, for every (3, but o, —a I/ B for some 5 (1)

In formal terms, we have the following (Carnielli and
Coniglio 2016):

Definition 2 (A formal definition of LFI). Let L be a
Tarskian logic with a negation —. The logic L is a LFI if
there is a non-empty set O)(p) of formulas in some language
L of L which depends only on the propositional variable p,
satisfying the following:

. Ja3p(—a, a tf B)

- Ja3B(O(a), /)

- Ja3B(O(a), ~a ¥/ B)

- Va¥B3(O(a), o, ~a k)

ISURESTINEN Y

For any formula «, the set O)(«) is intended to express, in
a specific sense, the consistency of « relative to the logic
L. When this set is a singleton, it is denoted by o the sole
element of O)(«), thus defining a consistency operator.

[Tl

The connective “o”, as mentioned, is not necessarily a
primitive one. Indeed, LFI is an umbrella definition that cov-
ers many paraconsistent logics of the literature.

Remark 3 (Some notable LFIs). Following definition 2, it
can be easily proved that some well-known logics in the lit-
erature are LFIs, including the aforementioned Jaskowski’s
Discussive logic, Halldén’s nonsense logic and, as ex-
pected, da Costa’s C-systems (Carnielli and Coniglio 2016;
Carnielli, Coniglio, and Marcos 2007; Carnielli and Mar-
cos 2002).

It is worth observing that each one of the aforementioned
logics has their own motivations and particularities - be-
ing Remark 3 to be understood as a logic-mathematical re-
minder that those logics share some common results and
properties.

3.2 A family of LFIs

It should be clear that the notions of consistency and non-
contradiction are not coincident in the LFIs, and that the
same holds for the notions of inconsistency and contra-
diction. There is, however, a fully-fledged hierarchy of
LFIs where consistency is gradually connected to non-
contradiction.

Starting from positive classical logic plus fertium non
datur (o V —a)), mbC is one of the basic logics intended
to comply with definition 2 in a minimal way: an axiom
schema called (bcl) is added solely to capture the aforemen-
tioned principle of gentle explosion.

Definition 4 (mbC(Carnielli and Marcos 2002)). The logic
mbC is defined over the language L (generated by the con-
nectives \,V,—,,0) by means of a Hilbert system as fol-
lows:

Axioms:

Al) a— (B — «)

(A2) (a = B) = ((a = (B —0)) = (o =)
(A3) a — (B = (A B))

Ad) (anp) =«

(AS) (anpB)— B

(A6) a — (a V)

(A7) B— (aVp)

(A8) (a—0) = ((8—0) = ((aVpB)—9))
(A9) aV (a—p)

(A10) oV ~«

(bel) oa — (a — (ma — B))

Inference Rule:
(Modus Ponens (MP)) a,aa — B F 3

(A1)-(10) plus (MP) coincides with Baten’s paraconsis-
tent logic CLuN - it is worth mentioning that a nonmono-
tonic characterization of the Ci-hierarchy (presented in sec-
tion 6) can be found in (Batens 2009). Furthermore, (A1)-
(A9) plus (MP) defines positive classical propositional logic
CPL*.

21

mbC can be characterized in terms of valuations over
{0, 1} (also called bivaluations), but cannot be semantically
characterized by finite matrices (cf. (Carnielli, Coniglio, and
Marcos 2007)). Surprisingly, however, mbC can be charac-
terized by 5-valued non-deterministic matrices, as shown in
(Avron 2005) (details also in Example 6.3.3 of (Carnielli and
Coniglio 2016)).
Definition 5 (Valuations for mbC). A function v : L. —
{0,1} is a valuation for mbC if it satisfies the following
clauses:

Bivl) v(aAp)=1 <= wv(a)=1and v(B) =1
Biv2) v(aVvph)=1 <= wv(@)=1orv(f)=1
Biv3) v(a—=p)=1 <= v(a)=0 or v(8) =
Bivd) v(-a)=0 = v(a)=1

Biv5) v(oa) =1 = wv(a)=0 or v(—a)=0.

The semantic consequence relation associated to valua-
tions for mbC is defined as expected: X Epmbe « iff, for
every mbC-valuation v, if v(8) = 1 for every § € X then
v(a) =1.

Definition 6 (Extensions of mbC (Carnielli and Marcos
2002; Carnielli, Coniglio, and Marcos 2007; Carnielli and
Coniglio 2016)). Consider the following axioms:

(ciw) oa V (a A —ar)

(ci) —oa — (a A —a)

() —(aA-a) = o

(cf) ——a — «

(ce) a — "«

Some interesting extensions of mbC are the following:
mbCciw = mbC+(ciw)

mbCci = mbC+(ci)

bC = mbC+(cf)

Ci = mbC+(ci)+(cf) = mbCci+(cf)

mbCcl = mbC+(cl)

Cil = mbC+(ci)+(cf)+(cl) = mbCci+(cf)+(cl) = mbCel+

(cf) + (ci) = Ci+(cl)

The semantic characterization by bivaluations for all these
extensions of mbC can be easily obtained from the one for
mbC (see (Carnielli, Coniglio, and Marcos 2007; Carnielli
and Coniglio 2016)). For instance, mbCciw is character-
ized by mbC-valuations such that v(o«) = 1 if and only if
v(a) = 0 or v(—a) = 0 (if and only if v(@) # v(—)).
Notation 7 (derived bottom particle and strong negation).
l=geyf a AN Noaand ~ o =go5 o =L (for any).

It is then clear that the LFIs are at the same time subsys-
tems and extensions of CPL. They can be seen as classical
logic extended by two connectives: a paraconsistent nega-
tion and a consistency connective (or an inconsistency one,
dual to it). In formal terms, consider CPL defined over the
language L generated by the connectives A, V, —, -, where
— represents the classical negation instead of the paraconsis-
tent one. If Y C Ly then o(Y) = {oa : a € Y'}. Then, the
following result can be obtained:

Observation 8 (Derivability Adjustment Theorem (Carnielli
and Marcos 2002)). Let X U{a} be a set of formulas in L.
Then X Feopr, « ifand only if o(Y), X Fpe @ for some
Y C Lo.

4 Paraconsistent Belief Change

Belief Change in a wide sense has been subject of philosoph-
ical reflection since antiquity, including discussions about
the mechanisms by which scientific theories develop and
proposing rationality criteria for revisions of probability as-
signments (Fermé and Hansson 2018). Contemporaneously,
there is a strong tendency towards confluence of the research
traditions on the subject from philosophy and from computer
research (Hansson 1999).

The most influential paradigm in this area of study is the
AGM model (Alchourrén, Giardenfors, and Makinson 1985),
in which epistemic states are represented as theories — con-
sidered simply as sets of sentences closed under logical con-
sequence. Three types of epistemic changes (or operations)
are considered in this model: expansion, the incorporation of
a sentence into a given theory; contraction, the retraction of
a sentence from a given theory; and revision, the incorpora-
tion of a sentence into a given consistent theory by ensuring
the consistency of the resulting one.

Notably, given the possibility of reasoning with contradic-
tions (as paraconsistent logics have it), as well as the afore-
mentioned scrutiny on the very concept of “consistency”, the
definition of revision can be refined. Indeed, there are some
investigations in the literature alongside this direction:

Based on the four-valued relevant logic of first-degree en-
tailment, (Restall and Slaney 1995) defines an AGM-like
contraction without satisfying the recovery postulate. Re-
vision is obtained from contraction by the Levi identity (to
be introduced).

Also based on the first-degree entailment, (Tamminga
2001) advances a system that put forth a distinction between
information and belief. Techniques of expansion, contrac-
tion an revisions are applied to information (which can be
contradictory), while other kind of operations are advanced
for extracting beliefs from those information. The demand-
ing for consistency (i.e. non-contradictoriness) is applied
only for those beliefs.

(Mares 2002) proposes a model in which an agent’s belief
state is represented by a pair of sets — one of these is the
belief set, and the other consists of the sentences that the
agent rejects. A belief state is coherent if and only if the
intersection of these two sets is empty, i.e. if and only if
there is no statement that the agent both accepts and rejects.
In this model, belief revision preserves coherence but does
not necessarily preserve consistency.

Also departing from a distinction between consistency
and coherence, (Chopra and Parikh 1999) advances a model
based on Belnap and Dunn’s logic that preserves an agent’s
ability to answer contradictory queries in a coherent way,
splitting the language to distinguish between implicit and
explicit beliefs.

In (Priest 2001) and (Tanaka 2005), it is suggested that
revision can be performed by just adding sentences without
removing anything, i.e, revision can be defined as a sim-
ple expansion. Furthermore, Priest first pointed out that in a
paraconsistent framework, revision on belief sets can be per-
formed as external revision, defined with the reversed Levi
identity as advanced for belief bases (Hansson 1993) .

22

The fact is that there are in the literature several systems
that could be understood as endowing a certain paraconsis-
tent character, each one based on distinct strategies and mo-
tivations (see for instance (Fermé and Wassermann 2017) for
an Iterated Belief Change perspective). An approach of Be-
lief Change from the perspective of inconsistent formal sys-
tems was conceptually suggested by (da Costa and Bueno
1998). Departing from the technical advances of mbC and
its extensions, (Testa, Coniglio, and Ribeiro 2017) goes fur-
ther in this direction, defining external and semi-revisions
for belief sets, as well as consolidation (operations that were
originally presented for belief bases (Hansson 1993)(1997).
By considering consistency as an epistemic attitude, and al-
lowing temporary contradictions, the informational power of
the operations are maximized (as it argued by (Testa 2015)).

It is worth mentioning that, as proposed by Priest and
Tanaka (op. cit.), paraconsistent revision could be under-
stood as a plain expansion. As it is explained by (Testa et al.
2018), to equate paraconsistent revision with expansion it is
necessary to assume that consistency is necessarily equiva-
lent to non-triviality in a paraconsistent setting and, further-
more, that all paraconsistent logics do not endow a bottom
particle (primitive or defined). As this paper intends to high-
light, neither assumption is true.

Remark 9. From now on, let us assume a LFI, namely
L=(L,ty), such that L is mbC or some extension as pre-
sented above. Since the context is clear, we will omit the
subscript, and simply denote -1, by - and, accordingly, the
respective closure by Cn.

4.1 Revisions in the LFIs

In (Testa, Coniglio, and Ribeiro 2017) the so-called AGMp
system is proposed, in which it is shown that a paraconsis-
tent revision of a belief set K by a belief-representing sen-
tence o (the operation K * «) can be defined not only by
the Levi identity as in classical AGM (that is, by a prior con-
traction by —« followed by a expansion by «) but also by
reversed Levi identity and other kind of constructions where
contradictions are temporarily accepted. Formally, we have
the following:

Let K = Cn(K). The expansion of K by a (K + «) is
given by

Definition 10. K + o = Cn(K U {a})

There are several constructions for defining a contraction
operator. The one adopted is the partial meet contraction,
constructed as follows (Alchourrén, Giardenfors, and Makin-
son 1985):

1. Choose some maximal subsets of K (with respect the in-
clusion) that do not entail .

2. Take the intersection of such sets.

The remainder of K and « is the set of all maximal sub-
sets of K that do not entail «.

Definition 11 (Remainder). The set of all the maximal sub-

sets of K that do not entail « is called the remainder set of
K by o and is denoted by K | o, that is, K' € K 1« iff:

(i) K' CK.

(i) o & Cn(K').
(iii) If K’ ¢ K" C K then o € Cn(K").

Typically K | a may contain more than one maximal sub-
set. The main idea constructing a contraction function is to
apply a selection function v which intuitively selects the sets
in K | o containing the beliefs that the agent holds in higher
regard (those beliefs that are more entrenched).

Definition 12 (selection function). A selection function for
K is a function vy such that, for every o

I v(KLla) C KLlaifKLla #0.
2. (K La) = {K} otherwise.

The partial meet contraction is the intersection of the sets
of K L« selected by .

Definition 13 (partial meet contraction). Let K be a belief
set, and 7y a selection function for K. The partial meet con-
traction on K that is generated by vy is the operation —.
such that for all sentences o:

K— a= ﬂ’y(KJ_oz).

The distinct revisions are then defined as follows:
Definition 14. Internal revision (K — —a) + «

External revision (K + o) — —~«
Semi-revision (K + «)!

The aforementioned operator “!”, originally advanced for
belief bases (Hansson 1997), is a particular case of con-
traction — called consolidation. In Hansson’s original pre-
sentation, this operator is defined as a contraction by “L1”.
In the context of LFIs, it is defined as the contraction by
Qi ={a € K : exists § € L such that « = § A =5}. The
technical details of those operations, alongside a presenta-
tion through postulates and their respective representation
theorems can be found in the references.

4.2 Reasoning with consistency and inconsistency

Each of the LFIs in the aforementioned family (recall def-
inition 6) captures distinct properties regarding the notion
of formal consistency. For instance, mbC separates the
notions of consistency from non-contradictoriness (oo F
—(—a A), but the converse does not hold), and also sep-
arates the notions of inconsistency from contradictoriness
(a A =« | —oqy, but the converse does not hold). In Ci in-
consistency and contradictoriness are identified (—oa—Fa A
=) and, in Cil consistency and non-contradictoriness are
identified (ca4F—(a A —a)).

This cautious way of dealing with the formal concept of
consistency allows the modeling of significant forms of rea-
soning, as it is illustrated by the following example adapted
from (Hansson 1999). In Hansson’s original presentation,
it was intended to show a case of an external partial meet
revision that is not also an internal partial meet revision —
indeed, neither one can be subsumed under the other. In our
analysis, the same conclusion applies: the avoidance of con-
tradictions in every step of the reasoning refrain the revision
to adduce the following significant results.

Let moax =45 ®a, and let us consider Ci as the underly-
ing logic.

23

Example 1. A man has died in a remote place in which only
two other persons, Adam and Bob, were present. Initially,
the public prosecutor believes that neither Adam nor Bob
has killed him. Thus her belief state contains — A (Adam has
not killed the deceased) and ~B (Bob has not killed the de-
ceased). For simplicity, we may assume that her belief state
is Ko = Cn({—A,-B}).

Case 1: The prosecutor receives a police report saying (1)
that the deceased has been murdered, and that either Adam
or Bob must have done it; and (2) that Adam has previously
been convicted of murder several times. After receiving the
report, she revises her belief set by (AN B) and by the as-
sumption that Bob’s innocence is indeed consistent o— D, i.e.
she revises her initial belief set by (AV B) N\ o=B.

Case 2: differs from case I only that it is Bob who has pre-
viously been convicted of murder. Thus, the new piece of
information consists of (AV B) N\ o= A.

Internal Revision approach: If represented as an internal
partial meet revision, when the first suboperation is per-
formed (namely, contraction by —((A V B) A o—B) and
—((AV B) A o—A) respectively in case 1 and case 2), we
have that

KoL(~((AV B) A o=B)) = KoL(~((AV B) A 0-A4)).

The subsequent expansion does not necessarily add nor
delete Adam’s or Bob’s guilty/innocence in both cases,
since the previous contraction could indiscriminately delete
Adam’s or Bob’s innocence — not taking profit of the new
piece of information as a whole.

External Revision approach: If represented as an external
partial meet revision, we have the following.

Case 1: The police report brings about the expansion of K
to K1 = Cn(K+(AVB)Ao-B). Notably, A € K; (on the
grounds that o=B, =B, AV B+ o=B,-B, AV =B A).
In plain English, Adam is now proven to be guilty. More-
over, mA € Ky (for AN—-AF ——AN-AF emA)ie.,
the initial assumption about Adam’s innocence is logically
proven to be inconsistent. The subsequent contraction thus
has means to delete the initial supposition about Adam’s in-
nocence.

Case 2: Mutatus mutandis.

Semi-revision approach: The semi-revision approach is
analogous to the external-revision, with the distinction that
the second suboperation (namely, contraction) does not nec-
essarily delete Adam’s and Bob’s innocence (respectively in
case 1 and case 2) but, rather, gives the option for deleting
the new piece of information given by the police report.

4.3 Formal consistency as an epistemic attitude

An alternative system considered in (Testa, Coniglio, and
Ribeiro 2017), called AGMo, relies heavily on the formal
consistency operator. This means that the explicit construc-
tions themselves (and accordingly the postulates) assume
that such operator plays a central role. In a static paradigm
(i-e., when the focus is the logical consequence relation) this
is already the case. Assuming the consistency of the sen-
tence involved in a contradiction entails a trivialization (as
elucidated in the gentle explosion principle) — which some-
how captures and describes the intuition of the expansion.

The main idea of AG Mo is to also incorporate the notion
of consistency in the contraction. In this case, it is inter-
preted that a belief being consistent means that it is not li-
able to be removed from the belief set in question, adducing
that the contraction endows the postulate of failure (namely,
that if oav € K then K — a = K).

The strategy is to incorporate the idea of non-revisibility
in the selection function — the consistent belief remains in
the epistemic state in any situation, unless the agent retract
the very fact that such belief is consistent.

Definition 15 (selection function for AGMo contraction).
A selection function for K is a function v such that, for
every a:

1. v (K,a) CKlaifa¢ Cn(l) and o ¢ K.

2. ¥(K,a) = {K} otherwise.

Contraction, thus, is defined as definition 13.

In short, the seven epistemic attitudes defined in AGMo
are:

Definition 16 (Possible epistemic attitudes in AGMo, see
figure 1 (Testa, Coniglio, and Ribeiro 2017; Testa 2014)).
Let K be a given belief set. Then, a sentence « is said to be:

Accepted ifa € K.

Rejected if ~a € K.

Under-determined if o ¢ K and ~«a ¢ K.
Over-determined if o € K and -« € K.

Consistent if oo € K.

Boldly accepted ifoa € K and o € K.

Boldly rejected if oo € K and —~« € K (i.e. ~G € K).

oa,x € K a,a € K oa, v € K
a€e K oa € K —a € K

a,a ¢ K
Figure 1: Epistemic attitudes in AGMo

The following examples illustrate an important feature of
human belief that, in classical AGM, has no room in a model
solely based on contractions and revisions — the stubborn-
ness of human belief. Instead of introducing the notions of
necessity and possibility on the metalanguage, as suggested
by (Hansson 1999), it is possible to capture such notions
based on the concept of bold-acceptance. Indeed, as inter-
preted by (Testa 2014), this fact illustrate a well-studied fea-
ture regarding the proximity of LFIs with modal logics.

Example 2. Adapted from (Hansson 1999)
1. Doris is not religious, but she has religious leanings. She

does not believe that God exists (G &€ K), but it is possible
for her to become a believer (~G ¢ K).

24

2. Ellen, on the other hand, is a believer (G € K). How-
ever, it may very well happen that she loses her faith so
definitely that she can never become a believer in God
again (o—G € K).

3. Florence is an inveterate doubter. Nothing can bring her
to a state of firm (irreversible) belief (oG ¢ K) and
neither can she be brought to a state of firm disbelief
(omG ¢ K)

Paraconsistent Belief Revision based on the LFIs are
an important step for further advancements on systems
for detecting and handling with contradictions, mostly if
combined with tools for expressing probabilistic reasoning.
Some progress in this direction are overviewed in the fol-
lowing sections.

5 Sound probabilistic reasoning under
contradiction

This section briefly surveys the research initiative on para-
consistent probability theory based on the LFIs and its con-
sequences, which makes it possible to treat realistic proba-
bilistic reasoning under contradiction.

Paraconsistent probabilities can be regarded as degrees of
belief that a rational agent attaches to events, even if such
degrees of belief might be contradictory. Thus it is not im-
possible for an agent to believe in the proposition o and —«
and to be rational, if this belief is justified by evidence, as
argued in (Bueno-Soler and Carnielli 2016).

A quite general notion of probability function can be de-
fined, in such a way that different logics can be combined
with probabilistic functions, giving rise to new measures that
may reflect some subtle aspects of probabilistic reasoning.

Definition 17. A probability function for a language L of a
logic L, or a L-probability function, is a function P : L
R satisfying the following conditions, where +-1, stands for
the syntactic derivability relation of L:

1. Non-negativity: 0 < P(p) < 1forall p € L

. Tautologicity: If -1, @, then P(p) =1

. Anti-tautologicity: If ¢ Fr, then P(¢) =0

. Comparison: If ¢ -1, @, then P(¢) < P(p)

. Finite additivity: P(pV ¢) = P(p) + P(¢) — P(e A1)

This collection of meta-axioms, by assuming appropriate
1 (for instance, by taking the classical, intuitionistic or
paraconsistent derivability relation) defines distinct proba-
bilities, each one deserving a full investigation. In particular,
for the sake of this project, we have in mind paraconsistent
probability theory based on the Logics of Formal Inconsis-
tency, as it has been treated in (Bueno-Soler and Carnielli
2016),(2017).

Several central properties of probability are preserved, as
the notions of paraconsistent updating which is materialized
through new versions of Bayes’ theorem for conditionaliza-
tion. Other papers already proposed connections between
non-classical logics and probabilities and even for the para-
consistent case (references can be found in the aforemen-
tioned works), recognizing that some non-classical logics

L AN W

are better suited to support uncertain reasoning in particu-
lar domains. The combinations between probabilities and
LFIs deserves to be emphasized, as they offer a quite natu-
ral and intuitive extension of standard probabilities which is
useful and philosophically meaningful.

The following example uses the system Ci, a member of
the LFI family with some features that make it reasonably
close to classical logic (recall definition 6); it is appropri-
ate, in this way, to define a generalized notion of probability
strong enough to enjoy useful properties.

Observation 18 (Paraconsistent Bayes’ Conditionalization

Rule (PBCR) (Bueno-Soler and Carnielli 2016)).
If P(a A =) # 0, then:

) P(8/0) - P(a)
Ple/8) = piala)-Pla) + P(5/-a)- P(-a) —5a

where 0o = P(8/an—a)-P(aA-a) is the "contradictory
residue’ of .

It is clear that this rule generalizes the classical con-
ditionalization rule, as it reduces to the classical case if
P(a A —a) = 0 or if « is consistent: indeed, in the last
case, P(BAoa) = P(BAoaAa)+ P(B8AoaA—a) since
Poa Ao A —ar) = 0.

We can interpret (PBCR) as Bayes’ ruke taking into ac-
count the likelihood relative to the contradiction. It is possi-
ble, however, to formulate other kinds of conditionalization
rules by combining the notions of conditional probability,
contradictoriness, consistency and inconsistency.

Example 3. As an example, suppose that a doping test for
an illegal drug is such that it is 98% accurate in the case of
a regular user of that drug (i.e., it produces a positive result,
showing “doping”, with probability 0.98 in the case that the
tested individual often uses the drug), and 90% accurate in
the case of a non-user of the drug (i.e., it produces a negative
result, showing “no doping”, with probability 0.9 in the case
that the tested individual has never used the drug or does not
often use the drug).

Suppose, additionally, that: (i) it is known that 10% of the
entire population of all athletes often uses this drug; (ii) that
95% of the entire population of all athletes does not often
use the drug or has never used it; and (iii) that the test pro-
duces a positive result, showing “doping”, with probability
0.11 for the whole population, independent of the tested in-
dividual.

Let the following be some mnemonic abbreviations:

D : the event that the drug test has declared “doping” (pos-

itive) for an individual;

C : the event that the drug test has declared “clear” or “no
doping” (negative) for an individual;

A : the event that the person tested often uses the drug;

—A : the event that the person tested does not often use the
drug or has never used it.

We know that P(A) = 0.1 and P(=A) = 0.95. The
situation is clearly contradictory with respect to the events
A and —A, as they are not excludent. Therefore, by finite
additivity, P(AV —A) =1 = (P(A) + P(-A)) — P(AA
—A), and thus, P(AN—-A) = (P(A)+ P(—A))—1=10.05

25

Furthermore, as given in the problem, P(D/A) = 0.98,
P(C/-A) = 0.9 and P(D) = 0.11. The results of
the test have no paraconsistent character, since the events
D (‘doping’) and C (‘no doping’) exclude each other.
Thus, P(D/-A) = 1— P(C/-A) = 0.1 and P(C/A) =
1—P(D/A) =0.02

Suppose someone has been tested, and the test is positive
(“doping”). What is the probability that the tested individ-
ual regularly uses this illegal drug, that is what is P(A/D)?

By applying the paraconsistent Bayes’ rule:

P(D/A) - P(A)
(D] A)- P(A) + P(D/~A) - P(~A) — 64

P(A/D) = &

where 64 = P(D/AN-A)- P(AN-A)

since P(A N —A) # 0.

All of the values are known, with the exception of
P(D/A A —A). Since:

P(DANAN-A)
P(AN-A)

P(D/A N —\A) =

it remains to compute P(D N A A —A). It follows directly from

some easy properties of probability that P(D N A A —A) =
P(D AN A) + P(DAN-A) — P(D) = P(D/A).P(A) +
P(D/-A).P(—=A) — P(D) = 0.083. Therefore, by plugging in
all of the values, it follows that P(A/D) = 51.9%".

This example suggests, as argued below, that the para-
consistent Bayes’ conditionalization rule is more robust than
traditional conditionalization, as it can provide useful results
even in the case the test could be regarded as ineffective due
to contradictions. The following table compares the para-
consistent result with the results obtained by trying to re-
move the contradiction involving the events A (the event that
the person tested often uses the drug) and — A (the event that
the person tested does not often use the drug or has never
used it), that is by trying to make them “classical”.

Since A and —A overlap by 5%, we might consider re-
viewing the values, by ‘removing the contradiction’ accord-
ing to three hypothetical scenarios: an alarming scenario,
by lowering the value of —A by 5%; a happy scenario, by
lowering the value of A by 5%j; and a cautious scenario, by
dividing the surplus equally between A and —A and comput-
ing the probability P(A/D) that the tested individual regu-
larly uses this illegal drug.

Table 1: Removing the contradiction

Alarming Scenario Cautious Scenario Happy Scenario

P(A) = 10%

P(=A) = 90%
P(D/A) = 98%
P(D/-A) = 10%

P(A) =7.5%
P(-A) = 92.5%
P(D/A) = 98%
P(D/=A) = 10%

P(A) = 5%
P(=A) = 95%
P(D/A) = 98%

P(D/-A) = 10%

Result Result Result

P(A/D) =52% P(A/D)=44% P(A/D) = 34%

"The values correct some miscalculations in (Bueno-Soler and
Carnielli 2016).

Using paraconsistent probabilities, one obtains, in the
case of this example, a value close (even if a bit inferior)
to the “alarming” hypothetical scenario, helping to make a
decision even if the contradictory character would make it be
seen as ineffective. In other words, the presence of a contra-
diction does not mean that we need to discard the test, if we
have reasoning tools that are sensitive and robust enough.

6 Possibility and necessity measures

Possibility theory is a generalization of (or an alternative to)
probability theory devoted to deal with certain types of un-
certainty by means of possibility and necessity measures.

As aforementioned, it is well recognized that reasoning
with contradictory premises is a critical issue, since large
knowledge bases are inexorably prone to incorporate contra-
dictions. Contradictory information comes from the fact that
data is provided by different sources, or by a single source
that delivers contradictory data as certain.

The connections between the possibilistic and the para-
consistent paradigms are complex and various forms of
contradiction can be accommodated into possibilistic logic,
defining concepts such as ‘paraconsistency degree’ and
‘paraconsistent completion’ (Dubois and Prade 2015). Para-
consistent logics offer simple and effective models for rea-
soning in the presence of contradictions, as they avoid col-
lapsing into deductive trivialism by a natural logic machin-
ery. Taking into consideration that it is more natural and ef-
fective to reason from a contradictory information scenario
than trying to remove the contradictions involved, the in-
vestigation of credal calculi concerned with necessity and
possibility is naturally justified.

On one hand, possibility theory based on classical logic
is able to handle contradictions, but at the cost of expensive
maneuvers (Dubois and Prade 2015). On the other hand,
paraconsistent logics cannot easily express uncertainty in a
gradual way. The blend of both via the LFIs, in view of the
operators of consistency and inconsistency, offers a simple
and natural qualitative and quantitative tool to reason with
uncertainty.

The idea of defining possibility and necessity models,
dubbed as credal calculi, based on the Logics of Formal
Inconsistency, takes advantage of the flexibility of the no-
tions of consistency “o” and inconsistency “e”. Some ba-
sic properties of possibility and necessity functions over the
Logics of Formal Inconsistency have been investigated in
(Carnielli and Bueno-Soler 2017), making clear that para-
consistent possibility and necessity reasoning can, in gen-
eral, attain realistic models for artificial judgement.

A generic notion of logic-dependent necessity measures
is given by the conditions below.

Definition 19 ((Carnielli and Bueno-Soler 2017)). A neces-
sity function (or measure) for a language L in an LF1, called
an LFI-necessity function, is a function N : L — R satis-
fying the following conditions, where -1, stands for the syn-
tactic derivability relation of L:

1. Non-negativity: 0 < N(p) < 1jforall p € L

2. Tautologicity: If by, ¢, then N(p) =1

3. Anti-Tautologicity: If ¢ t1,, then N(p) =0

26

4. Comparison: If ¢ b1, @, then N (1)) < N(p)
5. Conmjunction: N(p A) = min{N(p), N(¢)}
6. Metaconsistency: N(ea) + N(oa) =1

A condition N(«) = X can be understood as expressing
that ‘«v is certain to degree A\’ (in all normal states of affairs).

Possibilistic measures are also useful when representing
preferences expressed as sets of prioritized goals, as e.g.
some lattice-valued possibility measures studied in the lit-
erature instead of real-valued possibility measures. The pa-
rameter L in the above definition can be Cie, or the three-
valued logic LFI1, or XXX (see references for details).

Analogously to the necessity function, a generic notion
of logic-dependent possibility measure (dual to a necessity
function) is defined as follows:

Definition 20. A possibility function (or measure) for the
language L of Cie, or a Cie- possibility function, is a func-
tion 11 : £ — R satisfying the following conditions:

. Non-negativity: 0 <II(p) < 1forall p € L

. Tautologicity: If -1, @, then II(p) = 1

. Anti-Tautologicity: If ¢ b1, then II(p) =0

. Comparison: If ¥ 1, ¢, then TI(¢p) < II(p)

. Disjunction: II(¢ V) = maz{II(¢), II(¢)}

. Metaconsistency: I1(ea) + (o) = 1

Standard necessity and possibility measures do not cope
well with contradictions, since they treat contradictions in
a global form (even if in a gradual way). This is the main
reason to define new forms of necessity and possibility mea-
sures based upon paraconsistent logics; although they lack
graduality, LFIs offer a tool for handling contradictions in
knowledge bases in a local form, by locating the contradic-
tions on critical sentences. Yet, the combination of them
reaches a good balance: the paraconsistent paradigm by it-
self does not allow for any fine-grained graduality in the
treatment of contradictions, which may lead to some loss
of information when contradictions appear in a knowledge
base. When enriched with possibility and necessity func-
tions, however, a new reasoning tool emerges.

It is possible to define a natural non-monotonic conse-
quence relation on databases acting under some of the logic
L as above. Non-monotonic logics are structurally closed
to the internal reasoning of belief revision, as argued in
(Gérdenfors 1990), where it is shown that the formal struc-
tures of the two theories are similar. The resulting logic sys-
tems have a great potential to be used in real-life knowledge
representation and reasoning systems.

Another important concept that can be advantageously
treated by the paraconsistent paradigm is the concept of ev-
idence. The paper (Rodrigues, Bueno-Soler, and Carnielli
2020) introduces the logic of evidence and truth LETE as
an extension of the Belnap-Dunn four-valued logic FDE.
LETTF is equipped with a classicality operator o and its dual
to non-classicality operator e. It would be interesting to de-
fine possibility and necessity measures over LET, gener-
alizing the probability measures defined over LE T and to
further investigate the connections between the formal no-
tions of evidence and the graded notions of possibility and
necessity.

AN AN W N~

7 Other applications and further work

Description Logics (DLs) play an important role in the se-
mantic web domain and in connections to computational
ontologies, and incorporating uncertainty in DL reasoning
has been the topic of lively research. DLs can expanded
with paraconsistent, probabilistic and possibilistic tools, or
with their combinations (one example toward the relevance
of paraconsistent reasoning for the Semantic Web can be
found in (Zhang, Lin, and Wang 2010)). Enhancing DLs
with LFI-probabilities and possibility measures is a research
in progress, and will represent a considerable step forward
to DLs in regard to the representation of more realistic on-
tologies.

A second problem concerns clarifying the concept of
evidence. As mentioned, (Rodrigues, Bueno-Soler, and
Carnielli 2020) introduces the logic of evidence and truth
LETYF, aLogic of Formal Inconsistency and Undetermined-
ness that extends Belnap—Dunn four-valued logic, formal-
izes a notion of evidence as a concept weaker than truth in
the sense that there may be evidence for a proposition o even
if « s not true.

The paper proposes a probabilistic semantics for LET g
taking into account probabilistic and paracomplete scenar-
ios (where, respectively, the sum or probabilities for o and
- is P(a) + P(—a), is greater or less than 1). Classical
reasoning can be recovered when consistency and inconsis-
tency behave within normality, that is, then P(oa) = 1 or
P(ec) = 0. In this way it is possible to obtain some new
versions of standard results of probability theory. By relat-
ing the concepts of evidence and coherence, it may be possi-
ble to obtain an enhanced version of the model proposed in
(Chopra and Parikh 1999). This may represent an important
leap forward into the clarification of the notion of evidence,
each time more demanded in Al and KR.

Paraconsistent Bayesian networks is another topic with
great interest. Bayesian Networks are indispensable tools
for expressing the dependency among events and assigning
probabilities to them, thus ascertaining the effect of changes
of occurrence in one event given the others.

Bayesian Networks can be (roughly) represented as nodes
an annotated acyclic graph (a set of direct edges between
variables) that represents a joint (paraconsistent) probabil-
ity distribution over a finite set of random variables V' =
{Vi---,V,}. The praxis usually supposes that each vari-
able has only a finite number of possible values (though this
is not a mandatory restriction — numeric or continuous vari-
ables that take values from a set of continuous numbers can
also be used.

For such discrete random variables, conditional probabil-
ities are usually represented by a table containing the prob-
ability that a child node takes on each of the values, taking
into account the combination of values of its parents, that
is, to each variable V; with parents {By, - -- , By, } there is
attached a conditional probability table relating V; to its par-
ents (regarded as “causes”

Paraconsistent Bayesian networks, notably when com-
bined with paraconsistent belief revision (including (Testa,
Coniglio, and Ribeiro 2017)) and with belief maintenance
systems can lead to a new approach to detecting and han-

27

dling contradictions, and producing explanations for its con-
clusions. This is naturally relevant, for instance, in medical
diagnosis, natural language understanding, forensic sciences
and other areas where evidence interpretation is an important
issue.

Again, this is work in progress, but it seem clear that para-
consistent Bayesian networks may be useful and stimulating
in a series of circumstances where contradictions are around.

Acknowledgments

The authors are grateful for the colleagues that participated
in advancing the results presented in this paper. Carnielli
acknowledges support from the National Council for Sci-
entific and Technological Development (CNPq), Brazil un-
der research grants 307376/2018-4 and from Modal In-
stitute, Brasilia. Testa acknowledges support from Sao
Paulo Research Foundation, under research grants FAPESP
2014/22119-2 (at CLE-Unicamp, Brazil) and FAPESP
2017/10836-0 (at University of Madeira, Portugal).

References

Alchourrén, C. E.; Girdenfors, P.; and Makinson, D. 1985.
On the logic of theory change: Partial meet contraction and
revision functions. The Journal of Symbolic Logic 50:510—
530.

Anderson, A. R.; Belnap, N. D.; and Dunn, J. M. 1992.
Entailment: The Logic of Relevance and Necessity, Volume
2. Princeton: Princeton University Press.

Asenjo, F. G. 1966. A calculus of antinomies. Notre Dame
Journal of Formal Logic 7(1):103-105.

Avron, A. 2005. Non-deterministic matrices and modular
semantics of rules. In Béziau, J.-Y., ed., Logica Universalis,
149-167. Basel: Birkhduser Verlag.

Batens, D. 2001. A general characterization of adaptive
logics. Logique et Analyse 44(173-175):45-68.

Batens, D. 2009. Adaptive Cn logics. In Carnielli, W;
Coniglio, M.; and D’Ottaviano, I. M. L., eds., The many
sides of logic, volume 21, 27-45. London, UK: College
Publications.

Bueno-Soler, J., and Carnielli, W. A. 2016. Paraconsistent
probabilities: consistency, contradictions and Bayes’ theo-
rem. In Stern, J., ed., Statistical Significance and the Logic
of Hypothesis Testing, volume Entropy 18(9). MDPI Publi-
cations. Open acess at http://www.mdpi.com/1099-4300/18/
9/325/htm.

Carnap, R., and Bar-Hillel, Y. 1952. An outline of a theory
of semantic information. In Research laboratory of electron-
ics technical report 247. Massachusetts Institute of Technol-
ogy.

Carnielli, W. A., and Bueno-Soler, J. 2017. Paraconsistent
probabilities, their significance and their uses. In Caleiro,
C.; Dionisio, F.; Gouveia, P.; Mateus, P.; and Rasga, J., eds.,
Essays in Honour of Amilcar Sernadas, volume 10500. Lon-
don: College Publications. 197-230.

Carnielli, W., and Coniglio, M. 2016.
Logic: Consistency, Contradiction and Negation.

Paraconsistent
New

York: Logic, Epistemology, and the Unity of Science Se-
ries, Springer.

Carnielli, W., and Lima-Marques, M. 2017. Society seman-
tics and the logic way to collective intelligence. Journal of
Applied Non-Classical Logics 27(3-4):255-268.

Carnielli, W., and Marcos, J. 2002. A taxonomy of
c-systems. In Carnielli, W. A.; Coniglio, M. E.; and
D’Ottaviano, 1. M. L., eds., Paraconsistency: The Logical
Way to the Inconsistent, volume 228 of Lecture Notes in
Pure and Applied Mathematics, 1-94. Marcel Dekkerr.

Carnielli, W.; Coniglio, M.; and Marcos, J. 2007. Logics of
formal inconsistency. In Gabbay, D. M., and Guenthner, F.,
eds., Handbook of Philosophical Logic, volume 14, 1-93.
Springer.

Chopra, S., and Parikh, R. 1999. An inconsistency tolerant
model for belief representation and belief revision. In Pro-

ceedings of the Sixteenth International Joint Conference on
Artificial Intelligence, IJCAI 99. Stockholm, Sweden.

da Costa, N. C., and Bueno, O. 1998. Belief change and
inconsistency. Logique et Analyse 41(161/163):31-56.

da Costa, N. C. A. 1974. On the theory of inconsis-
tent formal systems. Notre Dame Journal of Formal Logic
15(4):497-510.

Dubois, D., and Prade, H. 2015. Inconsistency manage-
ment from the standpoint of possibilistic logic. Interna-
tional Journal of Uncertainty, Fuzziness and Knowledge-
Based Systems 23:15-30.

Fermé, E., and Hansson, S. O. 2018. Belief Change: In-
troduction and Overview. Switzerland: Springer Briefs in
Intelligent Systems, Springer.

Fermé, E., and Wassermann, R. 2017. Iterated belief change
the case of expansion into inconsistency. In 2017 Brazilian
Conference on Intelligent Systems (BRACIS), 420-425.

Girdenfors, P. 1990. Belief revision and nonmonotonic
logic: two sides of the same coin? In European Workshop
on Logics in Artificial Intelligence, 52-54. Springer.

Halldén, S. 1949. The Logic of Nonsense. Lundequistska
Bokhandeln: Uppsala: A.-B.

Hansson, S. O. 1993. Reversing the levi identity. Journal of
Philosophical Logic 22(6):637-669.

Hansson, S. 1997. Semi-revision. Journal of Applied Non-
Classical Logics 7(1-2):151-175.

Hansson, S. O. 1999. A Textbook of Belief Dynamics. Theory
Change and Database Updating. Kluwer.

Jaskowski, S. 1948. Rachunek zdan dla systeméw de-
dukcyjnych sprzecznych. Studia Societatis Scientiarum
Torunensi (Sectio A) 1(5):55-77.

Mares, E. D. 2002. A paraconsistent theory of belief revi-
sion. Erkenntnis 56(2):229-246.

Mendonga, B. R. 2018. Traditional theory of semantic in-
formation without scandal of deduction: a moderately ex-
ternalist reassessment of the topic based on urn semantics
and a paraconsistent application. Ph.D. Dissertation, IFCH,
Unicamp.

28

Nelson, D. 1959. Negation and separation of concepts in
constructive systems. In Heyting, A., ed., Constructivity in
Mathematics, volume 40, 208-225. NorthHolland, Amster-
dam.

Priest, G. 1979. The logic of paradox. Journal of Philo-
sophical Logic 8(1):219-241.
Priest, G. 1987. In Contradiction: A Study of the Transcon-

sistent. Dordrecht: Martinus Nijhoff. second edition, Ox-
ford: Oxford University Press, 2006.

Priest, G. 2001.
67:214-228.

Restall, G., and Slaney, J. 1995. Realistic belief revision.
In De Glas, M., and Pawlak, Z., eds., Proceedings of the
Second World Conference in the Fundamentals of Artificial
Intelligence, 367-378. Paris: Angkor.

Rodrigues, A.; Bueno-Soler, J.; and Carnielli, W. A. 2020.
Measuring evidence: a probabilistic approach to an exten-
sion of Belnap-Dunn logic. Synthese. In print.

Schotch, P.; Brown, B.; and Jennings, R. 2009. On Preserv-
ing: Essays on Preservationism and Paraconsistent Logic.
Toronto: University of Toronto Press.

Paraconsistent belief revision. Theoria

Tamminga, A. 2001. Belief Dynamics: (Epistemo)logical
investivations. Ph.D. Dissertation, Institute for Logic, Lan-
guage and Computation, Universiteit van Amsterdam.

Tanaka, K. 2005. The AGM theory and inconsistent belief
change. Logique et Analyse 48:113-150.

Testa, R.; Fermé, E.; Garapa, M.; and Reis, M. 2018. How
to construct remainder sets for paraconsistent revisions: Pre-
liminary report. Proceedings of the 17th International Work-
shop on Nonmonotonic Reasoning.

Testa, R.; Coniglio, M.; and Ribeiro, M. 2015. Paraconsis-
tent belief revision based on a formal consistency operator.
CLE e-prints 15(8).

Testa, R.; Coniglio, M.; and Ribeiro, M. 2017. AGM-like
paraconsistent belief change. Logic Journal of the IGPL
25(4):632-672.

Testa, R. R. 2014. Revisdo de Crencas Paraconsistente
baseada em um operador formal de consisténcia. Ph.D. Dis-
sertation, IFCH, Unicamp.

Testa, R. 2015. The cost of consistency: information econ-
omy in paraconsistent belief revision. South American Jour-
nal of Logic 1(2):461-480.

Testa, R. 2020. Judgment aggregation and paraconsistency.
(working manuscript).

Thomason, R. 2020. Logic and artificial intelligence. In
Zalta, E. N., ed., The Stanford Encyclopedia of Philoso-
phy. Metaphysics Research Lab, Stanford University, sum-
mer 2020 edition.

Vasiliev, N. 1912. Imaginére (nichtaristotelische) logik. In
Zhurnal m—va nar. prosveshcheniya, volume 40, 207-246.

Zhang, X.; Lin, Z.; and Wang, K. 2010. Towards a paradox-
ical description logic for the semantic web. In Link, S., and
Prade, H., eds., Foundations of Information and Knowledge
Systems, 306-325. Springer.

Towards Interactive Conflict Resolution in ASP Programs

Andre Thevapalan', Gabriele-Kern-Isberner?

1.2Department of Computer Science, TU Dortmund University, Dortmund, Germany

landre.thevapalan @tu-dortmund.de, 2gabriele.kern-isberner @cs.tu-dortmund.de

Abstract

Updating knowledge bases often requires topical expertise
as to whether prior knowledge should be corrected, simply
deleted, or merged with the new information. In this paper
we introduce a formalism to update non-disjunctive ASP pro-
grams in an interactive way with the user by generating suit-
able suggestions regarding how to solve each conflict which
are based on an ASP update procedure by Eiter etal.. The
main goal is the development of a lean method to efficiently
update ASP programs by highlighting possible causes for con-
flicts, generate solution suggestions for the user and even-
tually modifying parts of the program so that an updated,
conflict-free program results in a guided way.

1 Introduction

In (Thevapalan et al. 2018) a prototype decision support sys-
tem for mammary carcinoma therapy plans (MAMMA-DSCS)
was introduced. The core of this system is based on an-
swer set programs (ASP) with the extension HEX which al-
lows the connection to external sources with answer set pro-
grams (Eiter et al. 2005). MAMMA-DSCS was motivated by
the steady growth of knowledge in the medical sector, es-
pecially in the oncological field. In a fast pace, new drugs
and therapies are developed, and new ways are found to de-
tect specific cancer subtypes (e. g., specific gene markers)
which improve the therapy possibilities. Thus an applica-
tion which has a logic program as the core component was
introduced. Rule-based systems like ASP offer a declarative
paradigm which allows the extension of a program by sim-
ply adding more rules. However, despite of the declarative
paradigm, updating an existing ASP program with additional
rules can be quite complex due to the emergence of contra-
dictions the rules can potentially cause. In this paper, we
present a method to update ASP programs interactively by
handling all conflicts that arise jointly with the user. Figure
1 gives an overview on the general approach of the method
presented in this paper. There, a logic program P; has be
to be updated with new information P». Basically, the orig-
inal programs P, P» are successively modified to programs
]31, P, by altering the conflict-causing rules. At the end of
the process the update can be realized by simply uniting
131, P, because all conflicts have been resolved before. To
find all conflicts we modify an approach to update answer
set programs presented in (Eiter et al. 2002). The resolution

29

of each conflict is done in interaction with the user. For each
conflict, suggestions on how to resolve the conflict are gen-
erated. Each conflict is presented to the expert together with
the matching suggestions of which the expert can choose
one. The active involvement of the expert guarantees an up-
dated program which represents the knowledge of the expert
in the best possible way. Especially in sensitive fields like
medical therapies it is of the utmost importance that the en-
coded knowledge remains correct. The presented approach
ensures this by not only providing transparency by showing
the expert where the conflicts are located and what modifi-
cations are made but by also actively involving the expert.
The presentation of the interactive update approach is fur-
thermore accompanied by a running example which depicts
a scenario where the knowledge about the determination of
therapies for cancer patients has to be updated with new, but
conflicting knowledge.

Note that instead of the update procedure of (Eiter et al.
2002), any other ASP update system that produces answer
sets containing information on conflicting rules could be
used for our interactive update approach.

The rest of the paper is organised as follows: Section 2
provides some necessary preliminaries regarding answer set
programming. In section 3 we explain the update of ex-
tended logic programs by causal rejection as presented in
(Eiter et al. 2002). In section 4 and 5 we introduce our
approach to detect conflicts when updating extended logic
programs by using the mechanism mentioned in section 3
and how to resolve the conflicts interactively with an expert.
Section 6 deals with related work. This paper ends in section
7 with a short summary and a discussion of further exten-
sions and improvements regarding the presented approach.
For reasons of readability and oversight we moved the larger
programs of the running example to the appendix.

2 Preliminaries

In this paper we look at non-disjunctive extended logic pro-
grams (ELPs) (Gelfond and Lifschitz 1991). An ELP is a
finite set of rules over a set 4 of propositional atoms. A
literal L is either an atom A (positive literal) or a negated
atom —A (negative literal). For a literal L the complemen-
tary literal L is A if L = A and A otherwise. For a set
X of literals, X = {L | L € X} is the set of corresponding
complementary literals. Then Lit 4 denotes the set AU A of

(Plv PQ) pl @] PQ
AS(Pl | PQ)
l . Interactive
COIlﬂ.ICt conflict User
detection .
resolution

Figure 1: Overview on the whole interactive update procedure

all literals over A. A default-negated literal L is written as
not L. A rule r is of the form

Lo+ Lq,... ., not L,,.

with literals Lg,...,L, and 0<m <n. The lit-
eral Lo is the head of r, denoted by H(r) and
{L1,... Ly, not Ly,y1,... not L,} is the body of r, de-
noted by B(r). Furthermore {L1,...,L,,} is denoted by
BT(r) and {Lyt1,---,Ln} by B7(r). A rule r with
B(r) = 0 is called a fact, and if H(r) = @ rule r is called a
constraint. A set of literals is inconsistent if it contains com-
plementary literals. A set X of non-complementary literals
is called interpretation. An interpretation X is called model
of an ELP P if for every rule » € P the following holds:
H(r) € X whenever B (r) C X and B~ (r)NX = (. The
reduct PX of a program P relative to a set X of literals is
defined by

PX ={H(r)«< BT (r).|r€ P,B~(r)Nn X = (}.

s L, not L1, ..

An answer set of an ELP P is an interpretation X which
is a C-minimal model of PX (Gelfond and Lifschitz 1991).
The set of all answer sets of a program P will be denoted by
AS(P), and P is called consistent iff AS(P) # (). We say
a literal L is derivable in an ELP P iff L € |J AS(P).

3 Update by causal rejection

Our approach to detect conflicts is based on the update of
extended answer set programs by causal rejection (Eiter et
al. 2002). In that approach the extended logic programs are
given in a sequence (P,..., P,) of ELPs, where each P;
updates the information encoded in (P, ..., P;_1).

Definition 1 (Update sequence (Eiter et al. 2002)). An up-
date sequence P = (Py,..., P,) is a series of consistent
ELPs over A, where A is the set of all atoms occurring in
Py, ..., P, and where P; contains newer information than
P

An update sequence P = (P, ..., P,) is translated into
a single program P, which encodes the information of P
and whose answer sets represent the answer sets of P. In-
formally the translated program P, merges the information
of the programs in P but in case of conflicting rules, P re-
Jjects the rule of the program with the older information by

30

blocking its applicability whenever the newer rule is appli-
cable.

In this paper, we will deal only with update sequences of
length n = 2 because we focus on situations where a con-
sistent ELP is available, and some new information has to
be integrated in such a way that a consistent ELP results
that represents the current knowledge. Furthermore, in med-
ical environments like hospitals new information is usually
provided and implemented periodically rather than continu-
ously, and after the update, a new consistent view is expected
that will be the base for the next update. Therefore, in the
following we will briefly describe the translation explicitly
for an update sequence of length n = 2.

Given an update sequence P = (P;, P») over A the set
A* is the extension of A by pairwise distinct atoms rej(r)
and A;, for each rule r occurring in P, each atom A € A,
and each ¢ € {1,2}. The literal which is created by replac-
ing the atomic formula A of a literal L by A; will be denoted
by Li.

Definition 2 (Update program (Eiter et al. 2002)). Given
an update sequence P = (Py, Py) over a set of atoms A,
the update program P, = Py < Py over A* consists of the
following items:

(i) all constraints occurring in Py, Ps;
(ii-a) foreachr € Py:

Li<B(r), notrej(r). if H(r)=L;
(ii-b) for eachr € Py:
Ly < B(r). if H(r) = L;
(iii) for eachr € Py:
rej(r) «B(r), La. if H(r) = L;

(iv) for each literal L occurring in P:

L4 (—LQ.;
L<+L;..

Note that transformations of type (ii-a) are only applied
to P; because there is no P3. Consequently, the rules of P
do not need to be modified (see (ii-b)).

The answer set of an update sequence P is the projection
of the answer set of the update program P onto the set of
atoms A.

Definition 3 (Update Answer Set (Eiter et al. 2002)). Let
P = (Py, P2) be an update sequence over a set of atoms A.
Then S C Lit 4 is an update answer set of P iff S = S' N A
Sfor some answer set S’ of P.

To illustrate the update mechanism we present an example
which represents a possible scenario in a medical setting.

Example 1. Consider the following extended logic program
P1 N

r1: tnbc_met.

ra: pdl_pos.

r3: treat.

r4: mono_th < treat, tnbc_met, not visc_crisis.

r5: mono_th < treat, tnbc_met, visc_crisis.

rg: nab_pt < treat, tnbc_met.

r7: carbopl < treat, tnbc_met, visc_crisis.

rg: low_success < treat, tnbc_met.

Let Py encode the following scenario: A patient (let us
call her Agent A) has a metastasized triple negative breast
cancer (1), and one of the tests showed that the tumor
is also PD-L1-positive (r2). The patient is getting treated
at a cancer clinic (r3). According to the clinic’s guide-
lines, Agent A should get treated with a drug called nab-
paclitaxel (rg). Usually, the treatment with a single drug
(monochemotherapy) is indicated (r4). But if Agent A’s can-
cer is rapidly progressing due to severe organ dysfunction
(visceral crisis) a more aggressive approach can be chosen
by additionally treating with carboplatin (7). The use of
multiple drugs in a chemotherapy is called polychemother-
apy, which in this scenario can be interpreted as the op-
posite resp. negation of a monochemotherapy (rs). Gen-
erally though, the treatment of metastasized tnbc is known
to have a low success rate and the chemotherapy is a pal-
liative treatment (rg). However, recent studies then show
(cf. (Schmid et al. 2018; Schneeweiss et al. 2019)) that for
PD-LI1-positive patients, who are not in a visceral crisis, the
treatment with an additional immunotherapy consisting of
the PD-LI-inhibitor atezolizumab is advisable (rg). Such a
combination therapy with atezolizumab and nab-paclitaxel
(r10) can prolong the life of a tnbc patient significantly (r11).
This is encoded in following program Ps:

rg: atzmab < treat, tnbc_met, pdl_pos, not visc_crisis.
r10: mono_th < treat, tnbc_met, nab_pt, atzmab.

r11: low_success < treat, tnbc_met, atzmab, mono_th.

Which treatment would the clinic recommend to Agent A
now, and how can the new information P» be integrated into
the prior knowledge P, ?

Following definition 2 we can generate the update
program P, = P <1 Ps (¢f. Appendix A.l1) where the
only answer set of Py is S’ = {tnbc_mety, tnbc_met,

pdl_posy, pdl_pos, treaty, treat, nab_pt;, nab_pt,
atzmabs, atzmaby, atzmab, mono_the, mono_thy,
mono_th, low_successs, low_successy, low_success,

rej(ra), rej(rg)}. Consequently, we get the update answer
set of P = (Py, Py) by S = 5" N A ={tnbc_met, pdl_pos,
treat, nab_pt, atzmab, mono_th, low_success}.

With low_success € S one can see that the therapy’s ex-
pected success is updated correctly. Indeed, the new infor-
mation P; is crucial for helping Agent A effectively. By the
rules

low_successy «treat, tnbc_met, notrej(rg).,
rej(rs) «—treat, tnbc_met, low_successs.

in P it is guaranteed that the update program does not
conclude low_success if newer information suggests oth-
erwise. Literal rej(rg) being in answer set S’ shows that rg

31

can not hold which consequently prevents a conflict. Simi-
larly the information that the suggested therapy should be a
monotherapy is rejected via the rej(r4)-literal.

From the medical experts’ point of view not only the re-
sulting updated and consistent program is important - for
them the information about explicit rule rejections is crucial
and have to be further analyzed. Generally it is important
to know which rules were rejected and especially why they
were rejected. To be precise, from a medical expert’s point
of view the following questions are relevant regarding rule
rejections:

(Q1) Which rule r in P; was rejected?
(Q2) Which rule 7" in P, caused the rejection?
(Q3) What are the options to handle the rejection?

(Q3a) Remove r and/or v’ completely?

(Q3b) Modify body of r - how?

(Q3c) Modify body of 7’ - how?

(Q3d) Are there deeper causes of rejection? (which
rule led to the applicability of r’ etc.)

But neither the update answer set S’ nor the answer set S
show information how these conflicts have arisen. On the
basis of the update program P one is only able to see which
rules in P; were rejected. In the following we will describe
how we extend the update procedure to use it for an interac-
tive update process.

4 Conflict Detection

With (Eiter et al. 2002) it is possible to compute information
about syntactical correlations between two programs. We
will use this as meta-information to detect conflicts. In this
paper we will define conflicts via conflicting rules.

Definition 4 (Conflicting Rules, Conflict). Let P be an
ELP and let Litp be the set of all literals derivable in P.
Two rules r,r" € P are conflicting if H(r) and H(r') are
complementary and there exists an interpretation X C Litp
such that B(r) and B(r") are true in X. A conflict is a pair
(r,7") of rules such that r,v’ are conflicting.

Note that the request for an ELP to be conflict-free is
stronger than for it to be consistent as a conflict-free ELP
is consistent but not vice versa.

Instead of automating the update of programs we will
compute suggestions for resolving these conflicts. Therefore
we extend the meta-information given in an update program
by modifying the update method in (Eiter et al. 2002). In
order to use the update program itself to control the update
process we add the possibility to recognize the immediate
cause of a rejection. Therefore in addition to the rej-atoms
we will introduce rej_cause- and active-atoms to enable
the backtracking of rejections. To realize these modifica-
tions our generated update program P ¢ will be over a set
of atoms A** which is the extension of A* by pairwise dis-
tinct atoms rej_cause(r, r'), active(r), for each rule r and
for each pair of rules r # 7/ occurring in Py, Ps.

Definition 5 (Modified update program). Given an update
sequence P = (Py, P3) over A the modified update program

(MUP) P (= P, 4 P; over A** consists of the following
rules:

(m-i) all constraints occurring in Py, P»;

(m-ii-a) for eachr € P;:
Ly < B(r), notrej(r).
ifH(r)=L;

(m-ii-b) for eachr’ € Py:

L2 — B(T/).
active(r’) < B(r').;

ifH(r") = L;

(m-iii) for each r € P if there exists a rule v’ € Py such
that H(r), H(r") are complementary:

rej_cause(r,r") < B(r), active(r’).

rej(r) < rej_cause(r,r’).
(m-iv) for each literal L occurring in P:

L1 < LQ.;
L+ L.

We can show that our modifications to the original ap-
proach in (Eiter et al. 2002) only adds meta-information in
form of custom literals to each answer set of the update pro-
gram without changing the (intended) update answer sets
themselves.

Proposition 1. Ler P = (Py, P,) be an update sequence
over a set of atoms A. Then for every answer set
S € AS(P,) there exists a corresponding answer set
St e AS(P4) such that S = ST N A*, meaning ST is
a composition of all literals in S and possibly additional

active- and rej_cause-literals. Conversely, for answer sets
ST e AS(P4) S = St N .A*isan answer set of P..

Proof. Let P = (Py, P») be an update sequence over a set
of atoms A.

Letr bearulein P, and H(r) = L. Then for each answer
set S € AS(Pg) we have: Ly € S through r iff B(r) is true
in S. Likewise, for every answer set ST € AS(P) with
S =St NA* we have: Ly € S through r iff B(r) is true
in S and iff active(r) € S*. This shows that the conditions
for Lo to be derived via r on the base of A* are identical.

Now, let 7 be arule in P, and H(r) = L.

Then for each answer set S € AS(P,) we have: Ly € S
through r iff B(r) is true in S and rej(r) ¢ S. For literal
rej(r), the following holds: rej(r) € S iff B(r) is true in S
and Ly € S. Consequently, we have: rej(r) € Siff B(r) is
true in .S and there exists arule 7’ € P such that H(r') = L
and B(r') is true in S. Altogether, we have L, € S through
r iff B(r) is true in S, and there is no rule 7’ € P; such that
H(r') = L and B(r') is true in S.

Likewise, for each answer set ST € AS(P4) with
S =8t NA* we have: Ly € S through r iff B(r) is true
in S and rej(r) ¢ S. For literal rej(r) € S, the following

32

holds: rej(r) € S through r iff there exists a rule 7’ in Py
such that H(r’) = L and rej_cause(r,r") € ST. For literal
rej_cause(r,r’) we have: rej_cause(r,r’) € ST iff B(r)
is true in S and active(r’) € ST. Furthermore, we have
active(r') € ST if B(r') is true in S. Hence, the following
holds: rej(r) € S iff B(r) is true in .S, and there exists a
rule 7' in P, such that H(r') = L and B(r’) is true in S.
Consequently, we have: L; € S through r iff B(r) is true
in S, and there is no rule 7’ in P, such that H(r') = L and
B(r') is true in S.

Again, both update procedures employ equivalent strate-
gies to derive literals from .A* in their answer sets. Fur-
thermore, due to these considerations, it is clear that
for each answer set S € AS(P,), there is an answer set
ST e AS(P4) with S =St NA* and, the other way
around, for each St € AS(P4), S =S5t NA* is an an-
swer set of AS(Py). O

Corollary 1. Let P = (Py, P2) be an update sequence over
a set of atoms A. Then for the set AS(P4) of answer sets of
the update program and the set AS(P) of answer sets of
the modified update program, the following holds:

ASP) ={S|S=5TNnA* ST € AS(P4)}
Example 2. The update program P 4 of the modified ap-
proach can be found in Appendix A.2. The only answer set of
P¢(= P 4 P is T' = {tnbc_mety, tnbc_met, pdl_posi,
pdl_pos, treati, treat, nab_pt;, nab_pt, atzmabo,
atzmaby, atzmab, active(ry), mono_ths, mono_thy,
mono_th, active(ri), low_successy,
low_success, active(riy), rej-cause(rs,rio), rej(ra),
rej_cause(rs,r11), rej(rs)}. The update answer set
of the update sequence P = (Py, Py) with the modi-
fied approach is T = T' N A = {tnbc_met, pdl_pos, treat,
nab_pt, atzmab, mono_th, low_success}.

We can see that the update answer set S in example 1
and answer set 1" in example 2 are identical. However the
answer sets of a modified update program P ¢ (e. g. answer
set T" in example 2) enables us to analyze the rejections and
its causes. With the modified approach we can detect the
immediate causes of rejections. In the previous example the
rules

low_successs,

low_successy «treat, tnbc_met, atzmab, mono_th.,

active(ry1) <treat, tnbe_met, atzmab, mono_th.,
rej_cause(rs,ri1) <active(riy).
make sure that the answer set of P ¢ contains the literal
rej_cause(rg,r11). This tells us that the knowledge about
the recommended therapy having a low success rate is ig-
nored due to the statement given in rule 17 € P,. The other
reject-literal rej_cause(ry, r10) € T’ indicates, that rule r4
is also rejected.

The conflict detection therefore provides a way to locate
each conflict between two programs of an update sequence
P by using the corresponding MUP P, as each literal
rej_cause(r,r’) in an answer set of P ¢ represents a con-
flict (r,7’). After the determination of all conflicts in P we
can now look at how to generate suggestions for resolving
each conflict.

Interactive conflict resolution

. [Conflict ¢ and Suggestion |
1 suggestions selected l
| | displayed to user by user !
3 Suggestions |
| for conflict ¢ R;lg J 1
\ generated modilie 1

Figure 2: Interactive conflict resolution

5 Interactive Conflict Resolution

As mentioned above, instead of an automated, rule-based
update of ELPs according to (Eiter et al. 2002), we propose
an interactive conflict resolution approach. It uses the meta-
information given in the MUP P ¢ of an update sequence
P = (Py, P») torecognize the conflicts which two programs
Py, P cause. The goal is to gradually modify P;, P» such
that the resulting programs Py and P, do not contain con-
flicting rules. Figure 2 shows the components of the interac-
tive part of the update process. For every conflict, suitable
suggestions are generated based on P . These suggestions
are modifications of the original rules involved in the con-
flict. The rules involved in the conflict have to be shown to
the user and solutions in the form of possible rule modifica-
tions are suggested. The user can choose the most suitable
modification which will then be applied to the corresponding

modified logic program (e.g. P;). This interaction can be
done for each conflict. The original programs of the update
sequence are thereby successively modified in such way that
the update can be realized by simply uniting the two modi-
fied programs without creating conflicts.

In the previous section we showed how to detect con-
flicts in an update sequence P = (P;, P»). To detect the
conflicts, we have to look at every answer set St of the
MUP P = P, €« P,. Each rej_cause(r,r’) € ST repre-
sents a conflict. In the proof of the modified approach
it is shown that rej_cause(r,r’) € ST iff the following
holds: r € Py, r’ € P> and B(r), B(r’) are true in ST. This
means, to resolve a conflict it is necessary to manipulate the
rules 7 and 7’ such that the modified rules are not conflicting
anymore and hence can replace the rules r,7’. As one can
see, there can be a large amount of possibilities to resolve
a single conflict, mainly the adding, removing or modifica-
tions of rules. In the remainder of this paper we will focus
our attention on the most difficult case and generate sug-
gestions for the modification of rules. Therefore, we will
adhere to following principle: A conflict between two rules
r, 7’ is resolved by only modifying r (as it stems from the
program with the older knowledge) where B(r) is modi-
fied using literals which occur in B(r), B(r'). The actual
absence of conflicts will be ensured by following a princi-
ple which is also exploited in (Eiter et al. 2002). In step
(ii-a) of definition 2 the original rule r € P; is extended by

33

not rej(r) which prevents that r and a rule ' € P, hold
simultaneously. In our approach a suggestion for a con-
flict (r,7’) consists of an alternative rule # for r. Similar
to the extension of a rule in step (ii-a) we will extend r to
7 by adding body-literals which ensure that # and ' are not
conflicting. The extension will be realized by adding body-
literals which will be determined by comparing B(r) and
B(r').

Proposition 2. Let r.v' be two conflicting rules and
Pot(C) = {C | C C C} the powerset of C = B(r') — B(r).
Furthermore let 7 be a possible modification of r with

7: H(r) < B(r), Cpot-

where C € Pot(C), Cpot = {notc | ¢ € C} with
not notc = c. Then for every non-empty set C € Pot(C)
the rules 7, v’ are non-conflicting.

Example 3. For the conflict between r4 and r19 we get
C = {0, nab_pt, atzmab}. Consequently, the following
modifications are possible:
T4: mono_th +treat, tnbc_met, not visc_crisis,
not nab_pt.
t),: mono_th «treat, tnbc_met, not visc_crisis,
not atzmab.
#),: mono_th «treat, tnbc_met, not visc_crisis,

not nab_pt, not atzmab.

For the conflict between
C = {0, atzmab, mono_th}.
ing possible modifications:

rg and 1ry; we get
This leads to the follow-

r's: low_success <treat, tnbc_met, not atzmab.

rg: low_success +treat, tnbc_met, not mono_th.
tg: low_success +treat, tnbc_met, not atzmab,

not mono_th.

Note that the suggestions 7 and 7§ contain all lit-
erals of their respective set C. If the human expert
is not able to choose a suggestion for a conflict, this
type of suggestion can be chosen by default. For
each conflict (r,r’) the fallback solution would then be
the modification of r with 7 : H(r) < B(r), Cpot. where
Chot = {notc|ce (B(r')—B(r))}.

After resolving all detected conflicts we get two programs
]51,]52 whose union results in a conflict-free ELP.

Example 4. To resolve conflict (r4,110) the medical expert
would choose 1}, as besides a visceral crisis the drug ate-
zolizumab is primarily relevant for the decision whether the
patient should get monotherapy or not. Likewise, for conflict
(rg,711) the expert would choose 7§, as the low success rate
of the longer known monotherapy applies further on.
Therefore one result of modified programs would be

pQZPQ(ZI’ldPl.'

ri: tnbec_met.

ra: pdl_pos.

r3: treat.
r4: mono_th < treat, tnbc_met, not visc_crisis,
not atzmab.

r5: mono_th < treat, tnbc_met, visc_crisis.

rg: nab_pt < treat, tnbc_met.

r7: carbopl < tnbc_met, mono_th, visc_crisis.

rg: low_success < treat, tnbc_met, not mono_th.

Given the update sequence P = (Py, Py) the update of
Py with Py is therefore the conflict-free program P with
P=P UP..

As one can see, the strategy in proposition 2 can poten-
tially lead to multiple suggestions per conflict. In these cases
the human expert, who is informed about each conflict, has
to actively step in and choose the suggestion which is, ac-
cording the expert’s knowledge, the most suitable one. On
the one hand, this ensures full transparency of the update
sequence to the expert regarding the modifications. On the
other hand, the approach creates an updated program whose
professional suitability is guaranteed by the expert. In this
context we say a program is professionally suitable if the
represented knowledge is suitable according to the experts.

Proposition 3. Let P = (Py, P5) be an update sequence.
The interactive conflict resolution modifies the rules in
Py, Py such that the union P=]51 U]52 of their corre-
sponding modified programs]51, Py is conflict-free and pro-
fessionally suitable.

It is important to note that the strategy for the resolution
of conflicts defined in proposition 2 prevents the creation of
new conflicts when modifying rules.

Proposition 4. Let (r,1') be a conflict. After the conflict res-
olution according to proposition 2, the resulting rules ©, v’
cannot be extended (by adding literals to the respective rule
bodies) such that they become conflicting again.

Proof. Let (r,r') be a conflict and #, " the resulting non-
conflicting rules after the extension of r according to
proposition 2. Then, there exists a literal L such that
(1) Le B*(#) and L€ B~ (r') or (2) L € B~ (+) and
L € BT(r"). Let P be an ELP, {#, 7'} C P, S an answer set
of P, Lj, = H(#),and L, = H(r'). In case (1), the follow-
ing holds: If B(#) is true in S, then L € S and consequently
B(r') cannot be true in S. This implies that L;, ¢ S when-
ever Ly € S . If B(r') is true in S, then B(7) cannot be true
in S. This in turn implies that L;, ¢ S whenever L, € S.
The line of argumentation holds analogously in case (2). [

This approach therefore provides a way to update an ELP
by interactively modifying the programs of the update se-
quence such that the conflicts between the programs are
eliminated while preserving the professional suitability of
the updated program.

34

6 Related Works

In the context of logic programs, instead of program se-
quences the connection of different knowledge bases can of-
ten be found in multi-agent-systems. In (Vos et al. 2005b)
a multi-agent architecture is presented which allows deduc-
tive reasoning via Ordered Choice Logic Programs (OCLP).
OCLP is an extension of ASP, which allows choice rules and
a preferential order over rule sets. Each agent is encoded
as an OCLP and can communicate with other agents. Com-
pared to the approach in this paper, the knowledge update in
(Vos et al. 2005b) is realized by the exchange of information
between the agents. An agent’s knowledge can be updated
by the incoming information. Although an extension of ASP
is used, negation is not allowed explicitly and therefore con-
tradictions are not directly possible. But each agent has spe-
cific goals in form of rules and facts. Incoming information
is only incorporated in the agent’s knowledge if the infor-
mation is not contradictory to the agent’s goals. The authors
mention that negation and contradictory information could
be implemented and handled, amongst others, by removing
knowledge or adding the notion of trust between agents (Vos
et al. 2005a). The implementation in (Vos et al. 2005b) al-
lows an human agent. Similar to our approach, the human
agent can control the agents’ updates if needed. But un-
like our approach, the multi-agent platform is designed to
run mostly autonomously while the updating of each agent’s
knowledge is mainly done in an automated manner using the
preferential order and choice rules provided in OCLPs.

7 Conclusion and Future Work

In this paper we presented a method to update ELPs of an
update sequence interactively with an expert. We used the
approach in (Eiter et al. 2002) to find all conflicts between
the programs. To resolve each conflict we defined a strategy
to generate possible modifications of conflicting rules which
resolve the conflict. To ensure professional suitability, for
each conflict the expert can choose the suggestion which is
the most suitable. This procedure leads to the successive
modification of the programs given in the update sequence,
resulting in modified ELPs which do not have conflicting
rules and can therefore be updated by simply uniting the pro-
grams. During the interactive conflict resolution the expert
maintains full control over each modification.

Revisiting the questions relevant to the medical experts
in section 3, the modified approach delivers following im-
provements: Questions (Q1) and (Q2) can be answered
by presenting the information of the rej_cause-literals in
AS(P). Question (Q3a) should be solely answered and
acted upon by the expert. In section 5 we delivered an-
swers for questions (Q3b) and (Q3c). Regarding question
(Q3d) further research is conceivable. The presented ap-
proach does only generate modification suggestions for rules
directly involved in a conflict. This purely syntactical pro-
cedure can be limiting considering that due to the active in-
volvement of the expert the expert’s knowledge is already
available. It is possible that the actual conflict lies in other
rules which are not part of the conflict pair itself. One possi-
ble solution to find deeper causes for a conflict could be the

active inclusion of the expert. This enables the search for
the cause of a conflict in all rules of the update sequence on
a professional level. One can also consider to implement the
search for rules involved in a conflict syntactically and the
computation of matching resolutions.

One can also consider to look at various semantical ex-
tensions like the support of default negation in rule heads.
(Slota, Balaz, and Leite 2014) point out that the consider-
ation of both types of negation lead to more fine-grained
control over each atom. Especially in medical scenarios a
distinction between positive and negative test results (strong
negation) and the absence of symptoms (default negation) is
important. By allowing default negation in rule heads rules
can be defined more precisely and the general conflict po-
tential when updating a program could be mitigated.

Another useful improvement would be the extension of
the conflict detection. Currently the detection of conflicts is
dependent on the facts given in the programs of an update
sequence. Looking at the running example of the paper one
can imagine a scenario where a patient with different patient
data is given. This results in a different set of facts. Then
the update has to be executed specifically for this patient.
The detection of conflicts independent of the program’s facts
would save the time and effort to compute the update for
each patient.

Furthermore, as mentioned in the introduction, the
method to detect conflicts can be switched out. This also
applies to the method of generating possible rule modifi-
cations. Possible implementation approaches could be the
manual conflict resolution by the expert, the complete re-
moval of rules with older knowledge or generating modifi-
cations of rules with newer knowledge.

For larger programs one can consider to improve the com-
putation of answer sets and implicitly the detection of con-
flicts by using approaches like multi-shot ASP solving devel-
oped by (Gebser et al. 2019). This approach enables more
control when grounding and solving an ELP which would
lead to faster and more efficient interaction processes.

Acknowledgements

We would like to thank the anonymous reviewers for their
helpful suggestions and comments.

A Update Programs of Example
A.1 Update program P

tnbc_mety « notrej(ry).
pdl_posy < notrej(ry).
treaty < notrej(rs).
mono_thy <treat, tnbc_met, not visc_crisis,

notrej(ry).

mono_thy «treat, tnbc_met, visc_crisis,
notrej(rs).

nab_pt; «treat, tnbc_met, notrej(rg)

carboply +treat, tnbc_met, visc_crisis, notrej(ry).

low_successy <treat,tnbc.met, not rej(rs).

35

atzmaby <treat, tnbc_met, pdl_pos, not visc_crisis.

mono_ths <treat, tnbc_met, nab_pt, atzmab.

low_successy <treat, tnbc_met, atzmab, mono_th.

rej(ry) <tnbc_mets.

rej(ry) <—pdl_poss.

)

)
rej(rs) <treats.

)

~—~ ~ —~

rej(ry) <treat, tnbc_met, not visc_crisis,
mono_ths.

rej(rs) <treat, tnbc_met, visc_crisis, mono_ths.

(r5)

rej(re) «treat, tnbe_met, nab_pts.

rej(ry) <treat, tnbc_met, visc_crisis, carbopls.
(rs)

rej(rg) <treat, tnbc_met, low_successs.

tnbc_met; <tnbc_mets.
tnbc_met <tnbc_met;.
pdl_posy <—pdl_poss.
pdl_pos <pdl_pos .
treat <treatsy.
treat <—treaty.
mono_thy <—mono_ths.
mono_th <—mono_th.

mono_th; <—mono_ths.

mono_th <—mono_th.
VISC_CT1iS1S] <—VISC_CT1S1So.
VISC_CT181S < V1SC_CristSy.
nab_pt, <nab_pts.
nab_pt <nab_pt;.
carboply <—carbopls.
carbopl <—carbopl; .
atzmaby <—atzmabs.
atzmab <—atzmab; .
low_successy +low_successs.

low_success <low_successy .

low_successy +low_successs.

low_success <low_successy .

A.2 Modified Update program P

tnbe_mety < notrej(ry).
pdl_posy < notrej(rs).
treaty < notrej(rs).

mono_thy +treat, tnbc_met, not visc_crisis,
notrej(ry).

mono_thy «—treat, tnbc_met, visc_crisis,
notrej(rs).

nab_pty <treat, tnbc_met, notrej(rg)

carboply <treat, tnbc_met, visc_crisis,
notrej(rr).

low_successy <treat, tnbc.met, not rej(rs).

atzmaby <treat, tnbc_met, pdl_pos,
not viSc_crisis.
active(rg) +—treat, tnbc_met, pdl_pos,
not visc_crisis.
mono_thy <treat, tnbc_met, nab_pt, atzmab.
active(rig) «treat, tnbec_met, nab_pt, atzmab.

low_successy <treat, tnbc_met, atzmab, mono_th.

active(ri1) «treat, tnbc_met, atzmab, mono_th.

rej_cause(ry, 1) <active(rig

+—active(ryy

))-
rej(ry) <rej_cause(rs, m1p)-
rej_cause(rs,r11))

) (

rej(rs) <—rej-cause(rs,r11).

tnbc_met; <tnbc_mets.
tnbc_met <—tnbc_met;.
pdl_posy <pdl_poss.
pdl_pos <—pdl_pos; .
treat, <treats.
treat <—treat;.
mono_th; <—mono_ths.
mono_th <—mono_th;.

mono_thy <—mono_ths.

mono_th <—mono_th;.
VISC_CTrisSiS] < V1SC_CrisisSs.
VISC_CTiSLS —V1SC_Cristsy.
nab_pty <nab_pts.
nab_pt <nab_pt;.
carboply <—carbopls.
carbopl <—carbopl; .
atzmaby <—atzmabs.
atzmab <—atzmab;.
low_success) <low_successs.
low_success <+low_success.

low_success] <low_successs.

low_success +low_successy .

36

References
Eiter, T.; Fink, M.; Sabbatini, G.; and Tompits, H. 2002.

On properties of update sequences based on causal rejection.
Theory Pract. Log. Program. 2(6):711-767.

Eiter, T.; Ianni, G.; Schindlauer, R.; and Tompits, H. 2005.
A uniform integration of higher-order reasoning and exter-
nal evaluations in answer-set programming. In Proceedings
of the 19th International Joint Conference on Artificial Intel-
ligence, IJCAT’05. San Francisco, CA, USA: Morgan Kauf-
mann Publishers Inc. 90-96.

Gebser, M.; Kaminski, R.; Kaufmann, B.; and Schaub, T.
2019. Multi-shot ASP solving with clingo. Theory Pract.
Log. Program. 19(1):27-82.

Gelfond, M., and Lifschitz, V. 1991. Classical negation
in logic programs and disjunctive databases. New Gener.
Comput. 9(3/4):365-386.

Schmid, P.; Adams, S.; Rugo, H. S.; Schneeweiss, A.;
Barrios, C. H.; Iwata, H.; Diéras, V.; Hegg, R.; Im, S.-
A.; Shaw Wright, G.; Henschel, V.; Molinero, L.; Chui,
S. Y.; Funke, R.; Husain, A.; Winer, E. P.; Loi, S.; and
Emens, L. A. 2018. Atezolizumab and nab-paclitaxel in
advanced triple-negative breast cancer. New England Jour-
nal of Medicine 379(22):2108-2121.

Schneeweiss, A.; Denkert, C.; Fasching, P. A.; Fremd, C.;
Gluz, O.; Kolberg-Liedtke, C.; Loibl, S.; and Liick, H.-
J. 2019. Diagnosis and therapy of triple-negative breast
cancer (tnbc)-recommendations for daily routine practice.
Geburtshilfe und Frauenheilkunde 79(06):605-617.

Slota, M.; Balaz, M.; and Leite, J. 2014. On strong and de-
fault negation in logic program updates (extended version).
CoRR abs/1404.6784.

Thevapalan, A.; Kern-Isberner, G.; Howey, D.; Beierle, C.;
Meyer, R. G.; and Nietzke, M. 2018. Decision support core
system for cancer therapies using ASP-HEX. In Brawner,
K., and Rus, V., eds., Proceedings of the Thirty-First In-
ternational Florida Artificial Intelligence Research Society
Conference, FLAIRS 2018, Melbourne, Florida, USA. May
21-23 2018, 531-536. AAAI Press.

Vos, M. D.; Cliffe, O.; Watson, R.; Crick, T.; Padget,
J. A.; and Needham, J. 2005a. T-LAIMA: answer set pro-
gramming for modelling agents with trust. In Gleizes, M.;
Kaminka, G. A.; Nowé, A.; Ossowski, S.; Tuyls, K.; and
Verbeeck, K., eds., EUMAS 2005 - Proceedings of the Third
European Workshop on Multi-Agent Systems, Brussels, Bel-
gium, December 7-8, 2005, 126-136. Koninklijke Vlaamse
Academie van Belie voor Wetenschappen en Kunsten.

Vos, M. D.; Crick, T.; Padget, J. A.; Brain, M.; Cliffe, O.;
and Needham, J. 2005b. LAIMA: A multi-agent platform
using ordered choice logic programming. In Baldoni, M.;
Endriss, U.; Omicini, A.; and Torroni, P., eds., Declarative
Agent Languages and Technologies 111, Third International
Workshop, DALT 2005, Utrecht, The Netherlands, July 25,
2005, Selected and Revised Papers, volume 3904 of Lecture
Notes in Computer Science, 72—-88. Springer.

Towards Conditional Inference under Disjunctive Rationality

Richard Booth! , Ivan Varzinczak??
LCardiff University, United Kingdom
2CRIL, Univ. Artois & CNRS, France
3CAIR, Computer Science Division, Stellenbosch University, South Africa
boothr2 @cardiff.ac.uk, varzinczak @cril.fr

Abstract

The question of conditional inference, i.e., of which condi-
tional sentences of the form “if a then, normally, 5” should
follow from a set KCB3 of such sentences, has been one of the
classic questions of non-monotonic reasoning, with several
well-known solutions proposed. Perhaps the most notable is
the rational closure construction of Lehmann and Magidor,
under which the set of inferred conditionals forms a rational
consequence relation, i.e., satisfies all the rules of preferen-
tial reasoning, plus Rational Monotonicity. However, this last
named rule is not universally accepted, and other researchers
have advocated working within the larger class of disjunctive
consequence relations, which satisfy the weaker requirement
of Disjunctive Rationality. While there are convincing argu-
ments that the rational closure forms the “simplest” rational
consequence relation extending a given set of conditionals,
the question of what is the simplest disjunctive consequence
relation has not been explored. In this paper, we propose a
solution to this question and explore some of its properties.

1 Introduction

The question of conditional inference, i.e., of which condi-
tional sentences of the form “if « then, normally, 5” should
follow from a set ICB of such sentences, has been one of the
classic questions of non-monotonic reasoning, with several
well-known solutions proposed. Since the work of Lehmann
and colleagues in the early *90s, the so-called preferential
approach to defeasible reasoning has established itself as
one of the most elegant frameworks within which to an-
swer this question. Central to the preferential approach is
the notion of rational closure of a conditional knowledge
base, under which the set of inferred conditionals forms a
rational consequence relation, i.e., satisfies all the rules of
preferential reasoning, plus Rational Monotonicity. One of
the reasons for accepting rational closure is the fact it de-
livers a venturous notion of entailment that is conservative
enough. Given that, rationality has for long been accepted as
the core baseline for any appropriate form of non-monotonic
entailment.

Very few have stood against this position, including
Makinson (1994), who considered Rational Monotonicity
too strong and has briefly advocated the weaker rule of Dis-
junctive Rationality instead. This rule is implied by Ratio-
nal Monotonicity and may still be desirable in cases where

37

the latter does not hold. Quite surprisingly, the debate did
not catch on, and, for lack of rivals of the same stature,
Rational Closure has since reigned alone as a role model
in non-monotonic inference. That used to be the case until
Rott (2014) reignited interest in Disjunctive Rationality by
considering interval models in connection with belief con-
traction. Inspired by that, here we revisit disjunctive con-
sequence relations and make the first steps in the quest for
a suitable notion of disjunctive rational closure of a condi-
tional knowledge base.

The plan of the paper is as follows. First, in Section 2,
we give the usual summary of the formal background as-
sumed in the following sections, in particular of the rational
closure construction. Then, in Section 3, we make a case for
weakening the rationality requirement and propose a seman-
tics with an accompanying representation result for a weaker
form of rationality enforcing the rule of Disjunctive Ratio-
nality. We move on, and in Section 4, we investigate a notion
of closure of (or entailment from) a conditional knowledge
base under Disjunctive Rationality. Our analysis is in terms
of a set of postulates, all reasonable at first glance, that one
can expect a suitable notion of closure to satisfy. Follow-
ing that, in Section 5, we propose a specific construction for
the Disjunctive Rational Closure of a conditional knowledge
base and assess its suitability in the light of the postulates
previously put forward (Section 6). We conclude with some
remarks on future directions of investigation.

2 Formal preliminaries

In this section, we provide the required formal background
for the remainder of the paper. In particular, we set up
the notation and conventions that shall be followed in the
upcoming sections. (The reader conversant with the KLM
framework for non-monotonic reasoning can safely skip to
Section 3.)

Let P be a finite set of propositional atoms. We use
P,q, ... as meta-variables for atoms. Propositional sen-
tences are denoted by «, f3, .. ., and are recursively defined
in the usual way:

ax=T|L|P|-a|larha|laVa|la—a|a+
We use L to denote the set of all propositional sentences.

With ¢ & {0, 1}7, we denote the set of all propositional
valuations, where 1 represents truth and 0 falsity. We use

v, U, ..., possibly with primes, to denote valuations. When-
ever it eases the presentation, we shall represent valuations
as sequences of atoms (e.g., p) and barred atoms (e.g., p),
with the understanding that the presence of a non-barred
atom indicates that the atom is true (has the value 1) in the
valuation, while the presence of a barred atom indicates that
the atom is false (has the value 0) in the valuation. Thus,
for the logic generated from P = {b, f, p}, where the atoms
stand for, respectively, “being a bird”, “being a flying crea-
ture”, and “being a penguin”, the valuation in which b is
true, f is false, and p is true will be represented as bfp.
Satisfaction of a sentence o € L by a valuation v € U
is defined in the usual truth-functional way and is denoted
by v I a. The set of models of a sentence « is defined as
[a] £ {v € U | v IF a}. This notion is extended to a set
of sentences X in the usual way: [X]= (), [o]. We say
a set of sentences X (classically) entails o € L, denoted
X E o, if [X] C [«]. ais valid, denoted |= «, if [o] = U.

2.1 KLM-style rational defeasible consequence

Several approaches to non-monotonic reasoning have been
proposed in the literature over the past 40 years. The pref-
erential approach, initially put forward by Shoham (1988)
and subsequently developed by Kraus et al. (1990) in much
depth (the reason why it became known as the KLM-
approach), has established itself as one of the main ref-
erences in the area. This stems from at least three of
its features: (i) its intuitive semantics and elegant proof-
theoretic characterisation; (if) its generality w.r.t. alterna-
tive approaches to non-monotonic reasoning such as circum-
scription (McCarthy 1980), default logic (Reiter 1980), and
many others, and (iii) its formal links with AGM-style belief
revision (Gardenfors and Makinson 1994). The fruitfulness
of the preferential approach is also witnessed by the great
deal of recent work extending it to languages that are more
expressive than that of propositional logic such as those of
description logics (Bonatti 2019; Britz, Meyer, and Varz-
inczak 2011; Casini et al. 2015; Britz and Varzinczak 2017;
Giordano et al. 2007; Giordano et al. 2015; Pensel and
Turhan 2017; Varzinczak 2018), modal logics (Britz and
Varzinczak 2018a; Britz and Varzinczak 2018b; Chafik et
al. 2020), and others (Booth, Meyer, and Varzinczak 2012).

A defeasible consequence relation |~ is defined as a bi-
nary relation on sentences of our underlying propositional
logic, i.e., v C L x L. We say that |~ is a preferential con-
sequence relation (Kraus, Lehmann, and Magidor 1990) if it
satisfies the following set of (Gentzen-style) rules:

Eaef, apy
(Ref) apa (LLE) T
ap B apy apy By
(And) ap BAY (0n) aV By
apyB, EB— ap B, apy
(R afpy YT

If, in addition to the preferential rules, the defeasible con-
sequence relation |~ also satisfies the following Rational

38

Monotonicity rule (Lehmann and Magidor 1992), it is said
to be a rational consequence relation:

ap B, oy
aANy B

Rational consequence relations can be given an intuitive
semantics in terms of ranked interpretations.

(RM)

Definition 1. A ranked interpretation Z% is a function
Sfrom U to N U {oco} such that #(v) = 0 for some v € U,
and satisfying the following convexity property: for every
i € N, if Z(u) =i, then, for every j s.t. 0 < j < i, there is
av' € U for which Z(u') = j.

In a ranked interpretation, we call Z(v) the rank of v
w.r.t. Z. The intuition is that valuations with a lower rank
are deemed more normal (or typical) than those with a
higher rank, while those with an infinite rank are regarded
as so atypical as to be ‘forbidden’, e.g. by some background
knowledge—see below. Given a ranked interpretation %,
we therefore partition the set I/ into the set of plausible val-
uations (those with finite rank), and that of implausible ones
(with rank o0).!

Figure 1 depicts an example of a ranked interpretation for
P = {b,f,p}. (In our graphical representations of ranked
interpretations—and of interval-based interpretations later
on—we shall plot the set of valuations in ¢/ on the y-axis
so that the preference relation reads more naturally across
the z-axis—from lower to higher. Moreover, plausible val-
uations are associated with the colour blue, whereas the im-
plausible ones with red.)

bfp)
bfp o
bfp °
bfp °
bfp)
bfp e
bfp e
bfp e
0 1 2 00

Figure 1: A ranked interpretation for P = {b,f, p}.

Given a ranked interpretation % and o € L, with [a]%
we denote the set of plausible valuations satisfying o (a-
valuations for short) in Z. If [a]” = [T]#, then we say «
is true in % and denote it Z I .. With Z (o)< min{Z (v) |

'In the literature, it is customary to omit implausible valuations
from ranked interpretations. Since they are not logically impos-
sible, but rather judged as irrelevant on the grounds of contingent
information (e.g. a knowledge base) which is prone to change, we
shall include them in our semantic definitions. This does not mean
that we do anything special with them in this paper; they are rather
kept for future use.

v € [a]#} we denote the rank of o in %. By convention,
if [a]# = 0, we let Z(a) = oo. Defeasible consequence
of the form « |~ [is then given a semantics in terms of
ranked interpretations in the following way: We say « |~
is satisfied in Z (denoted Z I o |~ B) if Z(o) < Z (o A
—/3). (And here we adopt Jaeger’s (1996) convention that
oo < oo always holds.) It is easy to see that for every a € L,
Z W aifandonly if Z F —a p L. IfZ IF a |~ 5,
we say Z is a ranked model of o |~ . In the example in
Figure 1, we have Z IF b |~ f, Z I+ p — b (and therefore
ZIF=(p—=>b)pL),ZIFpp —f,Zff | b, and
Z |F p A —b |~ b, which are all according to the intuitive
expectations.

That this semantic characterisation of rational defeasi-
ble consequence is appropriate is a consequence of a rep-
resentation result linking the seven rationality rules above to
precisely the class of ranked interpretations (Lehmann and
Magidor 1992; Girdenfors and Makinson 1994).

2.2 Rational closure

One can also view defeasible consequence as formalising
some form of (defeasible) conditional and bring it down to
the level of statements. Such was the stance adopted by
Lehmann and Magidor (1992). A conditional knowledge
base KB is thus a finite set of statements of the form « |~ 3,
with a, 8 € L, and possibly containing classical statements.
As an example, let KB = {b |~ f,p — b,p | —f}. Given
a conditional knowledge base KB, a ranked model of ICB is
a ranked interpretation satisfying all statements in CB. As
it turns out, the ranked interpretation in Figure 1 is a ranked
model of the above KB. It is not hard to see that, in every
ranked model of KB, the valuations bfp and bfp are deemed
implausible—note, however, that they are still logically pos-
sible, which is the reason why they feature in all ranked in-
terpretations.

An important reasoning task in this setting is that of deter-
mining which conditionals follow from a conditional knowl-
edge base. Of course, even when interpreted as a conditional
in (and under) a given knowledge base ICB, |~ is expected
to adhere to the rules of Section 2.1. Intuitively, that means
whenever appropriate instantiations of the premises in a rule
are sanctioned by KB, so should the suitable instantiation of
its conclusion.

To be more precise, we can take the defeasible condition-
als in /ICB as the core elements of a defeasible consequence
relation ~*B. By closing the latter under the preferential
rules (in the sense of exhaustively applying them), we get
a preferential extension of ~~*B. Since there can be more
than one such extension, the most cautious approach con-
sists in taking their intersection. The resulting set, which
also happens to be closed under the preferential rules, is
the preferential closure of /B, which we denote by ’;g.
When interpreted again as a conditional knowledge base, the
preferential closure of "7 contains all the conditionals en-
tailed by C5. (Hence, the notions of closure of and entail-
ment from a conditional knowledge base are two sides of
the same coin.) The same process and definitions carry over
when one requires the defeasible consequence relations also
to be closed under the rule RM, in which case we talk of

39

rational extensions of Pv’CB . Nevertheless, as pointed out
by Lehmann and Magidor (1992, Section 4.2), the intersec-
tion of all such rational extensions is not, in general, a ratio-
nal consequence relation: it coincides with preferential clo-
sure and therefore may fail RM. Among other things, this
means that the corresponding entailment relation, which is
called rank entailment and defined as KB =4 o |~ B if
every ranked model of KB also satisfies a |~ 3, is mono-
tonic and therefore it falls short of being a suitable form
of entailment in a defeasible reasoning setting. As a re-
sult, several alternative notions of entailment from condi-
tional knowledge bases have been explored in the litera-
ture on non-monotonic reasoning (Booth and Paris 1998;
Booth et al. 2019; Casini, Meyer, and Varzinczak 2019;
Giordano et al. 2012; Giordano et al. 2015; Lehmann 1995;
Weydert 2003), with rational closure (Lehmann and Magi-
dor 1992) commonly acknowledged as the gold standard in
the matter.

Rational closure (RC) is a form of inferential closure ex-
tending the notion of rank entailment above. It formalises
the principle of presumption of typicality (Lehmann 1995,
p. 63), which, informally, specifies that a situation (in our
case, a valuation) should be assumed to be as typical as pos-
sible (w.r.t. background information in a knowledge base).

Assume an ordering <xp on all ranked models of a
knowledge base KB, which is defined as follows: %1 <ikp
Hs, if, for every v € U, %1 (v) < H2(v). Intuitively,
ranked models lower down in the ordering are more typ-
ical. It is easy to see that <) is a weak partial order.
Giordano et al. (2015) showed that there is a unique <x3-
minimal element. The rational closure of KB is defined in
terms of this minimum ranked model of 5.

Definition 2. Let KCB be a conditional knowledge base, and
let %’gg be the minimum element of the ordering <xp on
ranked models of KCB. The rational closure of KB is the
defeasible consequence relation VB < {a v B | Z#RE IF

al~ B}

As an example, Figure 1 shows the minimum ranked
model of KB = {b |~ f,p — b, p | =f} w.r.t. <. Hence
we have that =f |~ —b is in the rational closure of /C5.

Observe that there are two levels of typicality at work for
rational closure, namely within ranked models of '3, where
valuations lower down are viewed as more typical, but also
between ranked models of KB, where ranked models lower
down in the ordering are viewed as more typical. The most
typical ranked model ,%’Eg is the one in which valuations
are as typical as KCB allows them to be (the principle of pre-
sumption of typicality we alluded to above).

Rational closure is commonly viewed as the basic (al-
though certainly not the only acceptable) form of non-
monotonic entailment, on which other, more ventur-
ous forms of entailment can be and have been con-
structed (Booth et al. 2019; Casini et al. 2014; Casini,
Meyer, and Varzinczak 2019; Lehmann 1995).

3 Disjunctive rationality and interval-based
preferential semantics

One may argue that there are cases in which Rational Mono-
tonicity is too strong a rule to enforce and for which a
weaker defeasible consequence relation would suffice (Gior-
dano et al. 2010; Makinson 1994). Nevertheless, doing away
completely with rationality (i.e., sticking to the preferential
rules only) is not particularly appropriate in a defeasible-
reasoning context. Indeed, as widely known in the liter-
ature, preferential systems induce entailment relations that
are monotonic. In that respect, here we are interested in de-
feasible consequence relations (or defeasible conditionals)
that do not necessarily satisfy Rational Monotonicity while
still encapsulating some form of rationality, i.e., a ventur-
ous passage from the premises to the conclusion. A case in
point is that of the Disjunctive Rationality (DR) rule (Kraus,
Lehmann, and Magidor 1990) below:

aV By
apoyor By

Intuitively, DR says that if one may draw a conclusion from
a disjunction of premises, then one should be able to draw
this conclusion from at least one of these premises taken
alone (Freund 1993). A preferential consequence relation
is called disjunctive if it also satisfies DR.

As it turns out, every rational consequence relation is
also disjunctive, but not the other way round (Lehmann and
Magidor 1992). Therefore, DR is a weaker form of rational-
ity, as its name suggests. Given that, Disjunctive Rationality
is indeed a suitable candidate for the type of investigation
we have in mind.

(DR)

A semantic characterisation of disjunctive consequence
relations was given by Freund (1993) based on a filtering
condition on the underlying ordering. Here, we provide an
alternative semantics in terms of interval-based interpreta-
tions. (We conjecture Freund’s semantic constructions and
ours can be shown to be equivalent in the finite case.)

Definition 3. An interval-based interpretation is a tuple
I LNL U, where £ and U are functions from U to
NU{oo} s.t. (i) Z(v) = 0, for some v € U; (ii) if L (u) =i
or % (u) = i, then for every 0 < j < i, there is v s.t. ei-
ther Z (W) = jor % (W) = j, (iii) Z(v) < % (v), for
every v € U, and (iv) £ (u) = oo iff % (u) = co. Given
I = (L, %) and v € U, L(v) is the lower rank of v
in .7, and % (v) is the upper rank of v in .%. Hence, for
any v, the pair (£ (v), % (v)) is the interval of vin .&. We
say u is more preferred than v in .#, denoted u < v, if
U (u) < Z(v).

The preference order < on U defined above via an
interval-based interpretation forms an interval order, i.e., it
is a strict partial order that additionally satisfies the interval
condition: if w < v and v/ < v/, then either u < v’ or
u' < v. Furthermore, every interval order can be defined
from an interval-based interpretation in this way. See the
work of Fishburn (1985) for a detailed treatise on interval
orders.

40

Figure 2 illustrates an example of an interval-based inter-
pretation for P = {b,f,p}. In our depictions of interval-
based interpretations, it will be convenient to see . as a
function from ¢ to intervals on the set N U {co}. Whenever
the intervals associated to valuations w and v overlap, the
intuition is that both valuations are incomparable in .#; oth-
erwise the leftmost interval is seen as more preferred than
the rightmost one.

bfp)
bfp °
bfp °
bfp °
bﬂS a—
bfp °
bf P CEEEE—
bfp - c—
0 1 2 00

Figure 2: An interval-based interpretation for P = {b,f, p}.

In Figure 2, the rationale behind the ordering is as fol-
lows: situations with flying birds are the most normal ones;
situations with non-flying penguins are more normal than
the flying-penguin ones, but both are incomparable to non-
penguin situations; the situations with penguins that are not
birds are the implausible ones; and finally those that are not
about birds or penguins are so irrelevant as to be seen as
incomparable with any of the plausible ones.

The notions of plausible and implausible valuations, as
well as that of a-valuations, carry over to interval-based
interpretations, only now the plausible valuations are the
ones with finite lower ranks (and hence also finite up-
per ranks, by part (iv) of the previous definition). With
Z(a) min{ZL(v) | v € [a]”} and % ()£ min{% (v) |
v € [a]”} we denote, respectively, the lower and the up-
per rank of « in #. By convention, if [a]” = 0, we
let Z(a) = % () = co. We say « |~ (3 is satisfied in .9
(denoted .7 IF o |~ B) if % () < Z(aw A —=B). (Recall the
convention that co < c0.) As an example, in the interval-
based interpretation of Figure 2, we have .# |+ b |~ f,
S Ik p p —f, and £ If =f |~ —p (contrary to the ranked
interpretation % in Figure 1, which endorses the latter state-
ment).

In the tradition of the KLM approach to defeasible reason-
ing, we define the defeasible consequence relation induced
by an interval-based interpretation: ~» < {a | 8| .7 I+
a |~ B}. We can now state a KLM-style representation re-
sult establishing that our interval-based semantics is suitable
for characterising the class of disjunctive defeasible conse-
quence relations, which is a variant of Freund’s (1993) re-
sult:

Theorem 1. A defeasible consequence relation is a disjunc-
tive consequence relation if and only if it is defined by some

interval-based interpretation, i.e., |~ is disjunctive if and

only if there is % such that |~ = |~ 4.

4 Towards disjunctive rational closure

Given a conditional knowledge base KB, the obvious def-
inition of closure under Disjunctive Rationality consists in
taking the intersection of all disjunctive extensions of "B
(cf. Section 2.2). Let us call it the disjunctive closure
of B, with interval-based entailment, defined as KB |=_»
a p f if every interval-based model of KB also satisfies
« |~ B, being its semantic counterpart. The following result
shows that the notion of disjunctive closure is stillborn, i.e.,
it does not even satisfy Disjunctive Rationality.

Theorem 2. Given a conditional knowledge base KB, (i)
the disjunctive closure of ICB coincides with its preferential
closure B, (ii) There exists KB such that ($E, does not
satisfy Disjunctive Rationality.

For a simple counterexample showing that Mglg need not
satisfy Disjunctive Rationality, consider KB = {T |~ b}.
Clearly we have p\V =p |55 b, but one can easily construct
interval-based interpretations .#;, .#, whose corresponding
consequence relations both satisfy /C8 but for which p £ #
b and —p |£ 4, b.

This result suggests that the quest for a suitable definition
of entailment under disjunctive rationality should follow the
footprints in the road which led to the definition of ratio-
nal closure. Such is our contention here, and our research
question is now: ‘Is there a single best disjunctive relation
extending the one induced by a given conditional knowledge
base KB?”

Let us denote by ~"5 the special defeasible consequence
relation that we are looking for. In the remainder of this sec-
tion, we consider some desirable properties for the mapping
from KB to "B, and consider some simple examples in
order to build intuitions. In the following section, we will
offer a concrete construction: the Disjunctive Rational Clo-
sure of ICB.

4.1 Basic postulates

Starting with our most basic requirements, we put forward
the following two postulates:

Inclusion If o v 3 € KB, then oo X5 3.
D-Rationality "7 is a disjunctive consequence relation.

Note that, given Theorem 1, D-Rationality is equivalent
to saying there is an interval-based interpretation .# such
that ~*B= |~ ~. If we replace “disjunctive consequence”
in the statement by “rational consequence”, then that is the
postulate that is usually considered in the area.

Another reasonable property to require from an induced
consequence relation is for two equivalent knowledge bases
to yield exactly the same set of inferences. This prompts the
question of what it means to say that two conditional knowl-
edge bases are equivalent. One weak notion of equivalence
can be defined as follows.

Definition 4. Let oy, a0, 81,082 € L. We say ay p [y is
equivalent 10 as |~ B2 if = (o < ag) A (81 + B2). We

41

say two knowledge bases K31, KB are equivalent, written
KBy, = KB, if there is a bijection f : KBy, — KBs s.t.
each a |~ 3 € KBy is equivalent to f (o p~ ().

Given this, we can express a weak form of syntax inde-
pendence:

Equivalence If B, = KBs, then W B1 = B2,

Finally, the last of our basic postulates requires rational
closure to be the upper bound on how venturous our conse-
quence relation should be.

Infra-Rationality ~*5C A5,

4.2 Minimality postulates

Echoing a fundamental principle of reasoning in general and
of non-monotonic reasoning in particular is a property re-
quiring)5 to contain only conditionals whose inferences
can be justified on the basis of ICB. The first idea to achieve
this would be to set)5 to be a set-theoretically minimal
disjunctive consequence relation that extends KB.

Example 1. Suppose the only knowledge we have is a sin-
gle conditional saying “birds normally fly”, ie., KB =
{b |~ f}. Assuming just two variables, we have a unique
C-minimal disjunctive consequence relation extending this
knowledge base, which is given by the interval-based inter-
pretation .J in Figure 3. Indeed, the conditional b |~ f
is saying precisely that bf < bf, but is telling us nothing
with regard to the relative typicality of the other two possi-
ble valuations, so any pair of valuations other than this one
is incomparable. For this reason, we do not have —f |~ » —b
here. Note the rational closure in this example does endorse
this latter conclusion, thus providing further evidence that
the rational closure arguably gives some unwarranted con-
clusions.

bf o

bf °

bf aam—

bf aa—
0 1

Figure 3: Interval-based model of KB = {b |~ f}.

The next example illustrates the fact that there might be
more than one C-minimal extension of a JC3-induced con-
sequence relation.

Example 2. Assume a COVID-19 inspired scenario with
only two propositions, m and s, standing for, respectively,
“you wear a mask” and “you observe social distancing”.
Let KB = {m |~ s, ~m |~ s}. There are two C-minimal dis-
junctive consequence relations extending B, correspond-
ing to the two interval-based interpretations %, and S5
(from left to right) in Figure 4. The first conditional is saying
ms < ms, while the second is saying ms < ms. According

to the interval condition (see the paragraph following Defi-
nition 3), we must then have either ms < mMs or ms < ms.
The choice of which gives rise to %1 and %5, respectively.

ms CEE—— ms °

ms [ms aE———

ms o ms [

ms) ms aE—
0 1 2 0 1 2

Figure 4: Interval-based models of the two C-minimal extensions
of WX, for KB = {m | s,—m | s}.

In the light of Example 2 above, a question that arises
is what to do when one has more than a single C-minimal
extension of *B. Theorem 2 already tells us we can-
not, in general, take the obvious approach by taking their
intersection. However, even though returning the disjunc-
tive/preferential closure 55 is not enough to ensure D-
Rationality, we might still expect the following postulates as
reasonable.

Vacuity If Mslg is a disjunctive consequence relation, then
IN’CB— }NICB
* T ITPC
; ; KB KB
Preferential Extension |~52C 0",

(Note, given Theorem 2, the postulate above follows from
Inclusion and D-Rationality.)

Justification If o 5B 3, then o |~/ j for at least one
C-minimal disjunctive relation |~ extending "5,

4.3 Representation independence postulates

Going back to Example 2, what should the expected output
be in this case? Intuitively, faced with the choice of which
of the pairs ms < ms or ms < ms to include, and in the
absence of any reason to prefer either one, it seems the right
thing to do is to include both, and thereby let the interval-
based interpretation depicted in Figure 5 yield the output.
Notice that this will be the same as the rational closure in
this case.

ms °

ms °

ms °

ms L
0 1

Figure 5: Interval-based models of the union of the two C-minimal
extensions of)%, for KB = {m |~ s, -m |~ s}.

We can express the desired symmetry requirement in
a syntactic form, using the notion of symbol transla-
tions (Marquis and Schwind 2014). A symbol translation

42

(on P) is a function ¢ : P — L. A symbol translation
can be extended to a function on £ by setting, for each sen-
tence o, o(a) to be the sentence obtained from « by replac-
ing each atom p occurring in « by its image o(p) through-
out.? Similarly, given a conditional knowledge base X3 and
a symbol translation o(-), we denote by o(KB) the knowl-
edge base obtained by replacing each conditional « |~ (3
in KB by o(a) p a(f).

Representation Independence For any symbol transla-

tion o(-), we have a WXB Biff o(a) I5P) ().

Note that Weydert (2003) also considers Representation
Independence (RI) in the context of conditional inference,
but in a slightly different framework. The idea behind it
has also been explored by Jaeger (1996), who, in partic-
ular, looked at the property in relation to rational closure.
As noted by Marquis and Schwind (2014), the property is a
very demanding one that is likely hard to satisfy in its full,
unrestricted form above. And indeed this is confirmed in
our setting, since it can be shown that Representation Inde-
pendence is jointly incompatible with two of our basic pos-
tulates, namely Inclusion and Infra-Rationality. This moti-
vates the need to focus on specific families of symbol trans-
lation. Some examples are the following:

1. o(+) is a permutation on P, i.e., is just a renaming of the
propositional variables;

2. o(p) € {p, —p}, for all p € P. Then, instead of using p

to denote say “it’s raining”’, we use it rather to denote “it’s
not raining”. We call any symbol translation of this type
a negation-swapping symbol translation.

Each special subfamily of symbol translations yields a
corresponding weakening of RI that applies to just that kind
of translation. In particular we have the following postulate:

Negated Representation Independence For any negation-
swapping symbol translation o(-), we have a 5B 3 iff
a(a) P25 o).

Example 3. Going back to Example 2, when modelling the

scenario, instead of using propositional atom m to denote

“you wear a mask” we could equally well have used it to

denote “you do not wear a mask”. Then the statement “if

you wear a mask then, normally, you do social distanc-
ing” would be modelled by —m |~ s, etc. This boils down
to taking a negation-swapping symbol translation such that

o(m) = —-m and o(s) = s. Then o(KB) = {-m |~

s, m | s}, and if we inferred, say, m < s |~ s from KB

then we would expect to infer =m < s |~ s from o (KCB).

4.4 Cumulativity postulates

The idea behind a notion of Cumulativity in our setting is
that adding a conditional to the knowledge base that was
already inferred should not change anything in terms of its
consequences. We can split this into two ‘halves’.

Cautious Monotonicity If « F*F 3 and KB = KB U
{a b B}, then pIBC WIF'

*Marquis and Schwind (2014) consider much more general set-
tings, but this is all we need in the present paper.

Cut If o PP Band KB = KB U {a p (8}, then KB’ C
e,
We conclude this section with an impossibility result con-
cerning a subset of the postulates we have mentioned so far.

Theorem 3. There is no method x simultaneously satisfy-
ing all of Inclusion, D-Rationality, Equivalence, Vacuity,
Cautious Monotonicity and Negated Representation Inde-
pendence.

Proof. Assume, for contradiction, that x satisfies all the
listed properties. Suppose P = {m,s} and let B be the
knowledge base from Example 2, i.e., {m |~ s,—m |~ s}.
By Inclusion, m pXB s and -m X8 s. By D-Rationality,
we know Pv’fB satisfies the Or rule, so, from these two, we
getmV —m B s which, in turn, yields (m < s)V (-m
s) X8 s, by LLE. Applying DR to this means we have:
(ms) B s or (-mrs) B s

ey

Now, let o(-) be the negation-swapping symbol transla-
tion mentioned in Example 3, i.e., o(m) = —-m, o(s) = s,
so 0(KB) = {-m |~ s,m—m |~ s}. Then, by Negated
Representation Independence, we have (m < s) X5 siiff
(-m + s) I5B) s But clearly we have KB = o(KB),
so, by Equivalence, we obtain from this:

(m < s) B s iff (-m s s) pRB s

@

Putting (1) and (2) together gives us both (m <> s) (A5 s
and (-m ¢ s) B s Now, let KB = KB U {(m «

¥
s) |~ s}. By Cautious Monotonicity, ~<8C KB In
particular, (-m < s) B s It can be checked that
the disjunctive/preferential closure of KB’ is itself a dis-
junctive consequence relation. In fact, it corresponds to the
interval-based interpretation on the left of Figure 4. Hence,
by Vacuity, this particular interval-based interpretation cor-
responds also to }v’fB/. But, by inspecting this picture, we
see (-m <+ s) [XXB" s which leads to a contradiction. [

Theorem 3 is both surprising and disappointing, since all
of the properties mentioned seem to be rather intuitive and
desirable. Note that a close inspection of the proof shows
that even just Vacuity and Cautious Monotonicity together
place some quite severe restrictions on the behaviour of .

Corollary 1. Let P = {p,q} and KB = {p |~ q,—p P
q}. There is no operator * satisfying Vacuity and Cautious
Monotonicity that infers both (p + q) P q and (—p +
q) M a.

What can we do in the face of these results? Our strategy
will be to seek to construct a method that can satisfy as many
of these properties as possible. We now provide our candi-
date for such a method - the disjunctive rational closure.

5 A construction for disjunctive rational
closure

In order to satisfy D-Rationality, we can focus on construct-
ing a special interval-based interpretation from KCB and then

43

take all conditionals holding in this interpretation as the con-
sequences of KCB. In this section, we give our construction
of the interpretation .#55 that gives us the disjunctive ratio-
nal closure of a conditional knowledge base.

To specify #5E, we will construct the pair (55, w5E)
of functions specifying the lower and upper ranks for each
valuation. Since we aim to satisfy Infra-Rationality, our con-
struction method takes the rational closure Zx5 of KB as a
point of departure. Starting with the lower ranks, we simply
set, for all v € U:

LBE (v) £ Rgé (v).
That is, the lower ranks are given by the rational closure.

For the upper ranks %A%, if we happen to have
LKE(v) = %KE(v) = oo, then, to conform with the defini-
tion of interval-based interpretation, it is clear that we must
set %55 (v) = oo also. If Z5E (v) # oo, then the construc-
tion of 5% (v) becomes a little more involved. We require
first the following definition.

Definition 5. Given a ranked interpretation % and a condi-
tional o |~ 8 such that Z b « |~ B, we say a valuation v
verifies o |~ B in Z if Z(v) = Z ().

Now, assuming fgg (v) # oo, our construction of
w55 (v) splits into two cases, according to whether v veri-
fies any of the conditionals from KB in ZK5 or not.

Case 1: v does not verify any of the conditionals in KB
in ZKE. In this case, we set:

UhE (v) # max{ Ryl (u) | Hpié(u) # 0o}

Case 2: v verifies at least one conditional from KB in ZK5.
In this case, the idea is to extend the upper rank of v as
much as possible while still ensuring the constraints rep-
resented by KCB are respected in the resulting Y55, If v
verifies a |~ f in %Eg, then this is achieved by setting
UKE (v) = ZRE(aAN—B) —1; or, if Z(a A=) = oo, then
again just set Z55 (v) = max{ZKE(u) | ZKE(u) # oo},
as in Case 1. (This takes care of ‘redundant’ conditionals
that might occur in KB, like o |~ «). We introduce now the
following notation. Given sentences «, (3
158 (, gy | ZRE(a N =B) = L if Zpé(a A) # o
REVDEIT A max{ZRE(u) | #KE (u) # 0o}, otherwise.
But we need to take care of the situation in which v pos-
sibly verifies more than one conditional from KB in ZK5.
In order to ensure that all conditionals in ICB will still be
satisfied, we need to take:
WEE ()= min{tiE (0, 8) | (a b B) € KB and
v verifies o v 3 in ZRE
So, summarising the two cases, we arrive at our final def-
inition of 5 5:
min{tk5(a,) | a ~ B € KB and
v verifies o« v B in ZKE},
if v verifies at least one conditional from
KB in ZKE

max{Z%5(u) | #KE(u) # oo}, otherwise.

UEE W)

Note that if v verifies « |~ f € KB in %’Eg, then
R (v) = AR (@) < ARE(aA=B) — 1 = tyé(a, B).
Thus, in both cases above, we have Z5E5(v) < %5E(v)
and so the pair Z55 and %5 form a legitimate interval-
based interpretation.

We thus arrive at our final definition of the disjunctive
rational closure of a conditional knowledge base.

Definition 6. Let 755 < (ZKE, U5E) be the interval-
based interpretation specified by fgg and %ll)cg as above.
The disjunctive rational closure of KB is the defeasible con-
sequence relation 'S8 L {a v B | IKE IF o BY.

In the remainder of this section, we revisit the examples
we have seen throughout the paper, to see what answer the
disjunctive rational closure gives.

Example 4. Going back to Example 1, with KB = {b |~
f}, the rational closure yields ZKE(bf) = #%5(bf) =
HRE(B) = 0 and Z#RE(b) = 1. Since LFE = #KE,
this gives us the lower ranks for each valuation in fl’)cg.
Turning to the upper ranks, the only valuation that verifies
the single conditional b |~ f in KCB is bf, thus %55 (bf) =
thB (b, f) = ZKE(b A —f) — 1 =1—1= 0, meaning that
the interval assigned to bf is (0,0). The other three valua-
tions all get assigned the same upper rank, which is just the
maximum finite rank occurring in ,%’gg, which is 1. Thus
the interval assigned to bf is (1,1), while both the valua-
tions in [-b] are assigned (0,1). So IKE outputs exactly
the same interval-based interpretation depicted in Figure 3
which, recall, gives the unique C-minimal disjunctive con-
sequence relation extending KCB in this case.

Example 5. Returning to Example 2, with KB = {m |~
s,mm | s}, the rational closure yields %NE(ms) =
ZKE(ms) = 0 and #KE(ms) = ZKE(ms) = 1, which
gives us the lower ranks. The valuation ms verifies only
the conditional m |~ s, and so UL5E(ms) = tKEB(m,s) =
HZKE(mA—s)—1=1—1=0. Similarly, the valuation ms
verifies only the conditional —m s and so, by analo-
gous reasoning, %55 (ms) = 55 (=m,s) = 0. So both
of these valuations are assigned the interval (0,0) by ¥ gg.
The other two valuations, which verify neither conditional
in KB, are assigned (1,1). Thus, in this case, fgg returns
Jjust the rational closure of KB, as pictured in Figure 5.

In both the above examples, the disjunctive rational clo-
sure returns arguably the right answers.

Example 6. Consider KB = {b |~ f,p — b,p |~ —f}.
As previously mentioned, the rational closure %ﬁg for this
ICB is depicted in Figure 1. Since both of the valuations
in [p A —b] (in red at the top of the picture) are deemed im-
plausible (i.e., have rank o), they are both assigned interval
(00, 00). Focusing then on just the plausible valuations, the
only valuation verifying b |~ f in %Eg is bfp (which veri-
fies no other conditional in KB), so %55 (bfp) = ZKE(bA
—f) =1 =1—1= 0. The only valuation verifying p p —f
is bfp, so #5E (bfp) = ZKE(pAf) —1=2—-1=1 All
other plausible valuations get assigned as their upper rank
the maximum finite rank, which is 2. The resulting .7, gg is
the interval-based interpretation depicted in Figure 2.

44

We end this section by considering our construction from
the standpoint of complexity. The construction method
above runs in time that grows (singly) exponentially with the
size of the input, even if the rational closure of the knowl-
edge base has been computed offline. To see why, let the
input be a set of propositional atoms P together with a con-
ditional knowledge base KB, and let [ICB| = n. (For sim-
plicity, we assume the size of /'3 to be the number of con-
ditionals therein.) We know that |/| = 2/7I. Now, for
each valuation v € U, one has to check whether v veri-
fies at least one conditional « |~ S in B (cf. Definition 5).
In the worst case, we have (i) all conditionals in B will
be checked against v, i.e., we will have n checks per val-
vation. Each of such checks amounts to comparing Z(v)
with Z(«), where « is the antecedent of the conditional un-
der inspection. While Z(v) is already known, Z(«) has
to be computed (unless, of course, we also assume it has
been done offline in the computation of the rational closure).
Computing % («) is done by searching for the lowest val-
uations in ZK5 satisfying . In the worst case, we have
that (i) 2/7! valuations have to be inspected. Each such
inspection amounts to a propositional verification, which
is a polynomial-time task. Every time v verifies a condi-
tional |~ 3, the computation of ¢5(-) also requires that
of ZKB(ce A —3). In the worst case, the latter requires 2!
propositional verifications. So, the computation of t’ﬁg()
takes at most (iii) n x 2P| checks. From (9), (ii) and (iii),
it follows that n? x 22/%| propositional verifications are re-
quired. This has to be done for each of the 2IP valuations,
and therefore we have a total of n? x 23I7| verifications in
the worst case, from which the result follows.

Let us now take a look at the complexity of entailment
checking, i.e., that of checking whether a conditional « |~
B is satisfied by .#55. This task amounts to computing
wKE(a) and Z5E(a A —B) and comparing them. It is
easy to see that in the worst-case scenario both require 2!7!
propositional verifications.

6 Properties of the Disjunctive Rational
Closure

We now turn to the question of which of the postulates from
Section 4 are satisfied by the disjunctive rational closure. We
start by observing that we obtain all of the basic postulates
proposed in Section 4.1:

Proposition 1. The disjunctive rational closure satisfies In-
clusion, D-Rationality, Equivalence and Infra-Rationality.

Proof. (Outline) D-Rationality is immediate since we con-
struct an interval-based interpretation. Equivalence is also
straightforward. For Infra-Rationality, first recall that
a PXB Biff w5E (o) < ZKE(an-p). Since 55 (a) <
%55 () (follows by definition of interval-based interpreta-
tion) and ZK5(a A—B) = ZKE(a A—p) (by construction),
we have %55 (o) < ZKE(a A —B) implies ZxE(a) =
LKEB(a) < #KB(a A —B), giving a KB 3, as required
for Infra-Rationality. For Inclusion, suppose o |~ 5 € KB.

If Z55 (o) = o0, then.,i” B(a) = %55 () = oo by con-
struction and so « kv B So assume ZxE(a) # .
Then, to show o A5 [3 it suffices to show Z55(v) <
LEE(a A =B) = Z#KE(a A =) for at least one v € [a].
Since rational closure satisfies inclusion, we know « Pv']%g B8
and so, since 25 (a) # oo, there must exist at least one v
verifying v |~ 3 in ZKE. By construction of Z5E, we

have Z5E(v') < thB(a,B) = Z#KE(a A —B) — 1 as re-
quired. O

We remind the reader that, since Inclusion and D-
Rationality hold, disjunctive rational closure also satisfies
Preferential Extension.

Now we look at the Cumulativity properties. It is known
from the work by Lehmann and Magidor (1992) that rational
closure satisfies both Cautious Monotonicity and Cut, and,
in fact if |’V B and KB = KB U {a |~ B}, then

HKE = %RC . We can show the following for disjunctive
rational closure.

Proposition 2. The disjunctive rational closure does not
satisfy Cut.

Proof. Assume P = {b,f}, and KB is again the knowl-
edge base from Example 1, i.e., {b |~ f}. We have seen in
Example 4 that .#55 is given by the interval-based interpre-
tation depicted in Figure 3. By inspecting this picture, we
see IKEI-T |~ (b — f). Now let KB = KBU{T |~
(b — f)}. Then #K55 is given by the model in Figure 6.

We now have .#KE" I+ —f | —b, whereas before we had

IKB I} —f | —b. O
bf .
bf e
bf
bf e
0 1

Figure 6: Output for KB’ = {b |~ f, T |~ (b —)}

Essentially, the reason for the failure of Cut is that by
adding a new conditional o |~ f to the knowledge base,
even when that conditional is already inferred by the dis-
junctive rational closure, we give certain valuations (namely
those in [«]) the opportunity to verify one more condi-

tional from the knowledge base in ZKx5 . (See, e.g. the
two valuations in [—b] in the above counterexample.) This
leads, potentially, to a corresponding decrease in their up-
per ranks %8, leading in turn to more inferences being
made available. This behaviour reveals that disjunctive ra-
tional closure can be termed a base-driven approach, since
the conditionals that are included explicitly in the knowledge
base have more influence compared to those that are merely
derived. However, adding an inferred conditional will never

45

lead to an increase in the upper ranks, which means the dis-
junctive rational closure does satisfy Cautious Monotonicity.

Proposition 3. The disjunctive rational closure satisfies
Cautious Monotonicity.

Proof. (Outline) Suppose o 58, 3 and let KB’ = KB U
{a |~ B}. Since disjunctive ratlonal closure satisfies Infra-
Rationality, we know « |~’§g 5, and so, since rational clo-
sure satisfies Cautious Monotonicity, %’E = #KE e,

the lower ranks of all valuations in f are unchanged
from ﬂ KE. To show A5, CRKB it thus suffices to show
wy, (v) < 5B) for all valuations v. If v does not
verlfy a f~ Bin %’RC , then K5 (v) = wKE (v) (since
all terms and cases in the definition of %7 KB depend only
on %’Rc =) while if v does Verlfy « |~ S in %RC s
then 58 (v) = min{Z5E (v), 158 (0, 8)} < %5E (),
as required. O

As we have seen in Corollary 1 in Section 4.4, the satis-
faction of Cautious Monotonicity, plus the seemingly very
reasonable behaviour displayed by disjunctive rational clo-
sure in Example 5, come at the cost of Vacuity, i.e., even if
the preferential closure happens to be a disjunctive relation,
the output may sanction extra conclusions.

Proposition 4. The disjunctive rational closure does not
satisfy Vacuity.

Proof. By Corollary 1, there can be no operator * satis-
fying Cautious Monotonicity and Vacuity that infers both
(=m <> s) 5B sand (m <> s) K5 s. We saw in Exam-
ple 5 that the disjunctive rational closure returns the rational
closure for this ICB, and so yields both these conditional in-
ferences. We have also just seen that disjunctive rational
closure satisfies Cautious Monotonicity. Hence we deduce
that disjunctive rational closure cannot satisfy Vacuity. [J

What about the Representation Independence postulates?
Concerning full Representation Independence, we have re-
marked earlier that this postulate is not compatible with the
basic postulates, and so Proposition 1 already tells us that
disjunctive rational closure fails it. However, we conjecture
that Negated Representation Independence is satisfied, since
we can show that if rational closure satisfies it, then the dis-
junctive rational closure will inherit the property. Although
Jaeger (1996) showed that rational closure does indeed con-
form with his version of Representation Independence, it re-
mains to be proved that his notion coincides precisely with
ours.

7 Concluding remarks

In this paper, we have set ourselves the task to revive in-
terest in weaker alternatives to Rational Monotonicity when
reasoning with conditional knowledge bases. We have stud-
ied the case of Disjunctive Rationality, a property already
known by the community from the work of Kraus et al. and
Freund in the early *90s, which we have then coupled with a
semantics in terms of interval orders borrowed from a more
recent work by Rott in belief revision.

In our quest for a suitable form of entailment ensuring
Disjunctive Rationality, we started by putting forward a set
of postulates, all reasonable at first glance, characterising
its expected behaviour. As it turns out, not all of them can
be satisfied simultaneously, which suggests there might be
more than one answer to our research question. We have
then provided a construction of the disjunctive rational clo-
sure of a conditional knowledge base, which infers a set of
conditionals intermediate between the preferential closure
and the rational closure.

Regarding the properties of disjunctive rational closure,
the news is somewhat mixed, with several basic postulates
satisfied, as well as Cautious Monotonicity, but with nei-
ther Cut nor Vacuity holding in general. Regarding Cut, the
reason for its failure seems tied to the fact that disjunctive
rational closure places special importance on the condition-
als that are explicitly written as part of the knowledge base.
In this regard it shares commonalities with other base-driven
approaches to defeasible inference such as the lexicographic
closure (Lehmann 1995). We conjecture that a weaker ver-
sion of Cut will still hold for our approach, according to
which the new conditional added « |~ [is such that «
already appears as an antecedent of another conditional al-
ready in KB.

Regarding Vacuity, our impossibility result and surround-
ing discussion tells us that its failure is unavoidable given the
other, reasonable, behaviour that we have shown disjunctive
rational closure to exhibit. Essentially, when trying to devise
a method for conditional inference under Disjunctive Ratio-
nality, we are faced with a choice between Vacuity and Cau-
tious Monotonicity, with disjunctive rational closure favour-
ing the latter at the expense of the former. It is possible, of
course, to tweak the current approach by treating the case
when Mglg happens to be a disjunctive relation separately,
outputting the preferential closure in this case, while return-
ing the disjunctive rational closure otherwise. However the
full ripple effects on the other properties of }N’Blg of making
this manoeuvre remain to be worked out.

As for future work, we plan to start by checking
whether disjunctive rational closure satisfies Negated Rep-
resentation Independence, as well as the Justification pos-
tulate. We also plan to investigate suitable definitions of
a preference relation on the set of interval-based interpre-
tations. We hope our construction can be shown to be the
most preferred extension of the knowledge base according
to some intuitively defined preference relation, as has been
done in the rational case.

In this work we required the postulate of Infra-Rationality.
As a result our construction of disjunctive rational closure
took the rational closure as a starting point and then per-
formed a particular modification to it to obtain a special
‘privileged’ subset of it that extends the input knowledge
base and forms a disjunctive consequence relation. However
it is clear that this modification could just as well be applied
to any of the other conditional inference methods that have
been suggested in the literature and that output a rational
consequence relation, such as the lexicographic closure or
System JLZ (Weydert 2003) or those based on c-revisions
(Kern-Isberner 2001). It will be interesting to see what kind

46

of properties will be gained or lost in these cases.

Finally, given the recent trend in applying defeasible rea-
soning to formal ontologies in Description Logics (Bonatti
etal. 2015; Bonatti and Sauro 2017; Britz, Meyer, and Varz-
inczak 2011; Britz and Varzinczak 2019; Giordano et al.
2015; Pensel and Turhan 2018), an investigation of our ap-
proach beyond the propositional case is also envisaged.

Acknowledgments

This work is based upon research supported in part by the
“Programme de Recherche Commun” Non-Classical Rea-
soning for Enhanced Ontology-based Semantic Technolo-
gies between the CNRS and the Royal Society. Thanks to
the anonymous NMR reviewers for some helpful sugges-
tions.

References

Bonatti, P, and Sauro, L. 2017. On the logical properties of
the nonmonotonic description logic DL . Artificial Intelli-
gence 248:85-111.

Bonatti, P.; Faella, M.; Petrova, 1.; and Sauro, L. 2015. A
new semantics for overriding in description logics. Artificial
Intelligence 222:1-48.

Bonatti, P. 2019. Rational closure for all description logics.
Artificial Intelligence 274:197-223.

Booth, R., and Paris, J. 1998. A note on the rational clo-
sure of knowledge bases with both positive and negative
knowledge. Journal of Logic, Language and Information
7(2):165-190.

Booth, R.; Casini, G.; Meyer, T.; and Varzinczak, 1. 2019.
On rational entailment for propositional typicality logic. Ar-
tificial Intelligence 277.

Booth, R.; Meyer, T.; and Varzinczak, I. 2012. PTL:
A propositional typicality logic. In Farifas del Cerro, L.;
Herzig, A.; and Mengin, J., eds., Proceedings of the 13th
European Conference on Logics in Artificial Intelligence
(JELIA), number 7519 in LNCS, 107-119. Springer.

Britz, K., and Varzinczak, I. 2017. Toward defeasible
SROZQ. In Proceedings of the 30th International Work-
shop on Description Logics.

Britz, K., and Varzinczak, I. 2018a. From KLM-style con-
ditionals to defeasible modalities, and back. Journal of Ap-
plied Non-Classical Logics (JANCL) 28(1):92-121.

Britz, K., and Varzinczak, I. 2018b. Preferential accessibil-

ity and preferred worlds. Journal of Logic, Language and
Information (JoLLI) 27(2):133—155.

Britz, K., and Varzinczak, I. 2019. Contextual rational clo-
sure for defeasible ALC. Annals of Mathematics and Artifi-
cial Intelligence 87(1-2):83-108.

Britz, K.; Meyer, T.; and Varzinczak, I. 2011. Seman-
tic foundation for preferential description logics. In Wang,
D., and Reynolds, M., eds., Proceedings of the 24th Aus-
tralasian Joint Conference on Artificial Intelligence, number
7106 in LNAI, 491-500. Springer.

Casini, G.; Meyer, T.; Moodley, K.; and Nortjé, R. 2014.
Relevant closure: A new form of defeasible reasoning for

description logics. In Fermé, E., and Leite, J., eds., Pro-
ceedings of the 14th European Conference on Logics in Arti-
ficial Intelligence (JELIA), number 8761 in LNCS, 92—-106.
Springer.

Casini, G.; Meyer, T.; Moodley, K.; Sattler, U.; and Varz-
inczak, I. 2015. Introducing defeasibility into OWL ontolo-
gies. In Arenas, M.; Corcho, O.; Simperl, E.; Strohmaier,
M.; d’Aquin, M.; Srinivas, K.; Groth, P.; Dumontier, M.;
Heflin, J.; Thirunarayan, K.; and Staab, S., eds., Proceedings
of the 14th International Semantic Web Conference (ISWC),
number 9367 in LNCS, 409—426. Springer.

Casini, G.; Meyer, T.; and Varzinczak, I. 2019. Taking de-
feasible entailment beyond rational closure. In Calimeri, F.;
Leone, N.; and Manna, M., eds., Proceedings of the 16th
European Conference on Logics in Artificial Intelligence
(JELIA), number 11468 in LNCS, 182-197. Springer.

Chafik, A.; Cheikh, F.; Condotta, J.-F.; and Varzinczak, I.
2020. On the decidability of a fragment of preferential LTL.
In Proceedings of the 27th International Symposium on Tem-
poral Representation and Reasoning (TIME).

Fishburn, P. 1985. Interval Orders and Interval Graphs: A
Study of Partially Ordered Sets. Wiley.

Freund, M. 1993. Injective models and disjunctive relations.
Journal of Logic and Computation 3(3):231-247.

Girdenfors, P., and Makinson, D.
inference based on expectations.
65(2):197-245.

Giordano, L.; Gliozzi, V.; Olivetti, N.; and Pozzato, G.
2007. Preferential description logics. In Dershowitz, N.,
and Voronkov, A., eds., Logic for Programming, Artificial
Intelligence, and Reasoning (LPAR), number 4790 in LNAI,
257-272. Springer.

Giordano, L.; Gliozzi, V.; Olivetti, N.; and Pozzato, G. 2010.
Preferential vs rational description logics: which one for rea-
soning about typicality? In Proceedings of the European
Conference on Artificial Intelligence (ECAI), 1069-1070.

Giordano, L.; Gliozzi, V.; Olivetti, N.; and Pozzato, G. 2012.
A minimal model semantics for nonmonotonic reasoning.
In Farinas del Cerro, L.; Herzig, A.; and Mengin, J., eds.,
Proceedings of the 13th European Conference on Logics in
Artificial Intelligence (JELIA), number 7519 in LNCS, 228
241. Springer.

Giordano, L.; Gliozzi, V.; Olivetti, N.; and Pozzato, G. 2015.
Semantic characterization of rational closure: From propo-
sitional logic to description logics. Artificial Intelligence
226:1-33.

Jaeger, M. 1996. Representation independence of non-
monotonic inference relations. In Aiello, L.; Doyle, J.;
and Shapiro, S., eds., Proceedings of the 5th International
Conference on Principles of Knowledge Representation and
Reasoning (KR), 461-472. Morgan Kaufmann Publishers.

Kern-Isberner, G. 2001. Conditionals in Nonmonotonic
Reasoning and Belief Revision. Springer, Lecture Notes in
Artificial Intelligence.

Kraus, S.; Lehmann, D.; and Magidor, M. 1990. Nonmono-

1994. Nonmonotonic
Artificial Intelligence

47

tonic reasoning, preferential models and cumulative logics.
Artificial Intelligence 44:167-207.

Lehmann, D., and Magidor, M. 1992. What does a condi-
tional knowledge base entail? Artificial Intelligence 55:1—
60.

Lehmann, D. 1995. Another perspective on default rea-
soning. Annals of Mathematics and Artificial Intelligence
15(1):61-82.

Makinson, D. 1994. General patterns in nonmonotonic rea-
soning. In Gabbay, D.; Hogger, C.; and Robinson, J., eds.,
Handbook of Logic in Artificial Intelligence and Logic Pro-
gramming, volume 3. Oxford University Press. 35-110.

Marquis, P., and Schwind, N. 2014. Lost in translation:
Language independence in propositional logic — application
to belief change. Artificial Intelligence 206:1-24.
McCarthy, J. 1980. Circumscription, a form of nonmono-
tonic reasoning. Artificial Intelligence 13(1-2):27-39.

Pensel, M., and Turhan, A.-Y. 2017. Including quantifica-
tion in defeasible reasoning for the description logic ££ .
In Balduccini, M., and Janhunen, T., eds., Proceedings of
the 14th International Conference on Logic Programming
and Nonmonotonic Reasoning (LPNMR), number 10377 in
LNCS, 78-84. Springer.

Pensel, M., and Turhan, A.-Y. 2018. Reasoning in the defea-
sible description logic ££ | —computing standard inferences
under rational and relevant semantics. International Journal
of Approximate Reasoning 112:28-70.

Reiter, R. 1980. A logic for default reasoning. Artificial
Intelligence 13(1-2):81-132.

Rott, H. 2014. Four floors for the theory of theory change:
The case of imperfect discrimination. In Fermé, E., and
Leite, J., eds., Proceedings of the 14th European Conference
on Logics in Artificial Intelligence (JELIA), number 8761 in
LNCS, 368-382. Springer.

Shoham, Y. 1988. Reasoning about Change: Time and Cau-
sation from the Standpoint of Artificial Intelligence. MIT
Press.

Varzinczak, 1. 2018. A note on a description logic of concept
and role typicality for defeasible reasoning over ontologies.
Logica Universalis 12(3-4):297-325.

Weydert, E. 2003. System JLZ - rational default reasoning
by minimal ranking constructions. Journal of Applied Logic
1(3-4):273-308.

Treewidth-Aware Complexity in ASP:
Not all Positive Cycles are Equally Hard*

Jorge Fandinno' , Markus Hecher!

!University of Potsdam, Germany
2TU Wien, Austria
{jorgefandinno, mhecher} @ gmail.com

Abstract

It is well-know that deciding consistency for normal answer set
programs (ASP) is NP-complete, thus, as hard as the satisfac-
tion problem for classical propositional logic (SAT). The best
algorithms to solve these problems take exponential time in
the worst case. The exponential time hypothesis (ETH) implies
that this result is tight for SAT, that is, SAT cannot be solved in
subexponential time. This immediately establishes that the re-
sult is also tight for the consistency problem for ASP. However,
accounting for the treewidth of the problem, the consistency
problem for ASP is slightly harder than SAT: while SAT can
be solved by an algorithm that runs in exponential time in the
treewidth k, it was recently shown that ASP requires exponen-
tial time in & - log(k). This extra cost is due checking that
there are no self-supported true atoms due to positive cycles in
the program. In this paper, we refine the above result and show
that the consistency problem for ASP can be solved in expo-
nential time in & - log(A) where X is the minimum between
the treewidth and the size of the largest strongly-connected
component in the positive dependency graph of the program.
We provide a dynamic programming algorithm that solves the
problem and a treewidth-aware reduction from ASP to SAT
that adhere to the above limit.

1 Introduction

Answer Set Programming (ASP) (Brewka, Eiter, and
Truszczynski 2011; Gebser et al. 2012) is a problem mod-
eling and solving paradigm well-known in the area of
knowledge representation and reasoning that is experienc-
ing an increasing number of successful applications (Bal-
duccini, Gelfond, and Nogueira 2006; Nogueira et al. 2001;
Guziolowski et al. 2013). The flexibility of ASP comes with
a high computational complexity cost: its consistency prob-
lem, that is, deciding the existence of a solution (answer set)
for a given logic program is ¥4’ -complete (Eiter and Gott-
lob 1995), in general. Fragments with lower complexity are
also known. For instance, the consistency problem for nor-
mal ASP or head-cycle-free (HCF) ASP, is NP-complete.
Even for solving this class of programs, the best known al-
gorithms require exponential time with respect to the size

*The work has been supported by the Austrian Science Fund
(FWF), Grants Y698 and P32830, and the Vienna Science and
Technology Fund, Grant WWTF ICT19-065. It is also accepted for
presentation at the ASPOCP’20 workshop (Fandinno and Hecher
2020).

48

of the program. Still, existing solvers (Gebser et al. 2012;
Alviano et al. 2017) are able to find solutions for many in-
teresting problems in reasonable time. A way to shed light
into this discrepancy is by means of parameterized complex-
ity (Cygan et al. 2015), which conducts more fine-grained
complexity analysis in terms of parameters of a problem. For
ASP, several results were achieved in this direction (Gottlob,
Scarcello, and Sideri 2002; Lonc and Truszczynski 2003;
Lin and Zhao 2004; Fichte and Szeider 2015), some insights
involve even combinations (Lackner and Pfandler 2012;
Fichte, Kronegger, and Woltran 2019) of parameters. More
recent studies focus on the influence of the parameter
treewidth for solving ASP (Jakl, Pichler, and Woltran 2009;
Fichte et al. 2017; Fichte and Hecher 2019; Bichler, Morak,
and Woltran 2018; Bliem et al. 2020). These works directly
make use of the treewidth of a given logic program in or-
der to solve, e.g., the consistency problem, in polynomial
time in the program size, while being exponential only in the
treewidth. Recently, it was shown that for normal ASP decid-
ing consistency is expected to be slightly superexponential
for treewidth (Hecher 2020). More concretely, a lower bound
was established saying that under reasonable assumptions
such as the Exponential Time Hypothesis (ETH) (Impagliazzo,
Paturi, and Zane 2001), consistency for any normal logic pro-
gram of treewidth k cannot be decided in time significantly
better than 2% [1°8(k)1 . poly(n), where n is the number of
variables (atoms) of the program. This result matches the
known upper bound (Fichte and Hecher 2019) and shows that
the consistency of normal ASP is slightly harder than the
satisfiability (SAT) of a propositional formula, which under
the ETH cannot be decided in time 2°(*) - poly (n).

We address this result and provide a more detailed anal-
ysis, where besides treewidth, we also consider the size ¢
of the largest strongly-connected component (SCC) of the
positive dependency graph as parameter. This allows us to
obtain runtimes below 2FT1°&(®)1 . poly(n) and show that
that not all positive cycles of logic programs are equally hard.
Then, we also provide a treewidth-aware reduction from head-
cycle-free ASP to the fragment of tight ASP, which pro-
hibits cycles in the corresponding positive dependency graph.
This reduction reduces a given head-cycle-free program of
treewidth k to a tight program of treewidth O(k - log(¢)),
which improves known results (Hecher 2020). Finally, we es-
tablish that tight ASP is as hard as SAT in terms of treewidth.

Contributions. More concretely, we present the following.

1. First, we establish a parameterized algorithm for deciding
consistency of any head-cycle-free program II that runs in
time 20 (*198(0)) . poly(|at(IT)|), where k is the treewidth
of IT and ¢ is the size of the largest strongly-connected
component (SCC) of the dependency graph of II. Com-
bining this result with results from (Hecher 2020), con-
sistency of any head-cycle-free program can be decided
in 20(k108(N) . poly (|at(IT)|) where A is the minimum of
and /. Besides, our algorithm bijectively preserves answer
sets with respect to the atoms of 1I and can be therefore
easily extended, see, e.g. (Pichler, Riimmele, and Woltran
2010), for counting and enumerating answer sets.

2. Then, we present a treewidth-aware reduction from head-
cycle-free ASP to tight ASP. Our reduction takes any head-
cycle-free program II and creates a tight program, whose
treewidth is at most O(k - log(¢)), where k is the treewidth
of IT and ¢ is the size of the largest SCC of the dependency
graph of II. In general, the treewidth of the resulting tight
program cannot be in o(k - log(k)), unless ETH fails. Our
reduction forms a major improvement for the particular
case where ¢ < k.

3. Finally, we show a treewidth-aware reduction that takes
any tight logic program II and creates a propositional for-
mula, whose treewidth is linear in the treewidth of the
program. This reduction cannot be significantly improved
under ETH. Our result also establishes that for deciding
consistency of tight logic programs of bounded treewidth &,
one indeed obtains the same runtime as for SAT, nam-
ley 2°) . poly(|at(IT)|), which is ETH-tight.

Related Work. While the largest SCC size has already
been considered (Janhunen 2006), it has not been studied
in combination with treewidth. Also programs, where the
number of even and/or odd cycles is bounded, have been
analyzed (Lin and Zhao 2004), which is orthogonal to the
size of the largest cycle or largest SCC size /. Indeed, in
the worst-case, each component might have an exponen-
tial number of cycles in ¢. Further, the literature distin-
guishes the so-called feedback width (Gottlob, Scarcello,
and Sideri 2002), which involves the number of atoms re-
quired to break the positive cycles. There are also related
measures, called smallest backdoor size, where the removal
of a backdoor, i.e., set of atoms, from the program results
in normal or acyclic programs (Fichte and Szeider 2015;
Fichte and Szeider 2017).

2 Background

We assume familiarity with graph terminology. Given a
directed graph G = (V, E). Then, aset C C V of vertices
of G is a strongly-connected component (SCC) of G if C'is
a C-largest set such that for every two distinct vertices u, v
in C there is a directed path from u to v in G. A cycle over
some vertex v of GG is a directed path from v to v.

Answer Set Programming (ASP). Further, we assume fa-
miliarity with propositional satisfiability (SAT) and follow
standard definitions of propositional ASP (Brewka, FEiter,

49

and Truszczynski 2011). Let m, n, o be non-negative inte-
gers such that m < n < o, ay, ..., a, be distinct proposi-
tional atoms. Moreover, we refer by literal to an atom or the
negation thereof. A (logic) program 11 is a set of rules of
the formay V -+ -V @y, — amt1,---
For a rule r, we let H. := {a1,...,am}, B} =
{am+1,...,an}, and B = {apy1,...,a,}. We denote
the sets of afoms occurring in a rule 7 or in a program II by
at(r) := H, UB;7 UB; and at(Il) := |J, o at(r). Fora
set X C at(II) of atoms, we let X := {-z | z € X}. Pro-
gram 11 is normal, if |H,.| < 1 for every r € II. The positive
dependency digraph D of 11 is the directed graph defined
on the set of atoms from | J, .;; H, U B}, where there is a di-
rected edge from vertex a to vertex b iff there is a rule r € II
witha € B;f and b € H,.. A head-cycle of Dy is an {a, b}-
cycle1 for two distinct atoms a, b € H, for some rule r € II.
A program II is head-cycle-free (HCF) if Dy contains no
head-cycle (Ben-Eliyahu and Dechter 1994) and II is called
tight if Dy contains no cycle at all (Lin and Zhao 2003). The
class of tight, normal, and HCF programs is referred to by
tight, normal, and HCF ASP, respectively.

An interpretation I is a set of atoms. I satisfies a rule r
if (H-UBy)NI#OorBFf\I# 0. Iisamodel
of IT if it satisfies all rules of II, in symbols I = TI. For
brevity, we view propositional formulas as sets of clauses
that need to be satisfied, and use the notion of interpreta-
tions, models, and satisfiability analogously. The Gelfond-
Lifschitz (GL) reduct of I1 under I is the program IT/ obtained
from II by first removing all rules r with B, NI # () and
then removing all =z where z € B,” from every remaining
rule r (Gelfond and Lifschitz 1991). I is an answer set of
a program II if I is a minimal model of II/. The problem
of deciding whether an ASP program has an answer set is
called consistency, which is Zg—complete (Eiter and Gottlob
1995). If the input is restricted to normal programs, the com-
plexity drops to NP-complete (Bidoit and Froidevaux 1991;
Marek and Truszczyniski 1991). A head-cycle-free pro-
gram II can be translated into a normal program in poly-
nomial time (Ben-Eliyahu and Dechter 1994). The follow-
ing characterization of answer sets is often invoked when
considering normal programs (Lin and Zhao 2003). Given a
set A C at(II) of atoms, a functiono : A — {0,...,|A4|—1}
is called level mapping over A. Given a model I of a normal
program II and a level mapping o over I, an atom a € [is
proven if there is a rule r € Il proving a with o, where a €
H, with (i) B;f C I, (i) INB; =0and IN(H,\{a}) =0,
and (iii) o(b) < o(a) for every b € B;. Then, I is an an-
swer set of I1 if (i) I is a model of II, and (ii) I is proven, i.e.,
every a € I is proven. This characterization vacuously ex-
tends to head-cycle-free programs (Ben-Eliyahu and Dechter
1994) and allows for further simplification when consider-
ing SCCs of Dy (Janhunen 2006). To this end, we denote
for each atom « € at(II) the strongly-connected component
(SCC) of atom «a in Dy by scc(a). Then, Condition (iii)
above can be relaxed to o(b) < o(a) forevery b € B}t N C,
where C' = scc(a) is the SCC of a.

yAny 7An41y .- -

"Let G = (V, E) be a digraph and W C V. Then, a cycle in G
is a W-cycle if it contains all vertices from W.

b

e a

Je fe Id
C

Figure 1: Positive dependency graph Dy of II of Example 1.

Example 1. Consider the following pro-
gram 1T, given by {a+ d; b a; b+ d;
S~ Y~ Y~

1 T2 T3
b e,nf;c byd« bc;eV Vgt Observe
T4 s Te r7
that 11 is head-cycle-free. Figure I shows the positive
dependency graph Dy consisting of SCCs scc(e), sce(f),
sce(g), and scc(a) = sce(b) = sce(e) = sce(d). Then,
I := {a,b,c,d,e} is an answer set of 11, since I = TI,
and we can prove with level mapping o = {e — 0, f — 0,
g—0,b—0,c—~1,d— 2 a+— 3} atom e by rule 1,
atom b by rule r4, atom c by rule rs, and atom d by rule r¢.
Further answer sets are { f} and {g}.

Tree Decompositions (TDs). A tree decomposi-
tion (TD) (Robertson and Seymour 1986) of a given
graph G=(V, E) is a pair T=(T,x) where T is a tree
rooted at root(7") and y assigns to each node ¢ of T a
set x(t) € V, called bag, such that (i) V' = U, ;7 x (%),
(i) E C {{u,v} | tinT,{u,v} C x(¢)}, and (iii) “con-
nectedness”: for each r,s,t of T', such that s lies on the
path from r to ¢, we have x(r) N x(t) € x(s). For every
node t of T, we denote by chld(t) the set of child nodes
of t in T'. The bags x<; below t consists of the union
of all bags of nodes below ¢ in 7, including t. We let
width(7) := max; of 7 |x(t)| — 1. The treewidth tw(G) of G
is the minimum width(7") over all TDs T of G. TDs can be
S-approximated in single exponential time (Bodlaender et al.
2016) in the treewidth. For a node ¢ of T', we say that type(t)
is leaf if t has no children and x(¢) = 0; join if ¢ has chil-
dren ¢ and t” with ¢ # t" and x(t) = x(¥') = x(");
int (“introduce”) if ¢ has a single child ¢, x(¢') C x(¢)
and |x(t)] = |x(t")| + 1; forget if ¢ has a single child ¢,
x(t") 2 x(t) and |x(¢')| = |x(t)| + 1. If for every node
t of T, type(t) € {leaf,join,int, forget}, the TD is called
nice. A TD can be turned into a nice TD (Kloks 1994)[Lem.
13.1.3] without increasing the width in linear time.

Example 2. Figure 2 illustrates a graph G and a TD T
of G of width 2, which is also the treewidth of G, since G
contains (Kloks 1994) a completely connected graph among
vertices b,c,d.

In order to use TDs for ASP, we need dedicated graph
representations of programs (Jakl, Pichler, and Woltran 2009).
The primal graph® G of program II has the atoms of IT as
vertices and an edge {a, b} if there exists a rule r € II and
a,b € at(r). Let T = (T, x) be a TD of primal graph Gy of
a program II, and let ¢ be a node of T'. The bag program 11,
contains rules entirely covered by the bag x(¢). Formally,
I, :={r|reat(r) C x(¢)}

% Analogously, the primal graph G of a propositional For-
mula F' uses variables of F' as vertices and adjoins two vertices a, b
by an edge, if there is a clause in I’ containing a, b.

50

ts ty4
N a ts ({b.d.e}) ({e. 1. 9})
Je &t . d t, ({a.0,4}) ({b.c,d})t,

Figure 2: Graph G (left) and a tree decomposition 7 of G (right).

Example 3. Recall program 11 from Example I and observe
that graph G of Figure 2 is the primal graph of I1. Further,
we have Iy, = {rq,ro,7r3}, Wy, = {r3, 75,76} M, = 0,
I, = {r7} and Iy, = {r4}.

3 Bounding Treewidth and Positive Cycles

Recently, it was shown that under reasonable assumptions,
namely the exponential time hypothesis (ETH), deciding
consistency of normal logic programs is slightly superexpo-
nential and one cannot expect to significantly improve in the
worst case. For a given normal logic program, where k is the
treewidth of the primal graph of the program, this implies
that one cannot decide consistency in time significantly better
than 2F [eg(®)1 . poly(|at(IT)|).

Proposition 1 (Lower Bound for Treewidth (Hecher 2020)).
Given a normal or head-cycle-free logic program 11, where k
is the treewidth of the primal graph of 11. Then, under ETH
one cannot decide consistency of 11 in time 2°(*108(k)) .
poly ([at(IT)|).

While according to Proposition 1, we cannot expect to
significantly improve the runtime for normal logic programs
in the worst case, it still is worth to study the underlying
reason that makes the worst case so bad. It is well-known
that positive cycles are responsible for the hardness (Lifschitz
and Razborov 2006; Janhunen 2006) of computing answer
sets of normal logic programs. The particular issue with logic
programs II in combination with treewidth and large cycles
is that in a tree decomposition of Gy it might be the case that
the cycle spreads across the whole decomposition, i.e., tree
decomposition bags only contain parts of such cycles, which
prohibits to view these cycles (and dependencies) as a whole.
This is also the reason of the hardness given in Proposition 1
and explains why under bounded treewidth evaluating nor-
mal logic programs is harder than evaluating propositional
formulas. However, if a given normal logic program only has
positive cycles of length at most 3, and each atom appears
in at most one positive cycle, the properties of tree decom-
positions already ensure that the atoms of each such positive
cycle appear in at least one common bag. Indeed, a cycle
of length at most 3 forms a completely connected subgraph
and therefore it is guaranteed (Kloks 1994) that the atoms of
the cycle are in one common bag of any tree decomposition
of G II-

Example 4. Recall program 11 of Example 1. Observe that
in any TD of G it is required that there are nodes t,t’
with x(t) C {b,c,d} and x(t') C {a,b,d} since a cycle of
length 3 in the positive dependency graph Dr (cf., Figure 1)
forms a completely connected graph in the primal graph, cf.,
Figure 2 (left).

In the following, we generalize this result to cycles of
length at most ¢, where we bound the size of these positive
cycles in order to improve the lower bound of Proposition 1
on programs of bounded positive cycle lengths. This will pro-
vide not only a significant improvement in the running time
on programs, where the size of positive cycles is bounded,
but also shows that indeed the case of positive cycle lengths
up to 3 can be generalized to lengths beyond 3. Consequently,
we establish that not all positive cycles are bad assuming that
the maximum size ¢ of the positive cycles is bounded, which
provides an improvement of Proposition 1 as long as ¢ < k,
where k is the treewidth of Gyj.

Bounding Positive Cycles. In the remainder, we assume
an HCF logic program II, whose treewidth is given by k =
tw(Grr). We let £yec(q) for each atom a be the number of
atoms (size) of the SCC of a in Dyy. Further, we let ¢ :=
MaX,eq () Lsce(a) DE the largest SCC size. This also bounds
the lengths of positive cycles. If each atom a appears in
at most one positive cycle, we have that £y (q) is the cycle
length of a and then / is the length of the largest cycle in II.
We refer to the class of HCF logic programs, whose largest
SCC size is bounded by a parameter ¢ by SCC-bounded
ASP. Observe that the largest SCC size ¢ is orthogonal to the
measure treewidth.

Example 5. Consider program 11 from Example 1.
Then, escc(e) :gscc(f) :Kscc(g) =1, Kscc(a) :fscc(b) :Escc(c) =
lsee(ay=4, and L = 4. Now, assume a program II', whose
primal graph equals the dependency graph, which is just one
large (positive) cycle. It is easy to see that this program has
treewidth 2 and one can define a TD of Gy, whose bags are
constructed along the cycle. However, the largest SCC size
coincides with the number of atoms. Conversely, there are
instances of large treewidth without any positive cycle.

Bounding cycle lengths or sizes of SCCs seems similar
to the non-parameterized context, where the consistency of
normal logic programs is compiled to a propositional formula
(SAT) by a reduction based on level mappings that is applied
on a SCC-by-SCC basis (Janhunen 2006). However, this
reduction does not preserve the treewidth. On the other hand,
while our approach also uses level mappings and proceeds
on an SCC-by-SCC basis, the overall evaluation is not SCC-
based, since this might completely destroy the treewidth in
the worst-case. Instead, the evaluation is still guided along a
tree decomposition, which is presented in two flavors. First,
we show a dedicated parameterized algorithm for the evalua-
tion of logic programs of bounded treewidth, followed by a
treewidth-aware reduction to propositional satisfiability.

3.1 Towards Exploiting Treewidth for
SCC-bounded ASP

In the course of this and the next section, we establish the
following result.

Theorem 1 (Runtime of SCC-bounded ASP). Assume a
HCF logic program 11, where the treewidth of the primal
graph Gy of 11 is at most k and (is the largest SCC
size. Then, there is an algorithm for deciding the con-
sistency of TI, running in time 2°(1°8(N) . poly (|at(IT)|),
where A = min({k, £}).

51

The overall idea of the algorithm relies on so-called dy-
namic programming, which be briefly recap next.

Dynamic Programming on Tree Decompositions. Dy-
namic programming (DP) on TDs, see, e.g., (Bodlaender
and Koster 2008), evaluates a given input instance Z in parts
along a given TD of a graph representation G of the instance.
Thereby, for each node ¢ of the TD, intermediate results are
stored in a table 7. This is achieved by running a table algo-
rithm, which is designed for a certain graph representation,
and stores in 7, results of problem parts of Z, thereby consid-
ering tables 7 for child nodes ¢’ of . DP works for many
problem instances I as follows.

1. Construct a graph representation G of Z.

2. Compute a TD 7 = (T, x) of G. For simplicity and
better presentation of the different cases within our table
algorithms, we use nice TDs for DP.

3. Traverse the nodes of T' in post-order (bottom-up tree
traversal of T). At every node ¢ of 71" during post-order
traversal, execute a table algorithm that takes as input a bag
x(t), a certain bag instance Z; depending on the problem,
as well as previously computed child tables of ¢. Then, the
results of this execution is stored in table 7;.

4. Finally, interpret table 7,, for the root node n of T" in order
to output the solution to the problem for instance Z.

Now, the missing ingredient for solving problems via dy-
namic programming along a given TD, is a suitable table
algorithm. Such algorithms have been already presented
for SAT (Samer and Szeider 2010) and ASP (Jakl, Pichler,
and Woltran 2009; Fichte et al. 2017; Fichte and Hecher
2019). We only briefly sketch the ideas of a table algorithm
using the primal graph that computes models (not answer
sets) of a given program II. Each table 7, consists of rows
storing interpretations over atoms in the bag x(¢). Then, the
table 7, for leaf nodes ¢ consist of the empty interpretation.
For nodes ¢ with introduced variable a € x(t), we store in 7
interpretations of the child table, but for each such interpreta-
tion we decide whether « is in the interpretation or not, and
ensure that the interpretation satisfies II,. When an atom b
is forgotten in a forget node ¢, we store interpretations of the
child table, but restricted to atoms in x(¢). By the proper-
ties of a TD, it is then guaranteed that all rules containing b
have been processed so far. For join nodes, we store in 7,
interpretations that are also in both child tables of ¢.

3.2 An Algorithm for SCC-bounded ASP and
Treewidth

Similar to the table algorithm sketched above, we present next
a table algorithm BndCyc for solving consistency of SCC-
bounded ASP. Let therefore II be a given SCC-bounded
program of largest SCC size ¢ and T = (T, x) be a tree
decomposition of G;. Before we discuss the tables and the
algorithm itself, we need to define level mappings similar to
related work (Janhunen 2006), but adapted to SCC-bounded
programs. Formally, a level mapping o : A — {0,...,¢—1}
over atoms A C at(II) is a function mapping each atom a €
A'to alevel o(a) such that the level does not exceed £scc(q)

ie., J(a) < KSCC((L).

Listing 1: Table algorithm BndCyc(t, x(t), IL¢, (71, ..., To))
for nodes of nice TDs.
In: Node ¢, bag x(t), bag program I1;, sequence (71,. .., 7o)
of child tables of ¢.
Out: Table .

leaf then 7, < {{0,0,0)}

int and a € x(t) is the introduced atom then

O—/> |<[,'P70'>GTl,IIE{I,I;L},I/':th
o’ € levelMaps(c, {a} N I"),isMin(¢’, I1;),

P’ =P Uproven(I',o’ 1)}

s else if type(t) = forget, a & x(t) is the forgotten atom then

6 |m (I, Pa,or) | (1, P,0) €m,a€PU{a}\ 1)}

7 else if type(t) = join /+ 0=2 children of t x/ then
8 |1« {{I[,P1UPs2,0) | {I,P1,0) € T1,{[,P2,0) € T2}

9 return 7;

1 if type(t) =
2 else if type(t) =
3 |m <« {0, P
4

For a function o mapping x to o (z), we let o3 :=0 \ {z — o(z)}
be the function o without containing x. Further, for given set S and
an element e, we let S :=S U {e} and S, :=S5\ {e}.

These level mappings are used in the construction of the
tables of BndCyc, where each table 7; for a node ¢ of TD T
consists of rows of the form (I, P, o), where I C x(¢) is
an interpretation of atoms x(t), P C x(¢) is a set of atoms
in x(t) that are proven, and o is a level mapping over x(t).
Before we discuss the table algorithm, we need auxiliary
notation. Let proven(I, o,11;) be a subset of atoms I con-
taining all atoms a € I where there is a rule r € II; prov-
ing a with 0. However, o provides for a only a level number
within the SCC of a, i.e., proven requires the relaxed char-
acterization of provability that considers scc(a), as given in
Section 2. Then, we denote by levelMaps(o, I) those set of
level mappings o’ that extend o by atoms in I, where for
each atom a € I, we have a level o’ (a) with o' (a) < lycc(a)-
Further, we let isMin(o,II;) be 0 if o is not minimal, i.e.,
if there is an atom a with o(a) > 0 where a rule r € II,
proves a with a level mapping p that is identical to o, but
sets p(a) = o(a) — 1, and be 1 otherwise.

Listing 1 depicts an algorithm BndCyc for solving consis-
tency of SCC-bounded ASP. The algorithm is inspired by an
approach for HCF logic programs (Fichte and Hecher 2019),
whose idea is to evaluate II in parts, given by the tree decom-
position 7. For the ease of presentation, algorithm BndCyc
is presented for nice tree decompositions, where we have
a clear case distinction for every node ¢ depending on the
node type type(t) € {leaf,int,forget,join}. For arbitrary
decompositions the cases are interleaved. If type(t) = leaf,
we have that x(¢) = 0 and therefore for x () the interpreta-
tion, the set of proven atoms as well as the level mapping is
empty, cf., Line 1 of Listing 1. Whenever an atom a € x(t)
is introduced, i.e., if type(t) = int, we construct succeeding
rows of the form (I’, P’, '} for every row in the table 7, of
the child node of ¢. We take such a row (I, P, o) of 71 and
guess whether a is in I, resulting in I’, and ensure that I’
satisfies I1;, as given in Line 3. Consequently, I’ is a model
(not necessarily an answer set) of II;. Then, Line 4 takes
succeeding level mappings o’ of o, as given by levelMaps,
that are minimal (see isMin) and we finally ensure that the
proven atoms P’ update P by proven(I’, o', II;). Notably, if
duplicate answer sets are not an issue, one can remove the

92

(Ti6.i,Pi6.i, _016.4)

7“ .
TRl e, (e 0D if(liaiy, Pias, ffufy
2[({f}, {f}, {f—=0} 1<U~,_ 0,] 0y
3l{{g}, {9}, {g—0 >,7'16,2< ‘f}’, 0, {f’_> []})
(112, P12.i,012.4)) 22 ;:‘}/}’ 8’ {&/{{TL}VA g
1w, s e i, oo
11 21({t}, @, {6 — 0}) fe, f} e— [4]})
(s, P) S e i € L2 PO PO W= 1)
Tf7 T Ty 71{{b, e, f},{b}.{e. f — [€]})
Wb a0, {6d= =10 i et
3[({b, d},{b},{b = 2,d — 0}) 'Um, P1o0.i, 010.4))%
A{b,d} {d} {b— 0,d — 2}) W, 7, T
i(Is.:, Ps.i, o5~ ({0, d},0, {b — [[[4]1}]> 2
I|{0 [] 0y 7s
5 - 5 7 ° i S0, dY,{dY, 010.3(0)<[3
§< ;;.};{},8: {b‘{fl : KH; \?1“' : ‘Tm»l:i[](f;)— L)
400, ar ey, asala< - o, d} t, {b, d} 1o
05.4(b)—1) To
(14, Pa.is o N| {a,b,d} {b,c,d} '(]41,, Po i, 9.4
1[(0, 0, [DIP " 0, 0, 01
2@ 0, ot (a8 {ed) N O G
3[{({a. 0}, 0, {a,b—=110H {b.c,d} {c}, o9.3(b)<|3
4|({a,b,d}, {a}, oa.a(d)<|t tr| {c} 09.3(c)
04.4(a)) {b,c,d},{d, c}, 09.4(b)<[|4
5[({a,b,d}, {a,b}, o0a5(d)< t, tG 09.4(¢), 09.4(c)<09.4(d))
ga.5(a),04.5(a)<o4.5(b))

Figure 3: Tables obtained by DP on a TD 7' using algo-
rithm BndCyc of Listing 1.

occurrence of isMin in Line 4. Whenever an atom a is forgot-
ten in node ¢, i.e., if type(t) = forget, we take in Line 6 only
rows of the table 7; for the child node of ¢, where either a is
not in the interpretation or a is proven, and remove a from the
row accordingly. By the properties of TDs, it is guaranteed
that we have encountered all rules involving a in any node
below ¢. Finally, if ¢ is a join node (type(t) = join), we
ensure in Line 8 that we take only rows of both child tables
of ¢, which agree on interpretations and level mappings, and
that an atom is proven if proven in one of the two child rows.

Example 6. Recall program 11 with { = 4 from Exam-
ple 1. Figure 3 shows a nice TD T’ of Gr and lists se-
lected tables T1,...,T1¢ that are obtained during DP by
using BndCyc (cf., Listing 1) on TD T". Rows highlighted in
gray are discarded and do not lead to an answer set, yellow
highlighted rows form one answer set. For brevity, we com-
pactly represent tables by grouping rows according to similar
level mappings. We write [{] for any value in {0, ..., ¢(—1}
and we sloppily write, e.g., 09 3(b) < 09.3(c) to indicate any
level mapping og .3 in row 3 of table 19, where b has a smaller
level than c.

Node t1 is a leaf (type(t1) = leaf) and therefore T,
{(0,0,0)} as stated in Line 1. Then, nodes t,t3 and ty4 are
introduce nodes. Therefore, table 14 is the result of Lines 3
and 4 executed for nodes to,t3 and t4, by introducing a, b,
and d, respectively. Table T, contains all interpretations
restricted to {a,b,d} that satisfy Wy, = {r1,72,73}, cf,
Line 3. Further, each row contains a level mapping among
atoms in the interpretation such that the corresponding set of
proven atoms is obtained, cf., Line 4. Row 4 of T4 for example
requires a level mapping o4.4 with 64.4(d) < o4.4(a) for a
to be proven. Then, node t5 forgets a, which keeps only rows,
where either a is not in the interpretation or a is in the set of
proven atoms, and removes a from the result. The result of
Line 6 on t5 is displayed in table T5, where Row 3 of T4 does
not have a successor in Ts since a is not proven. For leaf

node te we have T, = 1¢,. Similarly to before, t7,ts, and tg
are introduce nodes and o depicts the resulting table for tq.
Table 11 does not contain any successor row of Row 2 of T,
since c is not proven. Node t1 is a join node combining rows
of 75 and 9 as given by Line 8. Observe that Row 3 of 15
does not match with any row in 9. Further, combining Row 3
of 5 with Row 3 of g results in Row 4 of 11 (since {—1 = 3).
The remaining tables can be obtained similarly. Table T4 for
the root node only depicts (solution) rows, where each atom
is proven.

In contrast to existing work (Fichte and Hecher 2019), if
largest SCC size ¢ < k, where k is the treewidth of primal
graph G, our algorithm runs in time better than the lower
bound given by Proposition 1. Further, existing work (Fichte
and Hecher 2019) does not precisely characterize answer
sets, but algorithm BndCyc of Listing 1 exactly computes
all the answer sets of II. Intuitively, the reason for this is
that level mappings for an atom z € at(II) do not differ in
different bags of 7T, but instead we use the same level (at
most fy..(,) many possibilities) for x in all bags. Notably,
capturing all the answer sets of II allows that BndCyc can be
slightly extended to count the answer sets of II by extending
the rows by an integer for counting accordingly. This can
be extended further for answer set enumeration with linear
delay, which results in an anytime enumeration algorithm
that keeps for each row of a table its predecessor rows.

Consequences on Correctness and Runtime. Next, we

sketch correctness and finally show Theorem 1.

Lemma 1 (Correctness). Let II be an HCF program, where
the treewidth of Gy is at most k and where every SCC C
satisfies |C| < L. Then, for a given tree decomposition T =
(T, x) of primal graph Gry, algorithm BndCyc executed for
each node t of T in post-order is correct.

Proof (Sketch). The proof consists of both soundness, which
shows that only correct data is in the tables, and complete-
ness saying that no row of any table is missing. Soundness is
established by showing an invariant for every node ¢, where
the invariant is assumed for every child node of ¢. For the
invariant, we use auxiliary notation program Il strictly
below t consisting of Il for any node t' below ¢, as well
as the program Il<; below t, where II<; :=I1; U 1I;. In-
tuitively, this invariant for ¢ states that every row (I, P, o)
of table 7; ensures (1) “satisfiability”: I | II;, (2) “an-
swer set extendability”: I can be extended to an answer set
of 11«4, (3) “provability”: a € P if and only if there is a
rule in II<; proving a with o, and (4) “minimality”: there is
noa € P,r € Il<, such that r proves a with o', where o’
coincides with o, but sets o'(a) = o(a) — 1. Notably, the
invariant for the empty root node n = root(7") ensures that
if 7,, # 0, there is an answer set of II. Completeness can
be shown by establishing that if 7, is complete, then every
potential row that fulfills the invariant for any child node ¢’
of ¢, is indeed present in the corresponding table 7. O

Theorem 1 (Runtime of SCC-bounded ASP). Assume a
HCF logic program 11, where the treewidth of the primal
graph G of 11 is at most k and { is the largest SCC

53

size. Then, there is an algorithm for deciding the con-
sistency of TI, running in time 2°*1°8(N) . poly (|at(IT)|),
where A = min({k, (}).

Proof. First, we compute (Bodlaender et al. 2016) a tree de-
composition 7 = (T, x) of Gy that is a 5-approximation
of £ = tw(Gn) and has a linear number of nodes, in
time 29 . poly(Jat(IT)|). Computing fs.(q) for each
atom a € at(IT) can be done in polynomial time. If ¢ > k,
we directly run an algorithm (Fichte and Hecher 2019)
for the consistency of II. Otherwise, i.e., if £ < k we
run Listing 1 on each node ¢ of 7" in a bottom-up (post-

order) traversal. In both cases, we obtain a total runtime
of 20(k-1og(N) . poly ([at(IT)|). O

4 Treewidth-Aware Reductions for
SCC-bounded ASP

Next, we present a novel reduction from HCF ASP to tight
ASP. Given a head-cycle-free logic program, we present
a treewidth-aware reduction that constructs a tight logic
program with little overhead in terms of treewidth. Con-
cretely, if each SCC of the given head-cycle-free logic pro-
gram II has at most £ atoms, the resulting tight program has
treewidth O(k - log(¢)). In the course of this section, we
establish the following theorem.

Theorem 2 (Removing Cyclicity of SCC-bounded ASP).
Let I1 be an HCF program, where the treewidth of Gy is at
most k and where every SCC C satisfies |C| < L. Then, there
is a tight program 11" with treewidth in O(k - log(¢)) such
that for each answer set of 11 there is exactly one answer set
of Il', and vice versa.

4.1 Reduction to Tight ASP

The overall construction of the reduction is inspired by the
idea of treewidth-aware reductions (Hecher 2020), where
in the following, we assume an SCC-bounded program II
and a tree decomposition 7 = (T, x) of Gy such that the
construction of the resulting tight logic program IT’ is heavily
guided along 7. In contrast to existing work (Hecher 2020),
bounding cycles with the largest SCC size additionally allows
to have a “global” level mapping (Janhunen 2006), i.e., we
do not have different levels for an atom in different bags.
Then, while the overall reduction is still guided along the
tree decomposition 7 in order to take care to not increase
treewidth too much, these global level mappings ensure that
the tight program is guaranteed to preserve all answer sets
(projected to the atoms of II), as stated in Theorem 2.
Before we discuss the construction in detail, we require
auxiliary atoms and notation as follows. In order to guide
the evaluation of the provability of an atom = € at(II) in a
node ¢ in 7" along the decomposition 7, we use atoms py
and pZ, to indicate that = was proven in node ¢ (with some
rule in II;) and below ¢, respectively. Further, we require
atoms b7, called level bits, for x € at(Il) and 1 < j <
[10g(sce(x)) |, Which are used as bits in order to represent
in a level mapping the level of z in binary. To this end, we
denote for z and a number i with 0 <4 < fgec(s) as well as
a position number 1 < j < [log(£sce(s)) |- the j-th position

of i in binary by [i]’. Then, we let [x]; be the consistent set
of literals over level bits bJ, that is used to represent level
number ¢ for z in binary. More precisely, for each position
number j, [x]; contains b if [i]/ = 1 and —bJ otherwise,
i.e., if [i}/ = 0. Finally, we also use auxiliary atoms of the
form z < ¢ (could be optimized out) to indicate that the level
for x represented by [x]; is indeed smaller than ¢ > 0.

Example 7. Recall program 11, level mapping o, and largest
SCC size ¢ = 4 from Example 1. For representing o in binary,
we require [log(¢)] = 2 bits per atom a € at(Il) and we
assume that bits are ordered from least to most significant
bit. So [o(e)]° = [o(e)]* =0, [0(c)]® =1 and [o(c)]! = 0.
Then, we have [€] 5y = {—b2, =b.}, [b]ow) = {—by, s }.
HCHJ(C) = {b(c)7 _'bi}’ [[d]]o(d) = {_'bgv bé}’ and [[a]]a(a) =
{69, b1 1.

a’ ra

Next, we are ready to discuss the treewidth-aware reduc-
tion from SCC-bounded ASP to tight ASP, which takes II
and T and creates a tight logic program II’. To this end, let ¢
be any node of 7. First, truth values for each atom x € x(t)
are subject to a guess by Rules (1) and by Rules (2) it is
ensured that all rules of II, are satisfied. Notably, by the
definition of tree decompositions, Rules (1) and Rules (2) in-
deed cover all the atoms of II and all rules of II, respectively.
Then, the next block of rules consisting of Rules (3)—-(10)
is used for ensuring provability and finally the last block of
Rules (11)—(13) is required in order to preserve answer sets,
i.e., these rules prevent duplicate answer sets of IT’ for one
specific answer set of II.

For the block of Rules (3)-(10) to ensure provability, we
need to guess the level bits for each atom z as given in
Rules (3). Rules (4) ensure that we correctly define x < <,
which is the case if there exists a bit [i]7 that is set to 1, but we
have —b7, and for all larger bits [i}7 that are set to 0 (' > 7),
we also have ﬂbZE/. Then, for Rules (5) we slightly abuse
notation x < ¢ and use it also for a set X, where X < ¢
denotes a set of atoms of the form x < ¢ for each x € X.
Rules (5) make sure that whenever a rule r € II, proves x
with the level mapping given by the level bits over atoms
in x(t), we have provability p7 for x in ¢. However, only for
the atoms of the positive body B;" which are also in the same
SCC C' = sce(x) as x we need to check that the levels are
smaller than the level of x, since by definition of SCCs, there
cannot be a positive cycle among atoms of different SCCs.
As aresult, if there is a rule, where no atom of the positive
body is in C, satisfying the rule is enough for proving = as
given by Rules (6). If provability pf holds, we also have pZ,
by Rules (7) and provability is propagated from node ¢’ to its
parent node t by setting p<; if p<, as indicated by Rules (8).
Finally, whenever an atom z is forgotten in a node ¢, we
require to have provability pZ, ensured by Rules (9) and (10)
since ¢ might be root(T').

Preserving answer sets (bijectively): The last block con-
sisting of Rules (11), (12), and (13) makes sure that atoms
that are false or not in the answer set of IT' get level 0 and
that we do prohibit levels for an atom z that can be safely de-
creased by one without loosing provability. This ensures that
for each answer set of II we get exactly one corresponding

o4

answer set of II’ and vice versa.

{z} «
« B', By UH,

for each x € x(t); see® (D

for each r € II; 2)

(b1}« for each x € x(t),

1 <5 < [log(fuce(w))]: see” (3)
for each x € x(t), C = scc(z),

1 <i<fe,1< < Nog(ta)],
=107 | 5 < 7' < Nlog(£c)],
[i) =0} = {j1,...,Js} “
for each r € Tl;, z € x(¢) with

x € H,,C =sce(x),1 <i< e,

x <04 b, bk,

.., b

pi <z, [[xﬂh B:-7
By U(H,\ (),

(B NC)=<i and Bf NC # () 6)
pf <+ x, B, for each r € II;, z € x(t) with
By U(H \{z}) x € H., B Nsce(z) =0 (6)
PLy & Df for each x € x(t) @)
Ly Py for each z € x(t),
t' € chld(t),z € x(t) 3)
— x,ply for each ¢’ € chld(t),
z € X(#) \ x(?) ©)
— x,—pZ, for each x € x(n),
- n = root(T') (10)
-z, b for each z € x(t),

— z,[z]:, B,

B U(H\{z}),
(BnC)=i—1

— x, [x]s, B,
By U(H\{z})

foreach r € II;, x € x(t) with

x € H.,C =sce(x),2 < i< o,
and Bf NC # () (12)

for each r € II;, x € x(t) with

x € H,,C =scc(z),l <i<{leo,
and Bf nC =10 (13)

Example 8. Recall program 11 of Example 1 and TD T =
(T, x) of G as given in Figure 2. Rules (1) and Rules (2) are
constructed for each atom a € at(Il) and for each rule r €
I, respectively. Similarly, Rules (3) are constructed for
each of the [log({scc(a)) | many bits of each atom a € at(Il).
Rules (4) serve as auxiliary definition, where for, e.g., atom c
we construct c<1 « —b0, =bl; c<2 «+ —bl; c<3 + —bY;
and c<3 + —\bi. Next, we show Rules (5)—(13) for node t5.
No.|Rules

(5) [}, < b, [b]1,d<1,d; p}, < b, [b]2,d=<2,d;

pi’Q « b, [b]3,d<3,d;

pf, < ¢ [c]i,d=<1,d; pf, « c,[c]2,d=<2,d;

ps + ¢, [c]s,d<3,d;

pffz — d,[d]1,b<1,c<1,b,¢c; pfz +— d, [d]2,b=<2, c<2,
b, c; pfz « d, [d]3,b<3,c=<3,b,c

3A choice rule (Simons, Niemeld, and Soininen 2002) is of the
form {a} < and in an HCF logic program it corresponds to a
disjunctive rule a V a’ <, where a’ is a fresh atom.

(7) [Py, < ph,; 0%y, < D5, DLy, < D
(11) — _\b, bO’. — —\b, bl,' — ¢, bo; — ¢, bl;
b b c c

— —d, bY; < —d, b}

b, [b]2,d<1,d; < b, [b]3,d<2,d;

— ¢, [c]a2,d<1,d; < ¢, [c]3,d<2,d;

+—d, [d]2,b<1,¢c<1,b,¢c; + d,[d]3,b=<2,¢c<2,b,c
For root node t5 of T, we obtain the following Rules (5)—(13).
No. |Rules

(6) pz{5 ~ b7 €, jf

(7) [Py, ¢ PR3 Dy, = 53 DLy, < P,
(8) Py = Py Py, = Py, Py, Py, Py, P,
(9) |+ da P<ityr <~ 9, _‘p%M

(10)|+= b, ~pL, ; < e,~p%, ; + f, ﬁpgtS

(11)|< =b,bJ; < =b,bl; < —e, b0 + —e, bl;

— f, b f,b)

<~ b7 [[bﬂh €, _'f; A b7 [[bII27 €, _'f; — b7 [[bﬂ37 €, _'f

(12)

)

(13)

Correctness and Treewidth-Awareness. We discuss cor-
rectness and treewidth-awareness as follows.

Lemma 2 (Correctness). Let II be an HCF program, where
the treewidth of Gy is at most k and where every SCC C
satisfies |C| < L. Then, the tight program I1' obtained by the
reduction above on 11 and a tree decomposition T = (T, x)
of primal graph Gry, is correct. Formally, for any answer
set I of II there is exactly one answer set I' of I as given
by Rules (1)—(13) and vice versa.

Proof. “="": Given any answer set [of II. Then, there ex-
ists a unique (Janhunen 2006), minimal level mapping o prov-
ing each x € I with 0 < 0(2) < lyce(z). Let P:={p{, pZ, |
r € II; proves « with o,z € I,¢in T}. From this we con-
struct an interpretation I’ :=I U {bJ. | [o(z)}? = 1,0 <
J < [log(lseen))],z € IYUPU{PL, | v € It €
T,t"isbelow t in T, p%,, € P}, which sets atoms as I and
additionally encodes o in binary and sets provability ac-
cordingly. It is easy to see that I’ is an answer set of IT'.
“<=": Given any answer set [’ of II'. From this we con-
struct I:=1I" N at(IT) as well as level mapping o :={z
fr(x) | © € at(Il)}, where we define function fr.(z) :
at(IT) — {0,...,¢—1} for atom = € at(II) to return 1 <
0 < gscc(m) if {bb]c ‘ 0 < j < (log(gscc(m)ﬂa [Z]] = 1} =
{bl € I' | 0 < j < [l0g(lsce(x)) 1}, i-e., the atoms in answer
set I’ binary-encode 7 for x. Assume towards a contradiction
that I (£ T1. But then I’ does not satisfy at least one instance
of Rules (1) and (2), contradicting that I’ is an answer set
of IT". Again, towards a contradiction assume that 7 is not an
answer set of I1, i.e., at least one « € at(II) cannot be proven
with o. We still have p%Z € I’ for n = root(T'), by Rules (9)
and (10). However, then we either have that p%, € I’
or p~ € I’ by Rules (7) and (8) for at least one child node ¢
of n. Finally, by the connectedness property (iii) of the defi-
nition of TDs, we have that there has to be a node ¢’ that is
either n or a descendant of n where we have pf, € I’. Conse-
quently, by Rules (5) and (6) as well as auxiliary Rules (3)
and (4) we have that there is a rule » € II that proves x
with o, contradicting the assumption. Similarly, Rules (11),
(12), and (13) ensure minimality of o. O

55

Lemma 3 (Treewidth-Awareness). Let I be an HCF pro-
gram, where every SCC C satisfies |C| < (. Then, the
treewidth of tight program 11’ obtained by the reduction
above, i.e., Rules (1)—(13), by using lland a TD T = (T, x)
of primal graph Gy of width k, is in O(k - log(¥)).

Proof (Sketch). We take 7 = (T,x) and construct a
TD 7' :=(T,x’) of Grir, where X' is defined as follows.
For every node t of T, whose parent node is t*, we
let X'(¢) :=x () U{b} | z € x(t),0 < j < [log(lsce(a)) |}V
{pF, 0%, <t | ® € x(t)}. Itis easy to see that indeed
all atoms of every instance of Rules (1)—(13) appear in at

least one common bag of x’. Further, we have connectedness
of 77, i.e., T"isaTD of Gy and |x(¢)| in O(k-log(¢)). O

Finally, we are in the position to prove Theorem 2.

Theorem 2 (Removing Cyclicity of SCC-bounded ASP).
Let 11 be an HCF program, where the treewidth of Gy is at
most k and where every SCC C satisfies |C| < L. Then, there
is a tight program 11U with treewidth in O(k - log(?)) such
that for each answer set of 11 there is exactly one answer set
of Il', and vice versa.

Proof. First, we compute a tree decomposition 7 = (T, x)
of G that is a 5-approximation of k& = tw(G) in
time 29(%) . poly(|at(IT)|). Observe that the reduction con-
sisting of Rules (1)-(13) on IT and 7 runs in polynomial time,
precisely in time O(k - log(¢) - poly(|at(II)|)). The claim fol-
lows by correctness (Lemma 2) and by treewidth-awareness
as given by Lemma 3. U

Having established Theorem 2, the reduction above eas-
ily allows for an alternative proof of Theorem 1. Instead of
Algorithm BndCyc of Listing 1, one could also compile the
resulting tight program of the reduction above to a proposi-
tional formula (SAT), and use an existing algorithm for SAT
to decide satisfiability. Indeed, such algorithms run in time
single-exponential in the treewidth (Samer and Szeider 2010)
and we end up with similar running times as in Theorem 1.

4.2 Reduction to SAT

Having established the reduction of SCC-bounded ASP to
tight ASP, we now present a treewidth-aware reduction of
tight ASP to SAT, which together allow to reduce from SCC-
bounded ASP to SAT. While the step from tight ASP to
SAT might seem straightforward for the program I1’ obtained
by the reduction above, in general it is not guaranteed that
existing reductions, e.g. (Fages 1994; Lin and Zhao 2003;
Janhunen 2006), do not cause a significant blowup in the
treewidth of the resulting propositional formula. Indeed, one
needs to take care and define a treewidth-aware reduction.
Let IT be any given tight logic program and 7 = (T, x) be
a tree decomposition of Gy. Similar to the reduction from
SCC-bounded ASP to tight ASP, we use as variables besides
the original atoms of II also auxiliary variables. In order to
preserve treewidth, we still need to guide the evaluation of the
provability of an atom z € at(II) in a node ¢ in T along the
TD T, whereby we use atoms pf and pZ, to indicate that x
was proven in node ¢ and below ¢, respectively. However, we
do not need any level mappings, since there is no positive

cycle in II, but we still guide the idea of Clark’s comple-
tion (Clark 1977) along TD 7. Consequently, we construct
the following propositional formula, where for each node ¢
of T" we add Formulas (14)—(18). Intuitively, Formulas (14)
ensure that all rules are satisfied, cf., Rules (2). Formulas (15)
and (16) take care that ultimately an atom that is set to true
requires to be proven, similar to Rules (9) and (10). Finally,
Formulas (17) and (18) provide the definition for an atom to
be proven in a node and below a node, respectively, which is
similar to Rules (5)—(8), but without the level mappings.

Preserving answer sets: Answer sets are already preserved,
i.e., we obtain exactly one model of the resulting proposi-
tional formula F' for each answer set of II and vice versa. If
the equivalence (<) in Formulas (17) and (18) is replaced by
an implication (—), we might get duplicate models for one
answer set while still ensuring preservation of consistency,
i.e., the answers to both decision problems coincide.

\/ -aV \/ a

for each r € II;

a€B;" a€B; UH, (14)
x— pLy for each/t'e chld(t),
z e x(t) \ x(?)
15)
T = pL, for each z € x(n),

n = root(T) (16)
(/\a/\x/\ /\ﬂb) for each z € x(t)
bE By U(H,\{z}) (I

pLy < py V(\/ Py)
t’echld(t),zex(t’)

i \/

relly,z€Hy qe Bt

for each = € x(t)
(18)

Correctness and Treewidth-Awareness. Conceptually
the proofs of Lemmas 4 and 5 proceed similar to the proofs
of Lemmas 2 and 3, but without level mappings, respectively.

Lemma 4 (Correctness). Let I be a tight logic program,
where the treewidth of Gy is at most k. Then, the proposi-
tional formula F' obtained by the reduction above on 11 and a
TD T of primal graph Gy, consisting of Formulas (14)—(18),
is correct. Formally, for any answer set I of 11 there is exactly
one satisfying assignment of F' and vice versa.

Lemma 5 (Treewidth-Awareness). Let I be a tight logic
program. Then, the treewidth of propositional formula F
obtained by the reduction above by using Il and a TD T of
Gn of width k, is in O(k).

Proof. The proof proceeds similar to Lemma 3. However,
due to Formulas (18) and without loss of generality one needs
to consider only TDs, where every node has constantly many
child nodes. Such a TD can be easily obtained from any
given TD by adding auxiliary nodes (Kloks 1994). O

However, we cannot do much better, as shown next.

Proposition 2 (ETH-Tightness). Let I be a tight logic pro-
gram, where the treewidth of Gy is at most k. Then, under
ETH, the treewidth of the resulting propositional formula F'
can not be significantly improved, i.e., under ETH there
is no reduction running in time 2°F) . poly(|at(IT)|) such

that tw(Gp) is in o(k).

56

Proof. First, we reduce SAT to tight ASP, i.e., capture
all models of a given formula F' in a tight program II.
Thereby II consists of a choice rule for each variable of F'
and a constraint for each clause. Towards a contradic-
tion assume the contrary of this proposition. Then, we
reduce II back to a propositional formula F’, running in
time 2°(%) - poly(|at(IT)|) with tw(G) being in o(k). Con-
sequently, we use an algorithm for SAT (Samer and Szeider
2010) on F” to effectively solve F in time 2°() - poly(|n|),
where F' has n variables, which finally contradicts ETH. [

Knowing that under ETH tight ASP has roughly the same
complexity for treewidth as SAT, we can derive the follow-
ing corollary that complements the existing lower bound for
normal ASP as given by Proposition 1.

Corollary 1. Let IT be any normal logic program, where
the treewidth of Gy is at most k. Then, under ETH,
there is no reduction to a tight logic program Il running
in time 2°0F1°8(F)) . poly(|at(TT)|) such that tw(Gry) is
in o(k - log(k)).

5 Conclusion and Future Work

This paper deals with improving algorithms for the consis-
tency of head-cycle-free (HCF) ASP for bounded treewidth.
The existing lower bound states that under the exponential
time hypothesis (ETH), we cannot solve an HCF program
with n atoms and treewidth & in time 2°(*1°2(%) . poly (n).
In this work, in addition to the treewidth, we also consider
the size ¢ of the largest strongly-connected component of
the positive dependency graph. Considering both parame-
ters, we obtain a more precise characterization of the run-
time: 20(*198(N) . poly(n), where A = min({k, £}). This
improves the previous result when the strongly-connected
components are smaller than the treewidth. Further, we pro-
vide a treewidth-aware reduction from HCF ASP to tight
ASP, where the treewidth increases from & to O(k - log(¢)).
Finally, we show that under ETH, tight ASP has roughly the
same complexity lower bounds as SAT, which implies that
there cannot be a reduction from HCF ASP to tight ASP such
that the treewidth only increases from & to o(k - log(k)).
Currently, we are performing experiments and practical
analysis of our provided reductions. For future work we
suggest to investigate precise lower bounds by considering
extensions of ETH like the strong ETH (Impagliazzo and
Paturi 2001). It might be also interesting to establish lower
bounds by taking both parameters k and £ into account.

References

Alviano, M.; Calimeri, F.; Dodaro, C.; Fusca, D.; Leone, N.;
Perri, S.; Ricca, F.; Veltri, P.; and Zangari, J. 2017. The
ASP system DLV2. In LPNMR’17, volume 10377 of LNAI,
215-221. Springer.

Balduccini, M.; Gelfond, M.; and Nogueira, M. 2006. An-
swer set based design of knowledge systems. Ann. Math.
Artif. Intell. 47(1-2):183-219.

Ben-Eliyahu, R., and Dechter, R. 1994. Propositional seman-

tics for disjunctive logic programs. Ann. Math. Artif. Intell.
12(1):53-87.

Bichler, M.; Morak, M.; and Woltran, S. 2018. Single-shot
epistemic logic program solving. In IJCAI’18, 1714—-1720.
ijcai.org.

Bidoit, N., and Froidevaux, C. 1991. Negation by default and
unstratifiable logic programs. Theoretical Computer Science
78(1):85-112.

Bliem, B.; Morak, M.; Moldovan, M.; and Woltran, S. 2020.
The impact of treewidth on grounding and solving of answer
set programs. J. Artif. Intell. Res. 67:35-80.

Bodlaender, H. L., and Koster, A. M. C. A. 2008. Combi-
natorial optimization on graphs of bounded treewidth. The
Computer Journal 51(3):255-269.

Bodlaender, H. L.; Drange, P. G.; Dregi, M. S.; Fomin,
F. V.; Lokshtanov, D.; and Pilipczuk, M. 2016. A ck n
5-Approximation Algorithm for Treewidth. SIAM J. Comput.
45(2):317-378.

Brewka, G.; Eiter, T.; and Truszczynski, M. 2011. Answer
set programming at a glance. Communications of the ACM
54(12):92-103.

Clark, K. L. 1977. Negation as failure. In Logic and Data
Bases, Advances in Data Base Theory, 293—-322. Plemum
Press.

Cygan, M.; Fomin, F. V.; Kowalik, L.; Lokshtanov, D.;
Daniel Marx, M. P.; Pilipczuk, M.; and Saurabh, S. 2015.
Parameterized Algorithms. Springer.

Eiter, T., and Gottlob, G. 1995. On the computational cost
of disjunctive logic programming: Propositional case. Ann.
Math. Artif. Intell. 15(3-4):289-323.

Fages, F. 1994. Consistency of Clark’s completion and exis-
tence of stable models. Methods Log. Comput. Sci. 1(1):51-
60.

Fandinno, J., and Hecher, M. 2020. Treewidth-Aware Com-
plexity in ASP: Not all Positive Cycles are Equally Hard. In
ASPOCP®@ICLP.

Fichte, J. K., and Hecher, M. 2019. Treewidth and counting
projected answer sets. In LPNMR’19, volume 11481 of
LNCS, 105-119. Springer.

Fichte, J. K., and Szeider, S. 2015. Backdoors to tractable
answer-set programming. Artificial Intelligence 220(0):64—
103.

Fichte, J. K., and Szeider, S. 2017. Backdoor trees for answer
set programming. In ASPOCP@LPNMR, volume 1868 of
CEUR Workshop Proceedings. CEUR-WS.org.

Fichte, J. K.; Hecher, M.; Morak, M.; and Woltran, S. 2017.
Answer set solving with bounded treewidth revisited. In
LPNMR’17, volume 10377 of LNCS, 132-145. Springer.
Fichte, J. K.; Kronegger, M.; and Woltran, S. 2019. A
multiparametric view on answer set programming. Ann. Math.
Artif. Intell. 86(1-3):121-147.

Gebser, M.; Kaminski, R.; Kaufmann, B.; and Schaub, T.
2012. Answer Set Solving in Practice. Morgan & Claypool.
Gelfond, M., and Lifschitz, V. 1991. Classical negation in

logic programs and disjunctive databases. New Generation
Comput. 9(3/4):365-386.

57

Gottlob, G.; Scarcello, F.; and Sideri, M. 2002. Fixed-
parameter complexity in Al and nonmonotonic reasoning.
Artif. Intell. 138(1-2):55-86.

Guziolowski, C.; Videla, S.; Eduati, F.; Thiele, S.; Cokelaer,
T.; Siegel, A.; and Saez-Rodriguez, J. 2013. Exhaustively
characterizing feasible logic models of a signaling network
using answer set programming. Bioinformatics 29(18):2320-
2326. Erratum see Bioinformatics 30, 13, 1942.

Hecher, M. 2020. Treewidth-Aware Reductions of normal
ASP to SAT - Is normal ASP harder than SAT after all? In
KR’20. In Press.

Impagliazzo, R., and Paturi, R. 2001. On the complexity of
k-sat. J. Comput. Syst. Sci. 62(2):367-375.

Impagliazzo, R.; Paturi, R.; and Zane, F. 2001. Which prob-
lems have strongly exponential complexity? J. of Computer
and System Sciences 63(4):512-530.

Jakl, M.; Pichler, R.; and Woltran, S. 2009. Answer-set pro-
gramming with bounded treewidth. In IJCAI’09, volume 2,
816-822.

Janhunen, T. 2006. Some (in)translatability results for normal
logic programs and propositional theories. Journal of Applied
Non-Classical Logics 16(1-2):35-86.
Kloks, T. 1994. Treewidth. Computations and Approxima-
tions, volume 842 of LNCS. Springer.

Lackner, M., and Pfandler, A. 2012. Fixed-parameter al-
gorithms for finding minimal models. In KR’12. AAAI
Press.

Lifschitz, V., and Razborov, A. A. 2006. Why are there so
many loop formulas? ACM Trans. Comput. Log. 7(2):261—
268.

Lin, F,, and Zhao, J. 2003. On tight logic programs and yet
another translation from normal logic programs to proposi-
tional logic. In IJCAI’03, 853—-858. Morgan Kaufmann.

Lin, F,, and Zhao, X. 2004. On odd and even cycles in normal
logic programs. In AAAI 80-85. AAAI Press / MIT Press.

Lonc, Z., and Truszczynski, M. 2003. Fixed-parameter
complexity of semantics for logic programs. ACM Trans.
Comput. Log. 4(1):91-119.

Marek, W., and Truszczyriski, M. 1991. Autoepistemic logic.
J. of the ACM 38(3):588-619.

Nogueira, M.; Balduccini, M.; Gelfond, M.; Watson, R.; and
Barry, M. 2001. An A-Prolog decision support system for the
Space Shuttle. In PADL’01, volume 1990 of LNCS, 169-183.
Springer.

Pichler, R.; Riimmele, S.; and Woltran, S. 2010. Count-
ing and enumeration problems with bounded treewidth. In
LPAR’10, volume 6355 of LNCS, 387-404. Springer.
Robertson, N., and Seymour, P. D. 1986. Graph minors II:
Algorithmic aspects of tree-width. J. Algorithms 7:309-322.
Samer, M., and Szeider, S. 2010. Algorithms for proposi-
tional model counting. J. Discrete Algorithms 8(1):50—64.
Simons, P.; Niemeld, I.; and Soininen, T. 2002. Extending

and implementing the stable model semantics. Artif. Intell.
138(1-2):181-234.

Towards Lightweight Completion Formulas for Lazy Grounding in Answer Set
Programming

Bart Bogaerts!, Simon Marynissen'?, Antonius Weinzierl?

'Vrije Universiteit Brussel 2KU Leuven 3TU Wien
bart.bogaerts @vub.be, simon.marynissen @kuleuven.be, antonius.weinzierl @kr.tuwien.ac.at

Abstract

Lazy grounding is a technique for avoiding the so-called
grounding bottleneck in Answer Set Programming (ASP).
The core principle of lazy grounding is to only add parts of
the grounding when they are needed to guarantee correctness
of the underlying ASP solver. One of the main drawbacks of
this approach is that a lot of (valuable) propagation is missed.
In this work, we take a first step towards solving this prob-
lem by developing a theoretical framework for investigating
completion formulas in the context of lazy grounding.

1 Introduction

Answer set programming (ASP) (Marek and Truszczynski
1999) is a well-known knowledge representation paradigm
in which logic programs under the stable semantics (Gel-
fond and Lifschitz 1988) are used to encode problems in the
complexity class NP and beyond. From a practical perspec-
tive, ASP offers users a rich first-order language, ASP-Core2
(Calimeri et al. 2013), to express knowledge in, and many
efficient ASP solvers (Gebser, Maratea, and Ricca 2017) can
subsequently be used to solve problems related to knowl-
edge expressed in ASP-Core2.

Traditional ASP systems work in two phases. First, the
input program is grounded (variables are eliminated). Sec-
ond, a solver is used to find the stable models of the resulting
ground theory. For a long time, the ASP community has fo-
cused strongly on developing efficient solvers, while only a
few grounders were developed. Most modern ASP solvers
are in essence extensions of satisfiability (SAT) (Marques
Silva, Lynce, and Malik 2009) solvers, building on conflict-
driven clause learning (CDCL) (Marques-Silva and Sakallah
1999). In recent years, in many formalisms that build on
top of SAT, we have seen a move towards only generating
parts of the SAT encoding on-the-fly, on moments when it is
deemed useful for the solver. This idea lies at the heart of
the CDCL(T) algorithm for SAT modulo theories (Barrett et
al. 2009) and is embraced under the name lazy clause gener-
ation (Stuckey 2010) in constraint programming (Rossi, van
Beek, and Walsh 2006). Answer set programming is no ex-
ception: the so-called unfounded set propagator and aggre-
gate propagator are implemented using the same principles;
when needed, they generate clauses for the underlying SAT
algorithm. Additionally, lazy clause generation forms the
basis of recent constraint ASP solvers (Banbara et al. 2017).

58

Lazy grounding takes the idea of lazily generating the
SAT encoding one step further by also lazily performing
the grounding process. That is, ASP rules are only instan-
tiated when some algorithm detects that they are useful for
the solver in its current state. The most prominent class of
lazy grounding systems for ASP is based on computation
sequences (Liu et al. 2007) and includes systems such as
Omiga (Dao-Tran et al. 2012), GASP (Dal Palu et al. 2009),
ASPeRiX (Lefevre and Nicolas 2009) and the recently intro-
duced ALPHA (Weinzierl 2017). The latter is the youngest
and most modern of the family and the only one that inte-
grates lazy grounding with a CDCL solver, resulting in su-
perior search performance over its predecessors. Our work
extends the ALPHA algorithm.

Contrary to more traditional ASP systems, lazy grounding
systems aim more at applications in which the full ground-
ing is so large that simply creating it would pose issues (e.g.,
if it does not fit in your main memory). This phenomenon
is known as the grounding bottleneck (Balduccini, Lierler,
and Schiiller 2013). Examples of such problems include
queries over a large graph; planning problems, with a very
large number of potential time steps, or problems where the
full grounding contains a lot of unnecessary information and
the actual search problem is not very hard.

The essential idea underlying lazy grounding is that all
parts of the grounding that do not help the solver in its quest
to find a satisfying assignment (a stable model) or prove
unsatisfiability are better not given to the solver since they
only consume precious time and memory. Unfortunately,
it is not easy to detect which parts that are and a trade-off
shows up (Taupe, Weinzierl, and Friedrich 2019): produc-
ing larger parts of the grounding will improve search perfor-
mance (e.g., propagation can prune larger parts of the search
space) but grounding too much will — on the type of in-
stances lazy grounding is built for — result in an unmanage-
able explosion of the ground theory. Lazy grounding sys-
tems and ground-and-solve systems reside on two extremes
of this trade-off: the former produce a minimal required part
of the theory to ensure correctness while the latter produce
the entire bottom-up grounding.

Our work moves lazy grounding a bit more to eager side
of this trade-off. Specifically, we focus on completion for-
mulas (Clark 1978) that essentially express that when an
atom is true, there must be a rule that supports it (a rule with

true body and that atom in the head). While ground-and-
solve systems add these formulas (in the form of clauses)
to their ground theory, lazy grounders cannot do this easily;
the reason is that the set of ground rules that could derive
a certain atom is not known (more instantiations could be
found later on). Consider, for example the atom p(a) and
arule p(X) « ¢(X,Y). where the set of ground instan-
tiations of this rule with p(a) in the head depends on the
set of atoms over the binary predicate ¢q. Unless those in-
stances over ¢ are fully grounded, a lazy grounder cannot
add the corresponding completion formula. In this paper,
we develop lightweight algorithms to detect when that set of
rules is complete and hence, when completion formulas are
added. Our hypothesis is that doing this will improve search
performance without blowing up the grounding and as such
result in overall improved performance of lazy-grounding
ASP systems, and specifically the ALPHA system.

The main contribution of our paper is the development of
a novel method to discover completion formulas during lazy
grounding. Our method starts from a static analysis of the
input program in which we discover functional dependen-
cies between variable occurrences. During the search, this
static analysis is then used to figure out the right moment to
add the completion formulas in a manner that is inspired by
the two-watched literal scheme from SAT to avoid adding
the completion constraints on moments they have no chance
of propagating anyway. We do not have an implementation
of this idea available yet, but instead focus on the theoretical
principles.

The rest of this paper is structured as follows. In Sec-
tion 2 we recall some preliminaries. Section 3 contains the
different methods for discovering completion formulas. In
Section 4, we discuss extensions of our work that could be
used to find even more completion formulas. We conclude
in Section 5.

2 Preliminaries

We now introduce some preliminaries related to answer set
programming in general and the ALPHA algorithm specifi-
cally. This section is based on the preliminaries of (Bogaerts
and Weinzierl 2018).

Answer set programming. Let C be a set of constants, V
be a set of variables, and Q be a set of predicates, each with
an associated arity, i.e., elements of Q are of the form p/k
where p is the predicate name and k its arity. We assume
the existence of built-in predicates, such as equality, with a
fixed interpretation. A (non-ground) term is an element of
C UV.! The set of all terms is denoted 7. Our definition of
a term does not allow for nesting. This eases our exposition,
but is not essential for our results. For instance, it allows us
to view + as a ternary predicate +/3, i.e. +(X, Y, Z) means
that X +Y = Z. A (non-ground) atom is an expression of
the form p(¢1, . .., tx) where p/k € Q andt; € T foreach i.

'Following Weinzierl (2017), we omit function symbols to sim-
plify the presentation. All our results still hold in the presence
of function symbols, except for termination, for which additional
(syntactic) restrictions must be imposed.

59

The set of all atoms is denoted by A. If a € A, then var(a)
denotes the set of variables occurring in a. We say that a is
ground if var(a) = (). The set of all ground atoms is denoted
Ag:. Aliteral is an atom p or its negation —p. The former is
called a positive literal, the latter a negative literal. Slightly
abusing notation, if [is a literal, we use —I to denote the
literal that is the negation of [, i.e., we use —(—p) to denote
p. The set of all literals is denoted £ and the set of ground
literals Lg,. A clause is a disjunction of literals. A (normal)
rule is an expression of the form

p<+ L

where p is an atom and L a set of literals. If r is such
a rule, its head, positive body, negative body and body are
defined as H(r) = p, BT (r) = ANL, B (r) ={g € A|
—q € L} and B(r) = L respectively. We call r a fact if
B(r) = 0 and ground if p and all literals in L are ground.
We use var(r) to denote the set of variables occurring in r,
ie.,

var(r) = var(p) U U var(q).
qeL

A rule r is safe if all variables in r occur in its positive body,
i.e., if var(r) C var(B™(r)). A logic program P is a finite
set of safe rules. P is ground if each r € P is. In our exam-
ples, logic programs are presented in a more general format,
using, e.g., choice rules (see (Calimeri et al. 2020)). These
can easily be translated into the format considered here.

If X is a set of variables, a grounding substitution of X is
a mapping o : X — C. The set of all substitutions of X is
denoted sub(X) If e is an expression, a grounding substitu-
tion for e is a grounding subtitution of its variables. We write
[c1/X1,...,cn/X,] for the substitution that maps each X
to ¢; and each other variable to itself. The result of applying
a substitution o to an expression e is the expression obtained
by replacing all variables X by o(X) and is denoted o (e).
The most general unifier of two substitutions is defined as
usual (Martelli and Montanari 1982). A substitution o ex-
tends a substitution 7 if ¢ is equal to 7 in the domain of 7.
The grounding of a rule is given by

gr(r) = {o(r) | o is a grounding substitution}

and the (full) grounding of a program P is defined as
gr(P) = U, ep gr(r).

A (Herbrand) interpretation I is a finite set of ground
atoms. The satisfaction relation between interpretations and
literals is given by

I'Epifpel, and
ITE-pifpgl.

An interpretation satisfies a set L of literals if it satisfies each
literal in L. A partial (Herbrand) interpretation 7T is a con-
sistent set of ground literals (consistent here means that it
does not contain both an atom and its negation). The value
of a literal [in a partial interpretation Z is IZ =t if [€ T, f
if =l € 7 and u otherwise.

Given a (partial) interpretation Z and a ground program P,
we inductively define when an atom is justified (Denecker,
Brewka, and Strass 2015) as follows. An atom p is justified

in Z by P if there is a rule » € P with H(r) = p such
that each ¢™ € B (r) is justified in Z by P and each ¢~ €
B~ (r) is false in Z. A built-in atom is justified in Z by P if
it is true in Z.

An interpretation I is a model of a ground program P if
for each rule r € P with I |= B(r), also I = H(r). An
interpretation [is a stable model (or answer set) of a ground
program P (Gelfond and Lifschitz 1988) if it is a model of
‘P and each true atom in [is justified in I by P. This non-
standard characterization of stable models coincides with
the original reduct-based characterization, as shown by De-
necker, Brewka, and Strass (2015) but simplifies the rest of
our presentation. If P is non-ground, we say that [is an an-
swer set of P if it is an answer set of gr(P). The set of all
answer sets of P is denoted AS(P).

The ALPHA algorithm. We now recall the formalization
of ALPHA of Bogaerts and Weinzierl (2018). This differs
from the original presentation of Weinzierl (2017) in that it
does not use the truth value MUST-BE-TRUE, but instead
makes the justifiedness of atoms explicit. The state of AL-
PHA is a tuple (P, P,, C, a, Sy), where

e P is alogic program,

e P, C gr(PP) is the so-far grounded program; we use ¥, C

A, to denote the set of ground atoms that occur in Py,

e (is a set of (learned) clauses,

e « is the trail; this is a sequence of tuples (I,c) with [
a literal and c either the symbol 4, a rule in P, or a
clause in C. « is restricted to not containing two tu-
ples (I,¢) and (—l,¢’); in a tuple (I,¢) € a, c repre-
sents the reason for making [true: either decision (de-
noted &) or propagation because of some rule or clause;
« implicitly determines a partial interpretation denoted
Zo =A{l| (I,¢) € a for some c}.

e S; C Ais the set of atoms that are justified by P, in I,.

For clause learning and propagation, a rule p < L is
treated as the clause p vV \/,., —I. Hence, whenever we re-
fer to “a clause” in the following, we mean any rule in P,
(viewed as a clause) or any clause in C'. We refer to rules
whenever the rule structure is needed (for determining justi-
fied atoms).

ALPHA interleaves CDCL and grounding. It performs (it-
eratively) the following steps (listed by priority).

conflict If a clause in C' U Py is violated, analyze the con-
flict, learn a new clause (add to C') and back-jump (undo
changes to a and S'; that happened since a certain point)
following the so-called 1UIP schema (Zhang et al. 2001).

(unit) propagate If all literals of a clause c € C'UP, except
for [are false in Z,,, add (I, ¢) to .

justify If there is a rule r such that BT (r) C S, and
-B~(r) C Z,,add H(r) to S;.

ground If, for some grounding substitution ¢ and r € P,
B*(o(r)) C Za, add o(r) to P,. In practice, when
adding this rule, ALPHA makes a new — intermediate —
propositional variable 5(o(r)) to represent the body of
the rule, similar to (Anger et al. 2006).

60

decide Pick (using some heuristics (Taupe, Weinzierl, and
Schenner 2017)) one atom p, occurring in P, that is un-
known in Z,, and add (p, §) or (—p, §) to .2

Justification-conflict If all atoms in P, are assigned while
some atom is true but not justified, learn a new clause
that avoids visiting this assignment again. Worst-case
the learned clause contains the negation of all decisions,
but Bogaerts and Weinzierl (2018) developed more opti-
mized analysis methods. After learning this clause, AL-
PHA backjumps.

3 Deriving Completion Formulas

We now discuss our modifications to the ALPHA algorithm
that allow us to add completion formulas. There are two
main problems to be tackled here: the first, and most funda-
mental is Question 1: how fo generate completion clauses,
or stated differently, how to find all the rules that can derive
a certain atom, without creating the full grounding, and the
second is, Question 2: when to add completion formulas to
the solver. The general idea for the generation is that we
will develop approximation methods that overapproximate
the set of instantiations of rules that can derive a given atom
based on a static analysis of the program. The reason why
we look for an overapproximation is since in general finding
the exact set of such instantiations would require a seman-
tical analysis. Our methods below are designed based on
the principle that such an overapproximation should be as
tight as possible. Specifically, our methods will be based on
functional dependencies and determined predicates.

This section starts by proving definitions for bounds. Af-
ter that we explain how bounds can be used in ALPHA. The
last subsection describes the different type of bounds and
how they can be detected and combined.

3.1 Bounds

The core concept of our detection mechanism is the notion
of bounds. We have already stated that we want to find over-
approximations of grounding substitutions. We now formal-
ize this.

Definition 3.1. Given a rule r in a program P. A grounding
substitution o is relevant in r with respect to P if BT (o(r))
is justified in some partial interpretation of P.

The following lemma follows immediately from the char-
acterization of stable models in terms of justifications (De-
necker, Brewka, and Strass 2015).

Lemma 3.2. Let I be an answer set of P. If I |= p, then
there is a rule r in P and a relevant substitution o in r such
that o(H(r)) = p.

Proof. Since the justification characterization of answer
sets, we know that p is justified in I. Then by the defini-
tion of justified, the proof follows. O

Definition 3.3. Given a rule r and two sets X and Y of
variables in r. A function f: sub(X) — 25" js called

2ALPHA actually only allows deciding on certain atoms (those
of the form 3(r)), hence our presentation is slightly more general.

a bound in r if for all o € sub(X) it holds that f(o) is a
superset of the elements T € sub(Y') for which there is a
relevant substitution in r that extends both o and T.

To denote that f is a bound, we write f: X ~ Y. If
X =0, thenwe say Y is bounded by f inr. If f(o) contains
at most one element for each o € sub(X), then f is called
a functional bound.

3.2 How to use bounds

Bounds can be used to calculate overapproximations of com-
pletion formulas. To start, assume that a predicate p is
defined only in a single rule . Assume there is a bound
f:var(H(r)) ~ var(r), and let ¢ € sub(var(H(r))). Then
with o, we can determine an overapproximation of the com-
pletion formula of h = o(H(r)) as follows:

=hv \/ B(r(r)).

T€f(0o)

The case when p has multiple rules is similar and is formal-
ized in the following proposition.

Proposition 3.4. Let h be a ground atom. Let ry,...,1,
be the rules in ‘P whose head unifies with h. Let o; denote
the most general unifier of h and H(r;). If there is a bound
fi: var(H(r;)) m~ var(r;) for all i, then

-hV \/ \/ B(1(rs))

1SZ§TL TGfi(O'i)
holds in all answer sets of P.

Proof. For all answer sets I of P for which I = —h, the
clause trivially holds in /. So assume an answer set I for
which I = h. This means there is a rule r; in P that derives
h. Hence by Lemma 3.2, there is a relevant substitution p
in r that extends o;. This means that I = B(p(r)). By the
definition of a bound, it holds that p € f(o). Therefore I
satisfies the clause, which we needed to show. O

Remark 3.5. By Lemma 3.11 and Lemma 3.12, it is suffi-
cient to have a bound var(H(r)) ~ var(B(r)) for each rule
7.

For both the multiple and the single rule case, the gener-
ated clause might be unwieldy, in particular if the bounds are
bad overapproximations. Therefore, it is crucial that good
bounds are detected, which is discussed in the next subsec-
tion.

Of course, a question that remains unanswered is when
such bounds should be added to the solver. We see two ways
to do this.

The first way is a very lightweight mechanism that hap-
pens during the ground reasoning step. The idea is that as
soon as all rules that can derive a specific head h have been
grounded, then we add the completion formula for h. Keep-
ing track of this can be done very cheaply: the bounds pro-
vide us with an upper bound on the number of rules that
can derive a given atom; it suffices to keep track of a sim-
ple counter for each atom to know when the criterion is sat-
isfied. As soon as this is the case, all the atoms B(7(r;))
mentioned in Proposition 3.4 are defined in the solver and it

61

makes sense to add the completion constraint. This method
is very lightweight: it does not trigger additional grounding,
does not change the fundamental algorithm underlying AL-
PHA, and only adds very few additional constraints. It does
enable better pruning of the search space.

The second way is more proactive, but also more invasive.
It happens during the justification-conflict reasoning step.
If an atom h is true, but not justified, instead of triggering the
justification analysis to resolve why this situation happens,
we add the completion formula for &, thereby also avoid-
ing the justification-conflict. However, since certain atoms
B(7(r;)) from Proposition 3.4 are not yet known to the
solver, also these corresponding rules need to be grounded.
For this reason the second way is more intrusive into the
grounding algorithm.

3.3 How to find bounds

In the previous subsection, we showed how bounds can be
used to improve the lazy grounding algorithm. We now turn
our attention to the question of how to find bounds. In par-
ticular, the various types of bounds we define in this sec-
tion can all be found using a static analysis of the program.
We illustrate our methods in increasing difficulty, illustrat-
ing each of them with examples of rules we encountered in
practice, in encodings of the Sth ASP competition (Calimeri
et al. 2016).

Case 1: Non-projective rules The first case is very sim-
ple: in case all variables occurring in a rule also occur in the
head, then we know that for each atom, there is at most one
variable substitution that turns the head of the rule into the
specified atom. We call such a rule non-projective since no
body variables are projected out.

Proposition 3.6. If r is a non-projective rule, i.e., if
var(H(r)) = var(r), then the following is a bound:

id: sub(var(H(r))) — sub(var(r)): o — {o}.

Proof. Take o € sub(var(H(r))). Let 7 € sub(var(r)) for
which there is a relevant substitution p in 7 that extends both
o and 7. Then 7 = p = o. Therefore 7 € id(o), which
proves that id is a bound.

In case a predicate has a single non-projective rule, for
each ground instance of the rule, the head is in fact equiva-
lent to the body. This is a very specific and restricted case.
We mention it here for two reasons. First of all, this is the
only case for which ALPHA, without our extensions already
adds completion constraints. Secondly, this (restricted) sit-
uation does show up in practical problems. For instance
the following rule was taken from the new Knight Tour with
Holes encoding used in the 5th ASP competition (Calimeri
et al. 2016).

move(X,Y, XX, YY)
— valid(X,Y, XX, YY), —other(X,Y, XX, YY).
Of course, if all the rules for a predicate are non-projective,
then we can combine the trivial bounds on each rule to find

a completion formula; however, this is is not yet detected in
the existing ALPHA algorithm.

Case 2: Direct functional dependencies In certain cases,
the body of a rule can contain variables the head does not,
yet without increasing the number of instantiations that can
derive the same head. This happens especially if some arith-
metic operations are present. To illustrate this, consider the
rule

{gt(A, X,U)} <elem(A, X), comUnit(U),
comUnit(Uy),U; = U + 1, rule(A),
U<X.

taken from the new Partner Units encoding used in the Sth
ASP competition (Calimeri et al. 2016). This type of pat-
tern occurs quite often, also for instance in Tower of Hanoi
and in many temporal problems in which a time parameter
is incremented by one or in problems over a grid in which
coordinates are incremented by one. We can see that even
though the variable U; occurs only in the body of the rule,
for each instantation of the head there can be at most one
grounding substitution of the rule that derives it. Hence, if
all rules for gt have this structure, the completion can also
be detected here. We now formalize this idea.

If p is a predicate with arity n, by pJ (with1 < 5 < n)
we denote the jM argument position of p. For any set J
of argument positions, denote by sub(.J) the set of assign-
ments of constants to the positions in J. A tuple of constants
€1, .- ., Cn, is succinctly denoted by €. If p(¢) is an atom and
J a set of argument positions in p, we write ¢| ; to denote the
element in sub(.J) that maps each p’ € J to ¢;.

Definition 3.7. A ground atom h is relevant in P if there is
a rule r in ‘P and a relevant grounding substitution o in r
such that o(H(r)) = h. A ground built-in atom is relevant
in P if it is true.

Definition 3.8. Let J and K be sets of argument positions
of a predicate p in P. We say that J — K is a functional
dependency if for all o € sub(J), there exists at most one
7 € sub(K) and relevant atom p(¢) in P such that¢|; = o
and Tl = 1.

For instance, if p is equality, the following are some
functional dependencies: {='} — {=?}, {=?} — {='},
{=!,=2} — {='}. Of the ones mentioned here, the last
one is the least interesting. Another example is the pred-
icate +/3. It has among others the following functional
dependencies: {+',+?} — {+3}, {+1,+3} — {+7},
{+3, 42} = {+'}.

If a built-in predicate p with arity n occurs in the positive
body of a rule r, then a functional dependency of p deter-
mines a bound in r.

Proposition 3.9. Assume p is a built-in predicate and p(t) €
BT (r). A functional dependency J — K of p induces a

functional bound (denoted p(f)JﬁK)inr:

var({t; | p' € J}) ~var({t; | p' € K}).
Proof. Let X = var({t; | p* € J}) and Y = var({t; |
p' € K}). Let o € sub(X). Since J — K is a functional
dependency, there exists at most one 7, € sub(Y") such that
the atom p(t) is satisfied under some extension of both o and

7. Define
f: sub(X) — 25ub()

62

mapping a o to {7, } if 7, exists and () otherwise. We prove
that f is a bound; hence take any o € sub(X). If there is
no 7 € sub(Y’) for which there is a relevant substitution in
r that extends both o and 7, then we are done. So suppose,
there is such a 7. We prove that 7 = 7,. Any relevant

extension in r of both 7 and o justifies p(X); hence satisfies
p(X). By definition of 7, we have that 7 = 7,. Therefore,
7 € f(o). This proves that f is a bound. That f is functional

follows directly from its definition. O

As we will see later, bounds originating from functional
dependencies of built-in predicates will act as a base case for
further functional bounds.

Case 3: Determined predicates Given a program P we
call a predicate determined if its defined only by facts. The
interpretation of determined predicates can be computed ef-
ficiently prior to the solving process, and their value can be
used to find bounds on the instantiations of other rules. An
example can be found in graph coloring, in which a rule

colored(N) < assign(N, C), color(C) (1)

expresses that a node is colored if it is assigned a color. The
predicate color here is determined since it is given by facts.
Thus, we know that for each node n, there are at most as
many instances of the rule that derive colored(n) as there
are colors. Notably, the completion contraint that would be
added by taking this into account, is exactly the redundant
constraint that was added manually in the graph coloring
experiments of Leutgeb and Weinzierl (2017) to help lazy
grounding, i.e.

—colored(n) V assign(n, coly) V - -+ V assign(n, coly,)

Our new methods obtain this constraint automatically,
thereby easing the life of the modeler.

Proposition 3.10. Let r be a rule with d(t) € Bt (r) and
d a determined predicate. In that case there exists a bound
0 ~ X, where X is the set of variables in t.

Proof. Every fact d(¢) for a tuple of constants ¢ corresponds
to at most one element oz in sub(X). Since d is given by
facts, we can enumerate its interpretation ¢, Let

f:sub(0) — 259 5 {og | E € I}

We prove that f is a bound. Take o € sub(f). Note that ¢
is necessarily the trivial substitution. Take 7 € sub(X) for
which there is a relevant substitution in r that extends both o
and 7. We prove that 7 € f(o),i.e. T = 0% for some ¢ € I%.
By the existence of that relevant substitution in 7, we have
that d(¢) is satisfied under 7; hence 7 is equal to some oz for
some ¢ € I¢. This proves that f is a bound. O

Typical ASP encodings of graph coloring do not contain
the rule (1) but instead use the rule

colored(N) < assign(N, C).

Even in this case, it is possible to determine that C' is
bounded by a determined predicate by inspecting the defin-
ing rules of assign. This is formalized in the remainder of
this section.

Case 4: Combining bounds Bounds can be obtained
from other bounds in several ways. We already found three
base cases of bounds, given in Propositions 3.6, 3.9, and
3.10:

I. fY C X C var(r), then id: X ~ Y is a bound, where
id is the function mapping o to {o}.

2. The bound p(f)J%K induced by a built-in atom p(t) €
B*(r) with functional dependency J — K.

3. The bound induced by an atom d(t) € B*(r) for a deter-
mined predicate d.

Additionally, bounds of different types can be altered or
combined to get new bounds, as shown in the following lem-
mas.

Lemma 3.11. Let f: X ~ Y be a bound in r. Then for any
X C X' andY' CY', the function

f1esub(X') = 2507 g 7]y | 7 € f(o]x)}

is also a bound. (o|x denotes o restricted to the variables
in X)

Proof. Take o € sub(X’). Let 7/ € sub(Y') for which
there exists a relevant substitution p in r that extends both
o and 7. We prove that 7/ € f(o), i.e. there exist a
T € f(o|x) such that 7" = 7|y,. Take 7 = p|y. By def-
inition, 7]y = 7’. We know that p extends both o|x and
7. Therefore, since f is a bound, it holds that 7 € f(o|x).
This proves that f is a bound.

Lemma 3.12. Let f: X ~ Y be a bound in r and let U C
var(r). Let h denote the function

h: sub(X UU) — 25ub(YUU)

where
h(o) ={7-olny [T € flo]x)}
and - is used to denote the combination of two disjoint pro-

Jjected substitutions. The function h is a bound from X U U
toY UU.

Proof. Takeo € sub(XUU). LetT € sub(YUU) for which
there is a relevant substitution p in r that extends both ¢ and
7. We prove that 7 € h(o). We know that p also extends
both o|x and 7|y. Now, since f is a bound, 7|y € f(o|x).
Since p extends both ¢ and 7, it holds that o|\y = 7|y
because U \ Y is contained in the domains of both ¢ and
7. Therefore 7 = 7|y - 7|g\y = 7" - o|p\y for some 7/ €
f(o|x). This proves that 7 € h(c); hence h is a bound. [

Lemma3.13. If f: X Y and g: Y ~ Z are bounds in
r, then the following function is a bound:

h: sub(X) — 2% 5 U g(7)
Tef(o)

Proof. Take 0 € sub(X). Let v € sub(Z) for which there
is a relevant substitution p in r that extends both o and v.
As usual we prove that v € h(o). Take 7 = ply. Then p is
a relevant substitution that extends both 7 and v. Therefore,
since g is a bound, v € g(7). Likewise, p is a relevant

63

substitution that extends both o and 7. Hence, 7 € f(o)
since f is a bound. Combining this proves that v € h(o);
hence proving that / is a bound. O

If only functional bounds are considered, then Lemma
3.12 and Lemma 3.13, together with our first base case
forms the axiomatic system for functional dependencies de-
veloped by Armstrong (1974). To illustrate the combination
of bounds, consider a rule

MX) « +(X,1,2),=(Z,U).

In this case, X ~ U is a functional bound in r: by using
the functional dependency of + we see that X ~ Z is a
functional bound; by using the dependencies of =, we see
that Z ~ U is functional bound, hence we can combine
them, by using Lemma 3.13, to get the desired dependency.

Even more is possible. If f: X ~ Y andg: X ~ Y are
bounds, then the pointwise union and intersection are also
bounds. While the union will not be of much benefit for
finding good overapproximations of completion formulas,
the intersection of two bounds can be useful since it allows
for more precise approximations.

Case 5: Bounds on argument positions We have shown
that if d is a determined predicate, then it induces a bound.
However, sometimes bounds by determined predicates are
not explicit. For instance, in the graph coloring example it
would make perfect sense to drop color(C') from the body of
the rule since the fact that C' is a color should follow already
from its occurrence in assign (N, C), resulting in the rule

colored(N) + assign(N, C).

However, from the definition of assign, one can see that
that C'is bound by the determined predicate color and hence
the completion constraint could, in principle, still be derived.
We now formally show how to do this.

Definition 3.14. Let p be a predicate with arity n in a pro-
gram P and J and K be sets of argument positions in p. If
f is a function from sub(J) to 25**5) such that for every
relevant atom p(¢) in P it holds that €|k € f(¢|), then f is
said to be a bound in p, which we denote by f: J ~ K. If
J =0, then we say K is bounded by f.

Bounds in rules and predicates are not independent:
bounds in rules determine bounds on argument positions and
vice versa. This is formalized in the following two proposi-
tions.

Proposition 3.15. Let p be a predicate symbol and J and K
sets of argument positions in p. Assume that for each rule r
of the form p(t) < @ in P, fr: var(t|s) ~ var(t|x) is a
bound in r, then the union of these f, induces a bound in p.

Proof. Let A be any set of argument positions in p. Then
A corresponds uniquely to a set V. C var(H(r)) for each
rule r of p, and V. is the same for each rule r of p. There-
fore, this set is denoted V. It is straightforward that sub(A)
is in a one-to-one relation with sub(V'). Misusing nota-
tion, we assume sub(A) = sub(V). Then, we can define
f:sub(J) — 25"(5) mapping o to U, f.(c). We now

prove that f is a bound in p. Hence, take a relevant atom p(c)
in P. It sufficies to prove that ¢|x € f(¢|s). Since p(c) is
relevant, there is a rule r of p and a relevant grounding sub-
stitution p such that p(H(r)) = p(¢). By the one-to-one cor-
respondence between sub(.J) and sub(Vy) and sub(K) and
sub(Vi), we know that €|y € sub(Vy) and ¢/ € sub(Vk).
Therefore, since f, is a bound, we know that ¢| € f.(¢|).
Hence, ¢|x € f(¢|s), which proves that f is a bound in
p. O

A simple example illustrating this proposition is as fol-
lows: Suppose we have the following rules for p:

PX,Y) e X =Y +1.
PX,Y) e X =Y —1.

Both rules have functional bounds from X to Y and vice
versa. By taking the union of these two bounds, we get the
bound p! ~ p? where X is mapped to {X — 1, X + 1}.
This shows that functional bounds on rules do not necessar-
ily give rise to functional bounds on argument positions.

If new bounds in predicates are detected, then these can
be used to find new bounds in rules analogous to Proposition
3.9.

Proposition 3.16. Let p be a predicate with a bound
f:J~ Kinp. Ifp(t) € BT (r), then there is a bound

var (ﬂ,]) ~ var (ﬂK)
in r. This bound is functional, if f is functional.

Proof. Let X = var (f|;) and Y = var (f|x). Any element
7/ € sub(K) corresponds to a unique element 7 € sub(Y").

Similarly, any o € sub(X) corresponds to a unique element
o € sub(J). Define

g: sub(X) = 2 o {7 | 7' € f(o')}

Take 0 € sub(X). Let 7 € sub(Y') and let p be a relevant
substitution in r that extends both o and 7. We prove that
7 € f(o). Since f is a bound in p, for each relevant atom
p(¢) it holds that ¢|x € f(¢|s). Since p is relevant, we
know that p(t) is justified; hence p(p(%)) is a relevant atom.
Therefore, p(t)|x € f(p(t)|s) because f is a bound. We

can see that p(t)| s corresponds to ¢ and p(t)|x corresponds
to 7, which completes the proof.

The interaction between Proposition 3.15 and Proposition
3.16 is shown in the following example program:

u(1..3). w(3..5).

We know that both u and w are determined predicates.
Therefore, in the rule of p, A is bounded by v and B
bounded by w. This indicates that p! is bounded by u and
p? is bounded by w. Similarly, ¢* is bounded by w. In the

64

first rule of 7, Y is bounded by w, and by transitivity X is
bounded by w as well. In the second rule of r, X is bounded
by u and Y bounded by w. Therefore, r! is bounded by the
union of u and w, while 72 is bounded by w. Finally, we
obtain the following completion formula for o:

—o(a) Vr(l,a)Vr(2,a) Vr(3,a) Vr4,a)Vr5,a)

In theory, to find bounds we repeat the two steps below
until a fixpoint is reached:

1. find all bounds on variables in rules (using a fixpoint pro-
cedure, using the base cases and lemmas in Case 4 and
Proposition 3.16)

2. find all bounds on argument positions of predicates (us-
ing a fixpoint procedure, using Proposition 3.15) (we can
restrict ourselves to the predicates occurring in positive
bodies, since that are the only predicates useful for gener-
ating completion formulas)

4 Future work

To tackle this problem in its most general form, one could
develop methods similar to grounding with bounds (Wittocx,
Marién, and Denecker 2010) that were developed in the con-
text of model expansion (Mitchell and Ternovska 2005) for
an extensions of first-order logic (Denecker and Ternovska
2008) that closely relates to answer set programming (De-
necker et al. 2019).

While the cases studied in the previous section allow for
adding completion constraints in a wide variety of applica-
tions, we see the current work as a stepping stone towards a
more extensive theory of approximations that enable adding
completion constraints. In this section, we provide several
directions in which the current work can be extended.

Dynamic overapproximations The approximations de-
veloped and described in the previous section can all be
determined statically. However, during solving sometimes
more consequences at decision level zero are derived. Tak-
ing these also into account (instead of just the determined
predicates) can result in better approximations and hence
more completion constraints.

More bounds in predicates For finding new opportunities
to add completion formulas, it is necessary that (especially
functional) bounds between argument positions are detected,
eventhough they are not directly used in generating the com-
pletion formulas. This detection can be done by syntactic
means, such as inspecting their defining rules, or by seman-
tic means (De Cat and Bruynooghe 2013). We already sup-
plied Proposition 3.15, however this is not sufficient to find
all useful bounds.

For example, in each rule below we have functional
bounds {2,3} ~ {4,5} and {4,5} ~ {2, 3}, but the com-
plete predicate has the following fundamental functional
bounds {1,2,3} ~ {4,5} and {1,4,5} ~ {2,3}. This
is because if you know the first argument position, then
you know the rule that is used. If for example you have
neighbor(n, X, Y, X X, YY) in the positive body of a rule,

then you know the first rule is applicable: X = X X and
Y=YY -1
neighbor (D, X, Y, X, YY)+ D=n,Y =YY — 1.
neighbor (D, X, Y, X, YY)+ D=s5Y =YY + 1.
neighbor (D, X, Y, XX, Y)+ D=w,X = XX — 1.
neighbor (D, X, Y, XX, Y)+ D=¢, X = XX + 1.

These dependencies are not detected by the double fixpoint
procedure. Intuitively, what is going on here is that the first
argument of neighbor is inherently linked to which rule is
applicable. Depending on that first argument, we can de-
cide which functional dependency can be generalized to the
predicate level (but it is not always the same).

5 Conclusion

In this paper, we highlighted the issue of missing comple-
tion formulas in lazy grounding and provided lightweight
solutions for this issue based on static program analysis. In
our theoretical analysis, we found that the completion for-
mulas that can now be added are in some cases identical to
redundant constraints added to improve search performance;
hence, usage of our techniques eliminates this burden for the
programmer.

Our next step in this research will be implementing the
presented ideas and experimenting to find out what their im-
pact is on the runtime of lazy grounders.

In Section 4, we identified several directions in which this
work can continue that would allow for the detection of even
more completion constraints. We intend to evaluate these as
well in follow-up research.

References

Anger, C.; Gebser, M.; Janhunen, T.; and Schaub, T. 2006.
What’s a head without a body? In Brewka, G.; Coradeschi,
S.; Perini, A.; and Traverso, P., eds., ECAI, 769-770. 10S
Press.

Armstrong, W. W. 1974. Dependency structures of data base
relationships. IFIP Congress 580-583.

Balduccini, M.; Lierler, Y.; and Schiiller, P. 2013. Prolog
and ASP inference under one roof. In Cabalar, P., and Son,
T. C., eds., Logic Programming and Nonmonotonic Reason-
ing, 12th International Conference, LPNMR 2013, Corunna,
Spain, September 15-19, 2013. Proceedings, volume 8148
of LNCS, 148-160. Springer.

Banbara, M.; Kaufmann, B.; Ostrowski, M.; and Schaub, T.
2017. Clingcon: The next generation. TPLP 17(4):408—461.

Barrett, C. W.; Sebastiani, R.; Seshia, S. A.; and Tinelli, C.
2009. Satisfiability modulo theories. In Biere et al. (2009).
825-885.

Biere, A.; Heule, M.; van Maaren, H.; and Walsh, T., eds.
2009. Handbook of Satisfiability, volume 185 of Frontiers
in Artificial Intelligence and Applications. 10S Press.

Bogaerts, B., and Weinzierl, A. 2018. Exploiting justifica-
tions for lazy grounding of answer set programs. In Lang, J.,
ed., Proceedings of the Twenty-Seventh International Joint
Conference on Artificial Intelligence, IJCAI 2018, July 13-
19, 2018, Stockholm, Sweden., 1737-1745. ijcai.org.

65

Calimeri, F.; Faber, W.; Gebser, M.; Ianni, G.; Kaminski,
R.; Krennwallner, T.; Leone, N.; Ricca, F.; and Schaub, T.
2013. ASP-Core-2 input language format. Technical report,
ASP Standardization Working Group.

Calimeri, F.; Gebser, M.; Maratea, M.; and Ricca, F. 2016.
Design and results of the fifth answer set programming com-
petition. Artif: Intell. 231:151-181.

Calimeri, F.; Faber, W.; Gebser, M.; Ianni, G.; Kaminski,
R.; Krennwallner, T.; Leone, N.; Maratea, M.; Ricca, F.; and
Schaub, T. 2020. ASP-Core-2 input language format. TPLP
20(2):294-309.

Clark, K. L. 1978. Negation as failure. In Logic and Data
Bases, 293-322. Plenum Press.

Dal Palu, A.; Dovier, A.; Pontelli, E.; and Rossi, G. 2009.
GASP: Answer set programming with lazy grounding. Fun-
dam. Inform. 96(3):297-322.

Dao-Tran, M.; Eiter, T.; Fink, M.; Weidinger, G.; and
Weinzierl, A. 2012. Omiga: An open minded grounding
on-the-fly answer set solver. In del Cerro, L. F.; Herzig, A.;
and Mengin, J., eds., JELIA, volume 7519 of LNCS, 480—
483. Springer.

De Cat, B., and Bruynooghe, M. 2013. Detection and ex-
ploitation of functional dependencies for model generation.
TPLP 13(4-5):471-485.

Denecker, M., and Ternovska, E. 2008. A logic of non-
monotone inductive definitions. ACM Trans. Comput. Log.
9(2):14:1-14:52.

Denecker, M.; Lierler, Y.; Truszczynski, M.; and Vennekens,

J. 2019. The informal semantics of answer set programming:
A Tarskian perspective. CoRR abs/1901.09125.

Denecker, M.; Brewka, G.; and Strass, H. 2015. A for-
mal theory of justifications. In Calimeri, F.; Ianni, G.; and
Truszezynski, M., eds., Logic Programming and Nonmono-
tonic Reasoning - 13th International Conference, LPNMR
2015, Lexington, KY, USA, September 27-30, 2015. Pro-
ceedings, volume 9345 of Lecture Notes in Computer Sci-
ence, 250-264. Springer.

Gebser, M.; Maratea, M.; and Ricca, F. 2017. The sixth
answer set programming competition. J. Artif. Intell. Res.
60:41-95.

Gelfond, M., and Lifschitz, V. 1988. The stable model se-
mantics for logic programming. In Kowalski, R. A., and
Bowen, K. A., eds., ICLP/SLP, 1070-1080. MIT Press.

Lefevre, C., and Nicolas, P. 2009. The first version of a new
ASP solver: ASPeRiX. In Erdem, E.; Lin, F.; and Schaub,
T., eds., LPNMR, volume 5753 of LNCS, 522-527. Springer.

Leutgeb, L., and Weinzierl, A. 2017. Techniques for effi-
cient lazy-grounding ASP solving. In Seipel, D.; Hanus, M.;
and Abreu, S., eds., Declare 2017 — Conference on Declar-
ative Programming, proceedings, number 499 in Institut fiir
Informatik technical report, 123—138.

Liu, L.; Pontelli, E.; Son, T. C.; and Truszczynski, M. 2007.
Logic programs with abstract constraint atoms: The role
of computations. In Dahl, V., and Niemeld, 1., eds., Logic
Programming, 23rd International Conference, ICLP 2007,

Porto, Portugal, September 8-13, 2007, Proceedings, vol-
ume 4670 of Lecture Notes in Computer Science, 286-301.
Springer.

Marek, V., and Truszczyriski, M. 1999. Stable models
and an alternative logic programming paradigm. In Apt,
K. R.; Marek, V.; Truszczyniski, M.; and Warren, D. S., eds.,
The Logic Programming Paradigm: A 25-Year Perspective.
Springer-Verlag. 375-398.

Marques-Silva, J. P, and Sakallah, K. A. 1999. GRASP: A
search algorithm for propositional satisfiability. IEEE Trans-
actions on Computers 48(5):506-521.

Marques Silva, J. P.;; Lynce, L.; and Malik, S. 2009. Conflict-
driven clause learning SAT solvers. In Biere et al. (2009).
131-153.

Martelli, A., and Montanari, U. 1982. An efficient
unification algorithm. ACM Trans. Program. Lang. Syst.
4(2):258-282.

Mitchell, D. G., and Ternovska, E. 2005. A framework for
representing and solving NP search problems. In Veloso,
M. M., and Kambhampati, S., eds., AAAI 430-435. AAAI
Press / The MIT Press.

Rossi, F.; van Beek, P.; and Walsh, T., eds. 2006. Hand-
book of Constraint Programming, volume 2 of Foundations
of Artificial Intelligence. Elsevier.

Stuckey, P. J. 2010. Lazy clause generation: Combining
the power of SAT and CP (and mip?) solving. In Lodi,
A.; Milano, M.; and Toth, P, eds., Integration of Al and
OR Techniques in Constraint Programming for Combinato-
rial Optimization Problems, 7th International Conference,
CPAIOR 2010, Bologna, Italy, June 14-18, 2010. Proceed-
ings, volume 6140 of Lecture Notes in Computer Science,
5-9. Springer.

Taupe, R.; Weinzierl, A.; and Friedrich, G. 2019. Degrees
of laziness in grounding - effects of lazy-grounding strate-
gies on ASP solving. In Balduccini, M.; Lierler, Y.; and
Woltran, S., eds., Logic Programming and Nonmonotonic
Reasoning - 15th International Conference, LPNMR 2019,
Philadelphia, PA, USA, June 3-7, 2019, Proceedings, vol-
ume 11481 of Lecture Notes in Computer Science, 298-311.
Springer.

Taupe, R.; Weinzierl, A.; and Schenner, G. 2017. Intro-
ducing Heuristics for Lazy-Grounding ASP Solving. In st
International Workshop on Practical Aspects of Answer Set
Programming.

Weinzierl, A. 2017. Blending lazy-grounding and CDNL
search for answer-set solving. In Balduccini, M., and Jan-
hunen, T., eds., Logic Programming and Nonmonotonic
Reasoning - 14th International Conference, LPNMR 2017,
Espoo, Finland, July 3-6, 2017, Proceedings, volume 10377
of Lecture Notes in Computer Science, 191-204. Springer.

Wittocx, J.; Marién, M.; and Denecker, M. 2010. Grounding
FO and FO(ID) with bounds. J. Artif. Intell. Res. (JAIR)
38:223-269.

Zhang, L.; Madigan, C. F.; Moskewicz, M. W.; and Malik,
S. 2001. Efficient conflict driven learning in Boolean satis-
fiability solver. In ICCAD, 279-285.

66

Splitting a Logic Program Efficiently

Rachel Ben-Eliyahu-Zohary
Department of Software Engineering
Azrieli College of Engineering,
Jerusalem, Israel
rbz@jce.ac.il

Abstract

Answer Set Programming (ASP) is a successful method
for solving a range of real-world applications. Despite
the availability of fast ASP solvers, computing answer
sets demands a very large computational power, since
the problem tackled is in the second level of the polyno-
mial hierarchy. A speed-up in answer set computation
may be attained, if the program can be split into two
disjoint parts, bottom and top. Thus, the bottom part is
evaluated independently of the top part, and the results
of the bottom part evaluation are used to simplify the
top part. Lifschitz and Turner have introduced the con-
cept of a splitting set, i.e., a set of atoms that defines the
splitting.

In this paper, we address two issues regarding splitting.
First, we show that the problem of computing a split-
ting set with some desirable properties can be reduced
to a classic Search Problem and solved in polynomial
time. Second, we show that the definition of splitting
sets can be adjusted to allow splitting of a broader class
of programs.

1 Introduction

Answer Set Programming (ASP) is a successful method for solv-
ing a range of real-world applications. Despite the availability
of fast ASP solvers, the task of computing answer sets demands
extensive computational power, because the problem tackled is
in the second level of the polynomial hierarchy. A speed-up in
answer set computation may be gained, if the program can be di-
vided into several modules in which each module is computed
separately [Lifschitz and Turner, 1994; Janhunen et al., 2009;
FLL, 2009]. Lifschitz and Turner propose to split a logic program
into two disjoint parts, bottom and top, such that the bottom part
is evaluated independently from the top part, and the results of
the bottom part evaluation are used to simplify the top part. They
have introduced the concept of a splitting set, i.e., a set of atoms
that defines the splitting [Lifschitz and Turner, 1994]. In addition
to inspiring incremental ASP solvers [Gebser et al., 2008], split-
ting sets are shown to be useful also in investigating answer set
semantics [Dao-Tran et al., 2009; Oikarinen and Janhunen, 2008;
FLL, 2009].

In this paper we raise and answer two questions regarding split-
ting sets. The first question is, how do we compute a splitting set?
We show that if we are looking for a splitting set having a desirable
property that can be tested efficiently, we can find it in polynomial
time. Examples of desirable splitting sets can be minimum-size

67

splitting sets, splitting sets that include certain atoms, or splitting
sets that define a bottom part with minimum number of rules or
bottom that are easy to compute, for example, a bottom which is
an HCF program [Ben-Eliyahu and Dechter, 1994].

Second, we ask if it is possible to relax the definition of split-
ting sets such that we can now split programs that could not be
split using the original definition. We answer affirmatively to the
second question as well, and we present a more general and re-
laxed definition of a splitting set.

2 Preliminaries

2.1 Disjunctive Logic Programs and Stable Models

A propositional Disjunctive Logic Program (DLP) is a collection
of rules of the form

Aql .. |Ag — Agg1,. -y Amynot Ay, ... 0ot Ay,

n>m>k>0,

where the symbol “not ” denotes negation by default, and each A;
is an atom (or variable). For k + 1 < i < m, we will say that A;
appears positive in the body of the rule, while form +1 <1 < n,
we shall say that A; appears negative in the body of the rule If
k = 0, then the rule is called an integrity rule. If k > 1, then the
rule is called a disjunctive rule. The expression to the left of «—

is called the head of the rule, while the expression to the right
of «— is called the body of the rule. Given a rule r, head(r)
denotes the set of atoms in the head of r, and body(r) denotes the
set of atoms in the body of ». From now, when we refer to a
program, it is a DLP.

Stable Models [Gelfond and Lifschitz, 1991] of a program P
are defined as Follows: Let Lett(P) denote the set of all atoms
occurring in P. Let a context be any subset of Lett(P). Let P
be a negation-by-default-free program. Call a context S closed
under P iff for each rule A|...|Ar + Agy1,..., A, in P, if
Agy1,..., Ay €S, then for some i = 1,...,k, A; € S. A
Stable Model of P is any minimal context S, such that .S is closed
under P . A stable model of a general DLP is defined as follows:
Let the reduct of P w.r.t. P and the context S be the DLP obtained
from P by deleting (7) each rule that has not A in its body for some
A € S, and (47) all subformulae of the form not A of the bodies of
the remaining rules. Any context S which is a stable model of the
reduct of P w.r.t. P and the context S is a stable model of P.

2.2 Programs and graphs

With every program P we associate a directed graph, called the
dependency graph of P, in which (a) each atom in Lett(P) is a
node, and (b) there is an arc directed from a node A to a node B
if there is a rule r in P such that A € body(r) and B € head(r).

A super-dependency graph SG is an acyclic graph built from
a dependency graph G as follows: For each strongly connected
component (SCC) c in G there is a node in SG, and for each arc
in G from a node in a strongly connected component ¢; to a node
in a strongly connected component ¢, (Where ¢; # c2) there is an
arc in SG from the node associated with ¢; to the node associated
with cy. A program P is Head-Cycle-Free (HCF), if there are no
two atoms in the head of some rule in P that belong to the same
component in the super-dependency graph of P [Ben-Eliyahu and
Dechter, 1994]. Let G be a directed graph and SG be a super
dependency graph of G. A source in G (or SG) is a node with
no incoming edges. By abuse of terminology, we shall sometimes
use the term “source” or “SCC” as the set of nodes in a certain
source or a certain SCC in SG, respectively, and when there is no
possibility of confusion we shall use the term rule for the set of
all atoms that appears in the rule. Given a node v in G, scc(v)
denotes the set of all nodes in the SCC in SG to which v belongs,
and tree(v) denotes the set of all nodes that belongs to any SCC
S such that there is a path in SG from S to scc(v). Similarly,
when S is a set of nodes, tree(.S) is the union of all tree(v) for
every v € S. For example, given the super dependency graph in
Figure 1, scc(e) = {e, h}, tree(e) = {a,b,e, h}, tree({f, g}) =
{a,b,¢,d, f,g} and tree(r), where r = ¢|f «— not d is actually
tree({c,d, f}) which is {a, b, c,d, f}.

A source in a program will serve as a shorthand for “a source
in the super dependency graph of the program.” Given a source S
of a program P, Ps denotes the set of rules in P that uses only
atoms from S.

Example 2.1 (Running Example) Suppose we are given the fol-
lowing program P

1. a < notbd

2. eb <«— nota

3. f «<— notbd

4. gld +— ¢

5. cf <+— notd

6. h — e

7. e +—— a,noth
8 h — a

In Figure 1 the dependency graph of P is illustrated in solid lines.
The SG is marked with dotted lines. Note that {a,b} is a source
in the SG of P, but it is not a splitting set.

2.3 Splitting Sets

The definitions of Splitting Set and the Splitting Set Theorem
are adopted from a paper by Lifschitz and Turner [Lifschitz and
Turner, 1994]. We restate them here using the notation and the
limited form of programs discussed in our work.

Definition 2.2 (Splitting Set) A Splitting Set for a program P is
a set of of atoms U such that for each rule r in P, if one of the
atoms in the head of v is in U, then all the atoms in r are in U. We
denote by by (P) the set of all rules in P having only atoms from

The empty set is a splitting set for any program. For an example
of a nontrivial splitting set, the set {a, b, e, h} is a splitting set for
the program P introduced in Example 2.1. The set by ¢} (P)
is {7’1,7‘2,7‘677"7,7“8}.

For the Splitting set theorem, we need the a procedure called
Reduce, which resembles many reasoning methods in knowl-
edge representation, as, for example, unit propagation in DPLL
and other constraint satisfaction algorithms [Davis et al., 1962;

68

Procedure Reduce(P,X,Y)

Input: A program P and two sets of atoms: X and Y
Qutput: An update of P assuming all the atoms in X are true
and all atoms in Y are false

1 foreach atom a € X do

2 foreach rulerin P do

3 If a appears negative in the body of r delete r ;

4 If a is in the head of r delete r;

5 Delete each positive appearance of a in the body of ;

6 foreach atoma € Y do

7 foreach rule r in P do

8 If a appears positive in the body of r, delete r ;

9 If a is in the head of r, delete a from the head of r;

10 Delete each negative appearance of a in the body of r;

—
_

return P;

Dechter, 2003]. Reduce(P,X,Y) returns the program obtained
from a given program P in which all atoms in X are set to true,
and all atoms in Y are set to false. Reduce(P,X,Y) is shown in
Figure Reduce. For example, Reduce(P,{a, e, h},{b}), where P
is the program from Example 2.1, is the following program (the
numbers of the rules are the same as the corresponding rules of
the program in Example 2.1):

3. f —
4. gld +— ¢
5. ¢df <«— notd

Theorem 2.3 (Splitting Set Theorem) (adopted from [Lifschitz
and Turner, 1994]) Let P be a program, and let U be a split-
ting set for P. A set of atoms S is a stable model for P if and only
if S = X UY, where X is a stable model of by (P), and Y is a
stable of Reduce(P, X, U — X).

As seen in Example 2.1, a source is not necessarily a splitting
set. A slightly different definition of a dependency graph is pos-
sible. The nodes are the same as in our definition, but in addition
to the edges that we already have, we add a directed arc from a
variable A to a variable B whenever A and B are in the head of
the same rule. It is clear that a source in this variation of depen-
dency graph must be a splitting set. The problem is that the size of
a dependency graph built using this new definition may be expo-
nential in the size of the head of the rules, while we are looking for
a polynomial-time algorithm for computing a nontrivial splitting
set.

2.4 Search Problems

The area of search is one of the most studied and most known
areas in Al (see, for example, [Pearl, 1984]). In this paper we
show how the problem of computing a nontrivial minimum-size
splitting set can be expressed as a search problem. We first re-
call basic definitions in the area of search. A search problem is
defined by five elements: set of states, initial state, actions or suc-
cessor function, goal test, and path cost. A solution is a sequence
of actions leading from the initial state to a goal state. Figure 2
provides a basic search algorithm [Russell and Norvig, 2010].

There are many different strategies to employ when we choose
the next leaf node to expand. In this paper we use uniform cost,
according to which we expand the leaf node with the lowest path
cost.

Figure 1: The [super]dependency graph of the program P.

function TREE-SEARCH(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree

Figure 2: Tree Search Algorithm

3 Between Splitting Sets and Dependency Graphs

In this section we show that a splitting set is actually a tree in the
SG of the program P. The first lemma states that if an atom @
is in some splitting set, all the atoms in scc(()) must be in that
splitting set as well.

Lemma 3.1 Let P be a program, let SP be a Splitting Set in P,
let Q € SP, andlet S = scc(Q). It must be the case that S C SP.

Proof: Let R € S. We will show that R € SP. Since Q € S,
and S is a strongly connected component, it must be that for each
Q' € S there is a path in SG -the super dependency graph of P
- from @’ to Q, such that all the atoms along the path belong to
S. The proof goes by induction on ¢, the number of edges in the
shortest path from Q' to Q.

Case i = 0. Then Q = ', and so obviously Q' € SP.

Induction Step. Suppose that for all atoms @’ € S, such that the
shortest path from @’ to Q is of size 4, Q' belongs to SP. Let
R be an atom in .S, such that the shortest path from R to @ is
of size ¢ + 1. So, there must be an atom R’ such that there is
an edge in SG from R to R’, and the shortest path from R’ to
Q is of size i. By the induction hypothesis, R’ € SP. Since
there is an edge from R to R’ in SG, it must be that there is a
rule 7 in P, such that R € body(r) and R’ € head(r). Since
R’ € SP and SP is a Splitting Set, it must be the case that
ReSP.

O

Lemma 3.2 Let P be a program, let SP be a Splitting Set in P,

let v be a rule in P, and S an SCC in SG — the super dependency
graph of P. If head(r) N SP # (), then tree(r) C SP.

69

Proof: The set tree(r) is a union of SCCs. We shall show that
for every SCC S such that S C tree(r), S C SP. Let S’ be the
root of tree(r). The proof is by induction on the distance ¢ from S
to S’.

Case 7 = 0. Then S = §’, and since S’ is the root of tree(r) and
head(r) N SP # (), by Lemma 3.1 S C SP.

Induction Step. Suppose that for all SCCs S € tree(r) such that
the distance from S to S’ is of size # S C SP. Let R be an
SCC in tree(r), such that the distance from R to S’ is of size
i+ 1. So, there must be an SCC R’, such that there is an edge
in tree(r) from R to R/, and the distance from R’ to S’ is of
size 7. By the induction hypothesis, R’ C SP. Since there
is an edge from R to R’ in tree(r), it must be the case that
there is a rule r in P, such that an atom from R, say @, is
in body(r), and an atom from R’, say @', is in head(r). By
induction hypothesis, @’ € SP, and since SP is a Splitting
Set, it must be that Q € SP. By Lemma 3.1, R C SP.

O
Corollary 3.3 Every Splitting set is a collection of trees.

Note that the converse of Corollary 3.3 does not hold. In our
running example, for instance, tree(g) = {c,d, g}, but {¢, d, g} is
not a splitting set.

4 Computing a minimum-size Splitting Set as a
search problem

We shall now confront the problem of computing a splitting set
with a desirable property. We shall focus on computing a nontriv-
ial minimum-size splitting set. Given a program P, this is how we
view the task of computing a nontrivial minimum-size splitting
set as a search problem. We assume that there is an order over the
rules in the program.

State Space. The state space is a collection of forests which are
subgraphs of the super dependency graph of P.
Initial State. The empty set.

1. The initial state can unite with one of the sources
in the super dependency graph of P.
2. A state S, other than the initial state, has only one pos-
sible action, which is:

Actions.

(a) Find the lowest rule r (recall that the rules are or-
dered) such that head(r) NS # () and Lett(r) £ S;
(b) Unite S with tree(r).

Transition Model The result of applying an action on a state .S
is a state S’ that is a superset of .S as the actions describe.

Goal Test A state .S is a goal state, if there is no rule » € P such
that head(r) NS # 0 and Lett(r) € S. (In other words, a
goal state is a state that represents a splitting set.);

Path Cost The cost of moving from a state S to a state S’ is
|S’| — |S|, that is the number of atoms added to S when it
was transformed to S’. So, the path cost is actually the num-
ber of atoms in the final state of the path.

Once the problem is formulated as a search problem, we can
use any of the search algorithms developed in the AI community
to solve it. We do claim here, however, that the computation of a
nontrivial minimum-size splitting set can be done in time that is
polynomial in the size of the program. This search problem can be
solved, for example, by a search algorithm called Uniform Cost.

Algorithm Uniform Cost [Russell and Norvig, 2010] is a varia-
tion of Dijkstra’s single-source shortest path algorithm [Dijkstra,
1959; Felner, 2011]. Algorithm Uniform Cost is optimal, that is, it
returns a shortest path to a goal state. Since the search problem is
formulated so that the length of the path to a goal state is the size
of the splitting set that the goal state represents, Uniform Cost will
find a minimum-size splitting set.

The time complexity of this algorithm is O(b™), where b is
the branching factor of the search tree generated, and m is the
depth of the optimal solution. It is easy to see that m cannot be
larger than the number of rules in the program, because once we
use a rule for computing the next state, this rule cannot be used
any longer in any sequel state. As for b, the branching factor,
except for the initial state, each state can have at most one child;
to generate a child we apply the lowest rule that demonstrates that
the current state is not a splitting set. In a given a specific state,
the time that required to calculate its child is polynomial in the
size of the program. Therefore, this search problem can be solved
in polynomial time. This claim is summarized in the following
proposition.

Proposition 4.1 A minimum-size nontrivial splitting set can be
computed in time polynomial in the size of the program.

The following example demonstrates how the search algorithm
works, assuming that we are looking for the smallest non-empty
splitting set, and we are using uniform cost search.

c|fenot d

Figure 3: The search tree for P.

Example. Suppose we are given the program P of Example 2.1,
and we want to apply the search procedure to compute a nontrivial
minimum-size splitting set. The search tree is shown in Figure 3.
Our initial state is the empty set. By the definition of the search
problem, the successors of the empty set are the sources of the
super dependency graph of the program, which in this case are
{a, b} and {c, d}, both of which with action cost 2. Since both
current leaves have the same path cost, we shall choose randomly
one of them, say {c, d}, and check whether it is a goal state, or
in other words, a splitting set. It turns out {c¢, d} is not a splitting
set, and the lowest rule that proves it is rule No. 4 that requires a
splitting set that includes d to have also ¢ and g. So, we make the
leaf {c, d, g} the son of {¢,d} with action cost 1 (only one atom,
g, was added to {c,d}). Now we have two leaves in the search

70

chart

50 20variabls
== 40variabls
— S(0variabls

40

30

Average

2 3 4 5 6

-
ca

Rules and variables ratio

Figure 4: Average size of nonempty splitting sets.

tree. The leaf {a,b} with path cost 2, that was there before, and
the leaf {c, d, g}, that was just added, with path cost 3. So we go
and check whether {a, b} is a splitting set and find out that Rule
no. 2 is the lowest rule that proves it is not. W,e add the tree of
Rule no. 2 and get the child {a, b, e, h} with a path cost 4. So, we
go now and check whether {c, d, g} is a splitting set and find that
Rule no. 5 is the lowest rule that proves that it is not. We add the
tree of Rule no. 5 and get the child {¢,d, g, f, a, b} with a path
cost 6. Back to the leaf {a, b, €, h}, the leaf with the shortest path,
we find that it is also a splitting set, and we stop the search. a

S Experiments

We have implemented our algorithm and tested it on randomly
generated programs, having no negation as failure. A stable model
is actually a minimal model for this type of program. For each
program we have computed a nontrivial minimum-size splitting
set. The average nontrivial minimum size of a splitting set, and
the median of all nontrivial minimum size splitting sets, as a func-
tion of the rules to variable number ratio, are shown in Graph 4
and Graph 5, respectively. The average and median were taken
over 100 programs generated randomly, starting with a ratio of 2
and generating 100 random programs for each interval of 0.25. It
is clear from the graphs that in the transition value of 4.25 (See
[Selman et al., 1996]) the size of the splitting set is maximal, and
it is equal to the number of variables in the program. This is a new
way of explaining that, programs in the phase transition value of
rules to variable are hard to solve

6 Relaxing the splitting set condition

As the experiments indicate, in the hard random problems the only
nonempty splitting set is the set of all atoms in the program. In
such cases splitting is not useful at all. In this section we introduce
the concept of generalized splitting set (g-splitting set), which is
a relaxation of the concept of a splitting set. Every splitting set is
a g-splitting set, but there are g-splitting sets that are not splitting
sets.

Definition 6.1 (Generalized Splitting Set.) A Generalized Split-
ting Set (g-splitting set) for a program P is a set of of atoms U
such that for each rule r in P, if one of the atoms in the head of r
is in U, then all the atoms in the body of r are in U.

chart

50 w—)(0variabls
40variabls
m— S(0variabls

40

Median

2 3 4 5 6

-
ca

Rules and variables ratio

Figure 5: Median size of nonempty splitting sets.

Thus, g-splitting sets that are not splitting sets may be found only
when there are disjunctive rules in the program.

Example 6.2 Suppose we are given the following program P:

1. a <— notb
2. b <— nota
3. ble +— a

4. ald +— b

The program has only the two trivial splitting sets — the empty set
and {a,b,c,d}. However, the set {a,b} is a g-splitting set of P.

We next demonstrate the usefulness of g-splitting sets. We show
that it is possible to compute a stable model of a program P by
computing a stable model of Pg for a g-splitting set S of P, and
then propagating the values assigned to atoms in S to the rest of
the program.

Theorem 6.3 (program decomposition.) Let P be a program.
For any g-splitting-set S in P, let X be a stable model of Ps.
Moreover, let P’ = Reduce(P,X,S-X), where Reduce(P,X,S —
X) is the result of propagating the assignments of the model X in
the program P. Then, for any stable model M' of P', M' U X is
a stable model of P.

The proof can be found in the full version of the paper.

Consider the program P from Example 6.2, which has two sta-
ble models: {a,c} and {b,d}. Let us compute the stable models
of P according to Theorem 6.3. We take U = {a, b}, which is
a g-splitting set for P . The bottom of P according to U, de-
noted by, 43 (P), are Rule 1 and Rule 2, that is: {a <— not b,
b <— not a}. So the bottom has two stable models: {a}, and {b}.
If we propagate the model {a} to the top of the program, we are
left with the rule {c <— }, and we get the stable model {a, c}. If
we propagate the model {b} to the top of the program, we are left
with the rule {d +— }, and we get the stable model {b, d}.

7 Related Work

The idea of splitting is discussed in many publications. Here we
discuss papers that deal with generating splitting sets and relaxing
the definition of a splitting set.

The work in [Ji et al., 2015] suggests a new way of splitting
that introduces a possibly exponential number of new atoms to the
program. The authors show that for some typical programs their

71

splitting method is efficient, but clearly it can be quite resource
demanding in the worst case.

Baumann [Baumann, 2011] discuss splitting sets and graphs,
but they do not go all the way in introducing a polynomial algo-
rithm for computing classical splitting sets, as we do here. The
authors of [Baumann et al., 2012] suggest quasi-splitting, a re-
laxation of the concept of splitting that requires the introduction
of new atoms to the program, and they describe a polynomial al-
gorithm, based on the dependency graph of the program, to ef-
ficiently compute a quasi-splitting set. Our algorithm is essen-
tially a search algorithm with fractions of the dependency graph
as states in the search space. We do not need the introduction of
new atoms to define g-splitting sets.

8 Conclusions

The concept of splitting has a considerable role in logic program-
ming. This paper has two major contributions. First, we show that
the task of looking for an appropriate splitting set can be formu-
lated as a classical search problem and computed in time that is
polynomial in the size of the program. Search has been studied
extensively in Al, and when we formulate a problem as a search
problem, we immediately benefit from the library of search algo-
rithms and strategies that has developed in the past and will be
generated in the future. Our second contribution is introducing g-
splitting sets, which are a generalization of the definition of split-
ting sets, as presented by Lifschitz and Turner. This allows for a
larger set of programs to be split to non-trivial parts.

References

[Baumann et al., 2012] Ringo Baumann, Gerhard Brewka, Wolf-
gang Dvordk, and Stefan Woltran. Parameterized Splitting: A
Simple Modification-Based Approach, pages 5S7-71. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2012.

[Baumann, 2011] Ringo Baumann. Splitting an argumentation
framework. In James P. Delgrande and Wolfgang Faber, edi-
tors, Logic Programming and Nonmonotonic Reasoning, pages
40-53, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[Ben-Eliyahu and Dechter, 1994] Rachel Ben-Eliyahu and Rina
Dechter. Propositional semantics for disjunctive logic pro-
grams. Annals of Mathematics and Artificial Intelligence,
12:53-87, 1994.

[Dao-Tran et al., 2009] Minh Dao-Tran, Thomas Eiter, Michael
Fink, and Thomas Krennwallner. Modular nonmonotonic logic
programming revisited. In Patricia M. Hill and David S. War-
ren, editors, Logic Programming, pages 145-159, Berlin, Hei-
delberg, 2009. Springer Berlin Heidelberg.

[Davis et al., 1962] Martin Davis, George Logemann, and Don-
ald Loveland. A machine program for theorem-proving. Com-
munications of the ACM, 5(7):394-397, 1962.

[Dechter, 2003] Rina Dechter. Constraint processing. Morgan
Kaufmann, 2003.

[Dijkstra, 1959] Edsger W. Dijkstra. A note on two problems
in connexion with graphs. Numerische mathematik, 1(1):269—
271, 1959.

[Felner, 2011] Ariel Felner. Position paper: Dijkstra’s algorithm
versus uniform cost search or a case against dijkstra’s algo-
rithm. In Fourth annual symposium on combinatorial search,
2011.

[FLL, 2009] Symmetric Splitting in the General Theory of Stable
Models., 01 2009.

[Gebser et al., 2008] Martin Gebser, Roland Kaminski, Ben-
jamin Kaufmann, Max Ostrowski, Torsten Schaub, and Sven
Thiele. Engineering an incremental asp solver. In Maria Garcia
de la Banda and Enrico Pontelli, editors, Logic Programming,
pages 190-205, Berlin, Heidelberg, 2008. Springer Berlin Hei-
delberg.

[Gelfond and Lifschitz, 1991] Michael Gelfond and Vladimir
Lifschitz. Classical negation in logic programs and disjunctive
databases. New Generation Computing, 9:365-385, 1991.

[Janhunen et al., 2009] Tomi Janhunen, Emilia Oikarinen, Hans
Tompits, and Stefan Woltran. Modularity aspects of disjunc-
tive stable models. Journal of Artificial Intelligence Research,
35:813-857, 2009.

[Ji et al., 2015] Jianmin Ji, Hai Wan, Ziwei Huo, and Zhenfeng
Yuan. Splitting a logic program revisited. In Proceedings of
the Twenty-Ninth AAAI Conference on Artificial Intelligence,
AAAT’ 15, pages 1511-1517. AAAI Press, 2015.

[Lifschitz and Turner, 1994] Vladimir Lifschitz and Hudson
Turner. Splitting a logic program. In ICLP, volume 94, pages
23-37, 1994.

[Oikarinen and Janhunen, 2008] Emilia Oikarinen and Tomi Jan-
hunen. Achieving compositionality of the stable model seman-
tics for smodels programs. Theory and Practice of Logic Pro-
gramming, 8(5-6):717-761, 2008.

72

[Pearl, 1984] Judea Pearl. Heuristics: intelligent search strategies
for computer problem solving. 1984.

[Russell and Norvig, 2010] Stuart J. Russell and Peter Norvig.
Artificial Intelligence - A Modern Approach, Third Interna-
tional Edition. Pearson Education, 2010.

[Selman et al., 1996] Bart Selman, David G Mitchell, and Hec-
tor J Levesque. Generating hard satisfiability problems. Artifi-
cial intelligence, 81(1-2):17-29, 1996.

Interpreting Conditionals in Argumentative Environments

Jesse Heyninck,' Gabriele Kern-Isberner,', Kenneth Skiba?, Matthias Thimm?
! Technical University Dortmund, Dortmund, Germany
2 University of Koblenz-Landau, Koblenz, Germany
jesse.heyninck @tu-dortmund.de, gabriele.kern-isberner @cs.tu-dortmund.de,
kennethskiba @uni-koblenz.de, thimm @uni-koblenz.de

Abstract

In the field of knowledge representation and reasoning, dif-
ferent paradigms have co-existed for many years. Two cen-
tral such paradigms are conditional logics and formal argu-
mentation. Despite recent intensified efforts, the gap between
these two approaches has not been fully bridged yet. In this
paper, we contribute to the bridging of this gap by showing
how plausible conditionals can be interpreted in argumenta-
tive reasoning enviroments. In more detail, we provide inter-
pretations of conditional knowledge bases in abstract dialec-
tical frameworks, one of the most general approaches to com-
putational models of argumentation. We motivate the design
choices made in our translation, show that different seman-
tics give rise to several forms of adequacy, and show several
desirable properties of our translation.

1 Introduction

Different paradigms of modelling human-like reasoning be-
haviour have emerged over the years within the field of
Knowledge Representation and Reasoning. For one, con-
ditional logics (Kraus, Lehmann, and Magidor 1990; Nute
1984) are a classical approach to non-monotonic reason-
ing that focus on the role of defeasible rules of the form
(¢|th) with the intuitive interpretation “if ¢ is true then,
usually, ¢ is true as well”. There exist several sophisti-
cated reasoning approaches (Goldszmidt and Pearl 1996;
Kern-Isberner 2001) that aim at resolving issues pertain-
ing to contradictory rules. On the other hand, the more re-
cent argumentative approaches (Atkinson et al. 2017) focus
on the role of arguments, i. e., derivations of claims involv-
ing multiple rules, and how to resolve issues between argu-
ments with contradictory claims. In particular, the abstract
approach to formal argumentation (Dung 1995) has gained
quite some interest in the wider community. One of the most
general and expressive formalisms to abstract argumentation
are Abstract Dialectical Frameworks (ADFs) (Brewka et al.
2013), which model the acceptability of arguments via gen-
eral acceptability functions.

In this paper we investigate the correspondence between
abstract dialectical frameworks and conditional logics. Syn-
tactically, both frameworks focus on pairs of objects such
as (¢,). In conditional logic, these pairs are interpreted as

Copyright (©) 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

73

conditionals with the informal meaning “if ¢ is true then,
usually, ¢ is true as well” and written as (¢|¢). In abstract
dialectical frameworks, these pairs are interpreted as accep-
tance conditions, and interpreted as “if ¢ is accepted then 1)
is accepted as well”. The resemblance of these informal in-
terpretations is striking, but both approaches use fundamen-
tally different semantics to formalise these interpretations.

In previous works (Kern-Isberner and Thimm 2018;
Heyninck, Kern-Isberner, and Thimm 2020) we looked at
the question of what happens if we translate an ADF into
a conditional logic knowledge base, used conditional logic
reasoning mechanisms on the latter, and interpreted the re-
sults in argumentative terms. Our results showed, that the
intuition behind the semantics of the two worlds is gener-
ally different, but there are also cases where their semantics
coincide. In this paper, we look at the complementary ques-
tion from before. We investigate what happens if we trans-
late a conditional logic knowledge base into an ADF, use
ADF reasoning mechanisms on the latter, and interpret the
results in conditional logic terms.

Outline of this Paper: After introducing the necessary pre-
liminaries in Section 2 on propositional logic (Section 2.1),
conditional logic (Section 2.2) and abstract dialectial frame-
works (Section 2.3), we present our argumentative interpre-
tation of conditionals in Section 3. We first present our trans-
lation for literal conditional knowledge bases (Section 3.2)
and discuss the behaviour of the negation needed in this
translation (Section 3.3). Thereafter we show the adequacy
of this translation under both two-valued semantics in Sec-
tion 3.4 and under other semantics in Section 3.5. We then
generalize the translation as to allow for what we call ex-
tended literal conditional knowledge bases (Section 3.6) and
discuss several properties of our translation in Section 3.7.
Thereafter, we further motivate the design choices made
in our interpretation in Section 4. Finally, we compare our
work with related work (Section 5) and conclude in Sec-
tion 6.

2 Preliminaries

In the following, we briefly recall some general preliminar-
ies on propositional logic, as well as technical details on con-
ditional logic and ADFs (Brewka et al. 2013).

2.1 Propositional Logic

For a set At of atoms let £(At) be the corresponding propo-
sitional language constructed using the usual connectives
A (and), V (or), — (negation) aond — (material implica-
tion). We will sometimes write ¢ to denote some elemgnt
of {¢,—¢}. The set of literals is denoted by Lit = {¢ |
¢ € At}. A (classical) interpretation (also called possible
world) w for a propositional language £(At) is a function
w : At — {T,L}. Let Q(At) denote the set of all inter-
pretations for At. We simply write € if the set of atoms is
implicitly given. An interpretation w satisfies (or is a model
of) an atom a € At, denoted by w = aq, if and only if
w(a) = T. The satisfaction relation = is extended to for-
mulas as usual. As an abbreviation we sometimes identify
an interpretation w with its complete conjunction, i.e., if
ai,...,6, € At are those atoms that are assigned T by
w and any1,...,a,n € At are those propositions that are
assigned L by w we identify w by a; ... an0n571 - . . Gy (O
any permutation of this). For example, the interpretation w;
on {a,b,c} withw(a) = w(c) = T and w(b) = L is abbre-
viated by abc. For ® C L(At) we also define w = ® if and
only if w |= ¢ for every ¢ € . Define the set of models
Mod(X) = {w € Q(At) | w = X} for every formula or set
of formulas X. A formula or set of formulas X entails an-
other formula or set of formulas X5, denoted by X; F X5,
if Mod(X;) € Mod(X5).

2.2 Reasoning with Nonmonotonic Conditionals

Conditional logics are concerned with conditionals of the
form (¢|¢)) whose informal meaning is “if 1) is true then,
usually, ¢ is true as well”. A conditional knowledge base
A is a set of such conditionals. It is atomic if for ev-
ery (¢|Y) € A, ¢, € At and it is literal if for ev-
ery (d|p) € A, ¢, € Lit. We will not count the con-
stants T or L as atoms or literals. If for every (¢|y) € A,
¢, € Lit U {T}, we say A is an extended literal con-
ditional knowledge base. There are many different condi-
tional logics (cf., e. g., (Kraus, Lehmann, and Magidor 1990;
Nute 1984)), and we will just use basic properties of condi-
tionals that are common to many conditional logics and are
especially important for nonmonotonic reasoning: Basically,
we follow the approach of de Finetti (de Finetti 1974) who
considered conditionals as generalized indicator functions
for possible worlds resp. propositional interpretations w:

1 wkEOAY
((¢]@)(w) = { 0 @ wEINY (1
u o owlkEg

where u stands for unknown or indeterminate. In other
words, a possible world w verifies a conditional (¢|¢) iff it
satisfies both antecedent and conclusion ((¢|¢)(w) = 1); it
falsifies, or violates it iff it satisfies the antecedence but not
the conclusion ((¢|¢)(w) = 0); otherwise the conditional
is not applicable, 1. e., the interpretation does not satisfy the
antecedence ((¢|¢)(w) = u). We say that w satisfies a con-
ditional (v|¢) iff it does not falsify it, i. e., iff w satisfies its
material counterpart ¢ — 1. Hence, conditionals are three-
valued logical entities and thus extend the binary setting of
classical logics substantially in a way that is compatible with
the probabilistic interpretation of conditionals as conditional

74

probabilities. Such a conditional (1|¢) can be accepted as
plausible if its verification ¢ A 1) is more plausible than its
falsification @ A—1p, where plausibility is often modelled by a
total preorder on possible worlds. This is in full compliance
with nonmonotonic inference relations ¢ 1 (Makinson
1988) expressing that from ¢, 1) may be plausibly/defeasibly
derived. An obvious implementation of total preorders are
ordinal conditional functions (OCFs), (also called ranking
Sunctions) k : — N U {oco} (Spohn 1988). They express
degrees of (im)plausibility of possible worlds and proposi-
tional formulas ¢ by setting x(¢) := min{x(w) | w [¢}.
OCFs k provide a particularly convenient formal environ-
ment for nonmonotonic and conditional reasoning, allow-
ing for simply expressing the acceptance of conditionals and
nonmonotonic inferences via stating that (¢|¢) is accepted
by kiff ¢ v Y iff k(¢ AY) < k(P A1), implementing for-
mally the intuition of conditional acceptance based on plau-
sibility mentioned above. For an OCF &, Bel (k) denotes the
propositional beliefs that are implied by all most plausible
worlds, i.e. Bel (k) = {¢ | Vw € x71(0) : w = ¢}. We
write k = ¢ if ¢ € Bel (k).

Specific examples of ranking models are system Z yield-
ing the inference relation r, (Goldszmidt and Pearl 1996)
and c-representations (Kern-Isberner 2001). We discuss sys-
tem Z defined as follows. A conditional (1|¢) is tolerated by
a finite set of conditionals A if there is a possible world w
with (@) (w) = 1 and (1'|¢/)(w) # 0 for all (/]¢/) € A,
i.e. w verifies (¢|¢) and does not falsify any (other) con-
ditional in A. The Z-partitioning (Ay,...,A,) of A is de-
fined as:

o Ag={d e A|Atolerates 0};
e Ay, ..., A, is the Z-partitioning of A \ Ay.
For 6 € A we define: Zao(0) = ¢ iff § € A; and
(Ao, ..., A,) is the Z-partioning of A. Finally, the ranking
function k% is defined via: k% (w) = max{Z(J) | §(w) =
0,6 € A} 4+ 1, with max() = —1. We can now define
Ap, ¢ iff T~ xz ¢ (which can be seen to be equivalent
to ¢ € Bel (k%)).

Below the following Lemma about system Z will prove
useful:

Lemma 1. Let w €) and A be a conditional knowledge
base. Then w & (k%)~1(0) iff 6(w) = 0 for some & € A.

Proof. This follows immediately in view of the fact thatw €
(k%)71(0) iff 6(w) # 0 for every § € A. O

We now illustrate OCFs in general and System Z in par-
ticular with the well-known “Tweety the penguin”-example.

Example 1. Let A = {(f[b), (b|p), (—f|p)}, which ex-
presses that most birds (b) fly (f), most penguins ((p)) are
birds, and most penguins do not fly. This conditional knowl-
edge base has the following Z-partitioning: Ao = {(f]b)}
and Ay = {(blp), (=f|p)}. This gives rise to the follow-
ing /@Z—ordering over the worlds based on the signature

{b, f,p}:

w /-@i ‘ w ﬁg ‘ w /-@i ‘ w Hi
bpf 2 [bpf 1 [tpf 0 |] 1
bpf 2 |opf 2 |bpf O pf 0

As an example of a ni—belief, observe that —p,—(b A
—f) € Bel (k%).

2.3 Abstract Dialectical Frameworks

We briefly recall some technical details on abstract dialecti-
cal frameworks (ADF) following loosely the notation from
(Brewka et al. 2013). We can depict an ADF D as a directed
graph whose nodes represent statements or arguments which
can be accepted or not. With links we represent dependen-
cies between nodes. A node s is depended on the status of the
nodes with a direct link to s, denoted parent nodes parp(s).
With an acceptance function C's we define the cases when
the statement s can be accepted (truth value T), depending
on the acceptance status of its parents in D.

An ADF D is atuple D = (S, L,C) where S is a set of
statements, L. C S x S is a set of links, and C' = {C;}scs
is a set of total functions C, : 2P*"P(s) — {T |} for each
s € Swithparp(s) = {s' € S| (s',s) € L}. By abuse
of notation, we will often identify an acceptance function
C; by its equivalent acceptance condition which models the
acceptable cases as a propositional formula.

An ADF D = (S, L,C) is interpreted through 3-valued
interpretations v : S — {T,.L,u}, which assign to each
statement in .S either the value T (true, accepted), L (false,
rejected), or u (unknown).

A 3-valued interpretation v can be extended to arbitrary
propositional formulas over S via strong Kleene semantics:

1. v(~¢) = Liffv(¢) = T, v(~¢) = T iff v(¢) = L, and
v(—¢) = uiff v(¢) = u;

2. vl AY) = Tiff v(g) = c(v) = T, v(p Atp) = L iff
v(¢) = Loruv(yp) = L, and v(¢ A) = u otherwise;

3. v(p V) =Tiffv(p) =Torv(w) =T,v(pVey) =1
iff v(¢p) = c(yp) = L, and v(¢ V) = u otherwise.

V consists of all three-valued interpretations whereas 2
consists of all the two-valued interpretations (i. e. interpre-
tations such that for every s € S, v(s) € {T, L}). Then v is
amodel of D ifforall s € S,ifv(s) # uthenv(s) = v(Cs).
We define an order <; over {T, L, u} by making u the
minimal element: v <; T and v <; L and this order is
lifted pointwise as follows (given two valuations v, w over
S): v <; wiff v(s) <; w(s) forevery s € S. So intuitively
the classical truth values contain more information than the
truth value u. The set of two-valued interpretations extend-
ing a valuation v is defined as [v]? = {w € V? | v <; w}.
Given a set of valuations V, M;V(s) = w(s) if for ev-
ery v € V,v(s) = v/(s) and M;V(s) = u otherwise.
Tp(v): S — {T,L,u} where s — M;{w(Cs) | w € [v]?}.
For the definition of the stable model semantics, we need
to define the reduct DV of D given v, defined as: DV =
(SY, LY, C") with:
e SV={seS|v(s)=T}
o LV =LN(S”xSY),and
o C"={C.[{o|v(¢) = L}/L]|s €5}
where Cy[¢ /)] is the formula obtained by substituting every
occurence of ¢ in Cs by).

Definition 1. Ler D = (S, L,C) be an ADF withv : S —
{T, L, u} an interpretation:

5

Figure 1: Graph representing links between nodes for D in
Example 2.

v is a 2-valued model iff v € V? and v is a model.

v is complete for D iff v =T p(v).

v is preferred for D iff v is <;-maximally complete for D.
v is grounded for D iff v is <;-minimally complete for D.
v is stable iff v is a model of D and {s € S | v(s) =
T ={s € S| w(s) = T} where w is the grounded
interpretation of D".

We denote by 2mod(D), complete(D), preferred(D) re-
spectively stable(D) the sets of 2-valued models and com-
plete, preferred, respectively stable interpretations of D.
The grounded interpretation, which in (Brewka and Woltran
2010) is shown to be unique, will be denoted by vg Af D is
clear from the context we will just write vg.

Notice that any complete interpretation is also a model.
We finally define consequence relations for ADFs:

Definition 2. Given sem € {2mod, preferred, stable}, an
ADFD = (S,L,C) and s € L(S), we define: D poL. s[—s]
iffv(s) = T[L] for all v € sem(D). D b, oinded STﬁs] iff
vP(s) = T[L].

g
We illustrate ADFs by looking at a naive formalization of
the Penguin-example in abstract dialectical argumentation:

Example 2. Let D = ({p,b, f},L,C)withC, =p, C, = p
and C'y = —pVb. The corresponding graph for D can be find
in Figure 1. This ADF has two two-valued models, which are
also its preferred models: vy with v1(p) = v1(b) = L and
v1(f) = T and vy with va(p) = va(b) = va(f) = T. The
grounded interpretation assigns u to all nodes p, b and f.

3 Interpreting Conditionals in ADFs

In (Heyninck, Kern-Isberner, and Thimm 2020) we looked
at the problem of translating an ADF into a conditional logic
knowledge base. We now look at the complementary ques-
tion, namely translating a conditional logic knowledge base
into an ADF. These two translations will help to better un-
derstand the connection between argumentation and reason-
ing from conditional knowledge bases.

In this section, we present an interpretation of conditional
knowledge bases into abstract dialectical frameworks. In
Section 3.1 we introduce the language used for translating
knowledge bases and formulate several notions of adequacy
used for evaluating our translation. The translation is pre-
sented in Section 3. In Section 3.3 we discuss the use of
the newly introduced negation, whereafter we show the ade-
quacy of our translation under two-valued (Section 3.4) and
other semantics (Section 3.5). Thereafter, we discuss how to
translate normality statements in Section 3.6 and finally we
discuss properties of the translation in Section 3.7.

3.1 Translations of Conditionals into ADFs
To obtain an adequate translation, it will prove useful to ex-

tend the language with a new atomic negation operator
We denote the set of atoms negated by this new negation by

At = {§ | ¢ € At}. Lit-(At) = At U At. When At is clear
from the context, we will somtimes just write Lit~. It will
prove useful to define the following notions:

Definition 3. We define the functions

m.7:Lit — Lit~
Lo :Lit~ — Lit

—- :Lit~ — Lit~
with:
S [o ifoen
o1= 7;/; if = — for some Y € At
b0 e
B =) if(;ﬁz(ZforsomeweAt

= ¢ ifpeAt
w ifqbz&forsomez/JEAt

Let ¢'/(At) is the set of all literal conditional knowledge
bases over At and © (Lit~(At)) all the ADFs defined on the
basis of S (i.e. D = (Lit~(At), L, C')). In this paper, we con-
sider translations D : ¢''(At) — D(Lit~(At)), and in partic-
ular translations which preserve the meaning of the trans-
lated knowledge base A. In more detail, we will use two
notions of adequacy to evaluate translations.

The first notion is respecting A and is based on de
Finetti’s conception of conditionals as generalized indicator
functions to worlds described above. Indeed, given a con-
ditional knowledge base A we can straightforwardly extend
(de Finetti 1974)’s notion of conditionals as generalized in-
dicator functions to worlds in Q(Lit~(At(A))). In more de-

tail, for such an w € Q(Lit~(At(A))), we define:

1 : w): V_¢—I A I—w_\
(lo)(w) = qu: w7

0: w):r(b‘l/_rw‘l
We will say that an interpretation w € Q(Lit~(At(A))) re-
spects Aif (6)(w) # 0 forany 6 € A.

The second notion of adequacy is stronger and requires

equivalence on the level of the non-monotonic inference re-
lation. In more detail, we say a translation D is inferentially

equivalent w.r.t. an ADF-based inference relation' |~ if for
any conditional knowledge base A: A hv, ¢ iff D(A) |~ ¢.
Clearly, inferential equivalence w.r.t. p_ (for some se-

mantics sem) of a translation D : €'(At) — D(Lit~(At))

implies that all the interpretations in sem(D(A)) respect A
for any literal conditional knowledge base A.

' An ADF-based infrence relation is a relation |~ C D(S) x
L(S). Examples of such inference relations are those defined in
Definition 2.

76

Figure 2: Graph representing the links between nodes of
D;(A) in Example 3.

3.2 Translation D,

The guiding idea behind our first translation is that given a
conditional (p|q), what we take into account is the following
behaviour: if g is believed then p should be believed. Now
one way to translate this in ADFS is to have ¢ as a positive
or a supporting link for p. Another way to formalize this
idea, however, is to require that ¢ can be believed only if so
is p, i.e. {Cy} F p. In other words the consequent p is a
supporting link of the antecedent q. We will here explore the
latter idea and show in Section 4.2 that the former idea leads
to inadequate translations.

We are now ready to define our translation D; from con-
ditional knowledge bases into ADFs.

Definition 4. Given a literal conditional knowledge base
A, we define: D1(A) = (Lit~(At(A)), L, C) where: Cy =
2= 0N Nypnea ¥ forany ¢ € {Y, ¢ [Y € At(A)}.

Given a literal ¢ € Lit~(At(A)), the intuition behind C
is the following. The first part = — ¢ ensures that " behaves
like a negation by ensuring that the contrary —¢ of ¢ is not

believed when ¢ is believed. The second part of the condi-
tion Cy, /\(w‘L bo)E A7, ensures that conditionals are in-

terpreted adequately. In more detail, it ensures that ¢ is only
believed if for every conditional (¢|_¢_) which has ¢ as an
antecedent (modulo transformation to the original language
Lit), the consequent "7 is believed (again, modulo trans-
formation into the extended language Lit~) .

Notice that for any ¢ € At, the conditions can be equiva-
lently written as (where) is an atom):

o Co =0 NNjgea 7
© 5= NNG-gpea ™

We illustrate our translation by first looking at the Tweety-
example:
Example 3. A = {(f[b), (blp), (=f|p)}. The following
nodes are part of the ADF: {b,b, f, f,p,D}. We have the
following conditions:
[] Cb = —(5 A f
e C,=—pAbAS

e C,=—-—xforxe {f,f,g,ﬁ}
The corresponding graph can be found in Figure 2.
We can read this as follows: b can be believed whenever

it is not believed that b (i. e. nothing is both a bird and a
not-bird) and it is believed that i (i. e. something is a bird

only if it flies). Argumentatively, b attacks b and f supports
b. Likewise, b and f support p (whereas p attacks p).

D1 (A) has the following two-valued models:

{ ‘ vi(b) vi(b) wi(f) wi(f) wilp) wvi(p)
1| T 1 T 1 1 T
2| L T 1 T 1 T
3| L T T 1 1 T

Notice that these two-valued models correspond to the most
plausible worls according to /@g (see Example 1).

Another benchmark example well-known from the litera-
ture is the so-called Nixon diamond, where equally plausible
rules lead to mutually inconsistent conclusions.

Example 4 (The Nixon Diamond). Let A =
{(p|q)a(_\p|r)} Then DI(A) = ({papaq7a}aL7)
with:
[) Cq = —Qj/\p
[] C,r = —|”)"v/\ﬁ
L4 Cx = —:vfor:v € {pvﬁaav?/}
2mod(D1(A)) = {U17U2,’03,’U4} with:
i |vilg) wi(@) wi(r) wvi() wvi(p) vi(p)
11T €L il T T €
211 T T € € T
3| L T il T il T
4| L T 1 T T il
It can be observed that (k%X)~1(0) = {pqF,pqr, pqr}.

As in the previous example, 2mod(D1(A)) corresponds to
(X)71(0).
In the Section 3.4, we will see that the correspondence be-

tween 2mod (D1 (A)) and (k%) ~1(0) in the above examples
is no coincidence.

3.3 Properties of -
Before discussing the adequacy of the translation A, it is

important to ask whether " fulfills some well-known prop-
erties of negations, such as completeness and consistency.

Completeness of in an interpretation w means that for ev-

ery ¢ € At, at least one of ¢ and ¢ is true in w, whereas
consistency in an interpretation w means that at most one of

¢ and qus true in w (for any ¢ € At).

Definition 5. Given w € Q(AtU /AE), we say is:

e complete in w if for all ¢ € At, w(¢) =T or w(a) =T.

e consistent in w if for all ¢ € At, w(¢) = L or w(a) = 1.
We can illustrate these definitions with a simple example:

Example 5. Consider the following interpretations of

{p.p}:
i | vilp) wi(p) | is v; consistent? is v; complete?
I L 1L yes no
2| L T yes yes
3T T no yes
4| u U no no

We first observe that there extist knowledge bases A for
which there are two-valued models w of D (A) s.t. ™ is not
complete in w, as witnessed by the following example:

7

Example 6. A = {(Dlg), (p|q)} We have D(A) =
({p,4,p,q},L,C) with C; = —q A p, Cg = —q A D,
Cp = —p, Cy = —p. This ADF has thefollowing two-valued
models:

i | vilp) vi(p) wilg) wvi(a)
1| L T L T
2| L T T 1
3| T 1 1 1
Notice that v is a two-valued model since v3(—p) = L
and thus v3(Cy) = v1(Cy) = L. This two-valued model

interprets

as an incomplete negation (i. e. there might be
-gaps), since both q and q are false in vs.
However, for any literal knowledge base A and any two-
valued model w of D1 (A),
are no

is a consistent in w (i.e. there
-gluts):

Proposition 1. Let a literal conditional knowledge base A,
some ¢ € At(A), and w € 2mod(D1(A)) be given. Then
w(@) = T implies w($) = L and w($) = T implies w(¢) =
1.

Proof. Suppose A is a literal conditional knowledge base
and ¢ € At(A) and w € 2mod(D1(A)). Suppose now
w(¢) = T. Since w € 2mod(D(A)), w(¢) = w(Cy). Since

Cyp = —wb/\/\ (WI$)eA Y w(Cy) = T implies w(—¢) = T,
i.e.w(¢) = L. The case for w() is analogous. O

3.4 Adequacy of Translation D,
We first show that two-valued models of D1 (A) respect A:

Proposition 2. Let a literal conditional knowledge base
A, w € 2mod(D;(A)) and (¢|w) € A be given. Then
w(TYT) =T implies w(T¢7) =

Proof. Suppose that w € 2mod(D(A)) and let (¢|¢)) € A.
Suppose that w("¢7) = T. We assume first that ¢, ¢ € At.

Since Cyy = 1) A /\(¢,|¢)€Ar¢/7 and (¢|y) € A,

A

(¢'[p)ea\{(¢l¥)}

and thus Cy F ¢. Since w € 2mod(D(A)), w(y) =
w(Cy) = T. Since Cy - ¢, this means w(¢p) = T. Since
¢ € At, this implies w("¢™) = T. The other cases are anal-
ogous. U

Cyp=—AGA e

Corollary 1. Let a literal conditional knowledge base A be
given. Then any w € 2mod(D1(A)) respects A.

Proof. By Proposition 2, for any w € 2mod(D1(A)) and
any (¢l¢) € A, w("yP ™) = Lorw("yYTAT¢T) = T, which
implies that w((¢|v)) # 0. O

We can now easily show that every two-valued model of
D1(A) corresponds to a maximally plausible world w. We
first have to define a function that allows us to associate
two-valued models in the language using with the worlds
Q(At) (and vice-versa).

Definition 6. Where w € Q(Lit~(At)) and is complete in
w, we define w] € Q(At) as the world such that for every

o € At:
_ [T ifwlg)=T
w“¢y‘{L ifw(@) =T
Letw € Q(At). Then we define w]. € Q(Lit~) as the world
such that for every ¢ € At:

wi(¢) = T and wi(¢) = Liffw(¢) =T

(@) = T andwi(9) = L iffw(g) = L

We can now show the correspondence between -
complete two-valued models and maximally plausible
worlds.

Proposition 3. Let a literal conditional knowledge base A
and an w € 2mod(D1(A)) for which is complete in w be
given. Then k% (w]) = 0.

Proof. Suppose A is a literal conditional knowledge base,
w € 2mod(D;(A)) and is complete in w. Indeed, let
(¢|y) € A and suppose w] = "1)7. By Definition 6, this im-
plies w |= 1. With Proposition 2, this implies that w = "¢
Again with Definition 6, this implies w] | ¢. Thus, we
have established that if w € 2mod(D;(A)) and is com-
plete in w then w| = ¥ A —¢ for any (¢|p) € A, i.e.
((¢]¥))(wl) # 0 (for any (¢|y)) € A). With Lemma 1 this

means 1% (w) = 0. O

Fact 1. Foranyw € (), s complete in w.

Lemma 2. Let a literal conditional knowledge base A and
some w € be given. Then if k4 (w) = 0 then wt €
2mod(D; (A)).

Proof. Let a literal conditional knowledge base A and some
w € (1 be given. Consider some ¢ € Lit~. We show that
wt | ¢ iff wt |= Cy, which implies w? is a two-valued
model of D;(A). For this suppose first that wt = ¢ and
suppose towards a contradiction w?t = =Cy, i.e. wl = ¢ V
- /\(w\uiu)EArw—l' With Proposition 1 and since w1 = ¢,
wt 5 which implies w? = — /\(1/1|L¢J)€Al—w—l’ i.e. there
is some (|Lgpa) € A st wt = =T By definition of
wt, this implies that w = —). But then w = ¢ A =) for

some (1)|¢) € A, contradiction to x4 (w) = 0. Suppose now
(again towards a contradiction) that w |= Cy and w? }= ¢.

By Fact 1, wt [~ ¢ implies wt = ¢. Since Cy = —¢ A
Nposyea ¥, this contradicts wt = Cy. O
Fact 2. Let some w € Q(Lit~) s.t.
some ¢ € At be given. Then w = aiﬁ‘w E —o.

is complete in w and

Proof. Suppose first w = ¢. By Proposition 1, w K= ¢ and
thus w = —¢. Suppose now that w = —¢. Since is com-
plete in w, by Definition 6, w = ¢. O

Lemma 3. Let some w € Q(Lit-) s.t. is complete in w and
some ¢ € L(At) be given. Then w] = ¢ iff w = ¢.

78

Proof. We show this by showing the claim for any ¢ €
L(At) in disjunctive normal form, i.e. ¢ = \/|_, /\;":1 (Z)Z
Suppose w] |: ¢, i.e. there is some 1 < ¢ < n st
wl = AJL, ¢]. By Fact 2 and Definition 6, this implies

wkE AL ¢7 and thus w = \/7_, Ajy 7. The other di-
rection is analogous. O

Given some ADF D, we define: D |~ 5:¢ piffw(¢) = T

for every w € 2mod(D) for which is complete in w.

Theorem 1. Given a literal conditional knowledge base A,

Ab, ¢ iff Di(A) o (0.

Proof. Suppose first that Ak, ¢, i.e. for every w € Q) s.t.
k% (w) = 0, w = ¢. Take now some w € 2mod(D;(A))

s.t. is complete in w. With Proposition 3, k% (w}) = 0 and
thus w] = ¢. With Definition 6, also w = ¢. Thus, we have
shown that for any w € 2mod(D;(A)) s.t. is complete in
w, w = ¢ which implies Dy (A) p5rC 6.

Suppose now that Dy (A) o 5¢ 6, i.e. for every w €
2mod(D;(A)) s.t. is complete in w, w’ = ¢. Take now
some w € Q(At) s.t. kK% (w) = 0. With Lemma 2 wt €
2mod(D;(A)) and with Fact 1, is complete in w?. Thus,
wt | ¢. With Lemma 3, this implies that w = ¢. Thus we

have shown that for every w € Q(At), k% (w) = 0 implies
w = ¢, which implies that A kv, ¢.

3.5 Other Semantics

In this section we show that other semantics also respect A.
We first investigate the two-valued stable semantics and then
move to the three-valued complete, preferred and grounded
semantics.

Stable Semantics We first notice that not every two-
valued model of Dy (A) is stable:

Example 7. Let A = {(plg), (g|p)}. Then Di(A) =
({p7q7§7ij}7[’50) Wlth Cp = _'ﬁ/\ 9, Cq = —\g/\p and
Cz = —x forany x € {p, q}.

Notice that w with w(p) = w(q) = T and w(p) = w(q) =
L is a two-valued model of D1 (A). It is, however, not stable.
To see this, notice that (D1(A))Y = ({p,q}, L,C¥) with
Cy =T ANqand C; =T Ap. The grounded extension v of
(D1(A))¥ assigns v(p) = v(q) = u.

Furthermore, stable models might be incomplete w.r.t. ~,
just like the two-valued models:

Example 8. Recall the conditional knowledge base from
Example 6. There, v3 € 2mod(D1(A)) with v3(p) = T
and v3(p) = v3(q) = v3(q) = L. We have (D1(A)¥3) =
({p}, L, C?s) with C,, = —_L. Since the grounded extension
vof (D1(A)"3) = ({p}, L,C"3) assigns v(p) = T, we see
that vs is stable. As was argued in Example 6,
plete in vs.

is incom-

However, we can make some immediate observations
about the stable models of D;(A). We first recall the fol-
lowing result:

Theorem 2 ((Brewka et al. 2017, Theorem 3.1)). For any
ADF D, stable(D) C 2mod(D).

It follows from Theorem 2 and Proposition 2 that every
stable model of Dy (A) for which is complete, respects A:
Proposition 4. Let a literal conditional knowledge base A
and some (p|1)) be given. Then for any w € stable(D1(A)),
ifwlETY thenw =T¢™

We can furthermore show that any stable model of Dy (A)
is maximally plausible according to x4 (modulo the |-
transformation):

Proposition S. Let a literal conditional knowledge base A
and an w € stable(D1(A)) for which is complete be
given. Then k% (w]) = 0.

Proof. Follows from Theorem 2 and Proposition 7. O

Three-Valued Semantics For all of the well-known three-
valued semantics, we can show (just like for the two-valued
and stable models) that any corresponding interpretation of
the translation D1 (A) respects A (thus generalizing Propo-
sition 2):

Proposition 6. Let a literal conditional knowledge base A
and amodel v € V of D1(A) be given. Then for any (p|v)) €
A ifo(T7) =T thenv(T¢™) = T.

Proof. Suppose that v € V is a model and let (¢|y) € A.

Suppose that v("%7) = T. Since v is amodel, v("¢Y) = T
implies v(Cry-) = T. Since (¢|¢) € A, Cryn = - —
rwj/\rqs—‘/\/\ (¢ |p)eAN{(p|¥)} ¢ —I, and thus U(Cl‘w'l) =T
implies v("¢™) = T. O

Corollary 2. Let a literal conditional knowledge base A
and some ($|1)) € A be given. Then:

1. For any sem € {complete, preferred} and v €
Sem(D1(A)), v respects A.

2. vy Di(&)respects A2
3.6 Extended Literal Conditional Knowledge
Bases

Since in our translation Dy, a conditional (¢|t)) results in
a support link from ¢ to v, it is not immediately clear how
to translate a normality statement of the form (4| T), among
others since T will not correspond to a node in the ADF. We
circumvent this problem by modelling normality statements
(¢|T) by requiring that —" ¢ is not believed, i. e. by setting

_rgn = L. This results in the following translation for
extended literal conditional knowledge bases:

Definition 7. Given an extended literal condi-
tional knowledge base A, we define: DJP(A) =
(Lit~(At(A)), L,C) where: for any ¢ € Lit~(At(A)),
FI(L—olT)e A
otherwise

1
C =
¢ {_‘_dj/\/\(wuﬁJ)EA’_w—l

We notice that the first case can be expanded into the fol-
lowing form (where ¢ € At):

o Cy = L if there is some (—¢|T) € A

?Recall that v} (&) denotes the grounded extension of Ds (A).

79

(#) o () @
Figure 3: Graph representing the links between nodes
DS'b(A) in Example 9.

of

o U5 = Lifthereissome (¢[T) € A

We illustrate D§'(A) with an example:

Example 9. Let A = {(p|T) (qlp)}. Then D§®(A) =
{p,p,q,4}. L,C) with C, = =p A q, C5 = L and Cy =
- —x forany x € {q,q}. We have two two-valued models,
vy and vy with: v1(p) = v1(q) = T, v1(p) = v1(¢) = L,
v2(q) = T and v2(p) = v2(q) = va(p) = L. Even though
this option gives rise to an incomplete interpretation, vs,
there is no two-valued interpretation of D3(A) that falsi-
fies any rule in . This is no coincidence as we show below.

We now show the adequacy of D$'® for extended literal
knowledge bases:

Proposition 7. Given an extended literal conditional knowl-
edge base A and an w € 2mod(D$') for which
plete in w be given. Then k% (w]) = 0.

is com-

Proof. Suppose A is an extendend literal conditional knowl-

edge base and is complete in w. We show that w| &= YA
for any (¢|1)) € A, which with Lemma 1 implies the Propo-
sition. We show the claim for ¢y = T, since the case where
¥ # T is identical to the proof of Proposition 3. Thus
consider (¢|T) € A. Since this means with Definition 7,

C_rgn= Land iscompleteinw,w = ¢. With Definition
6, this means wl, = ¢.

Proposition 8. Given an extended literal conditional knowl-
edge base A and an w € Q(At), if K4(w) = 0 then

w? € 2Mod (D).

Proof sketch. Suppose that ¢ € {1/1,1; | v € At} and there
is some (L—¢1|T) € A (and thus Cy = 1) and wt = ¢.
Since x4 (w) = 0, (L—¢4|T) € A implies that w = L—¢_,
which with Definition 6 implies w? = —¢, contradicting
wl = ¢ and Proposition 1. Thus, for any ¢ € {¢,¢ |
¢ € At} for which there is some (L—¢J|T) € A: wt = &
iff wt = Cy. The other case is identical to the proof of
Lemma 2.

U

The proof of the following Theorem, stating the inferen-

tial equivalence of D§® w.rt. |~ gr'fod is completely analo-
gous to the proof of Theorem 1:

Theorem 3. Given an extended llteral conditional knowl-
edge base A, Ay 6 iff DIP(A) b 1% 16

The reader might wonder why we did not simply set
Cy = T for any (¢|T) € A. This would result in an inad-
equate translation, since any information about conditionals
with ¢ as an antecedent would be removed from the ADF,
as illustrated by the following example.

Example 10 (Example 9 continued). We consider A =
{(p|T),(qlp)} (as in Example 9). If we translated this
knowledge base using D1 and by in addition setting Cp, =
T from above, we get: D'(A) = ({p,p,q,q}, L,C) with
Cp,=Tand C, = = —x for z € {p,q,q}. In that case,
there are two two-valued models, vy and vy with: v3(p) =
vi(g) = T, v3(p) = v3(q) = L, va(p) = va(qQ) = T
and vy (p) = v4(q) = L. In that case, there is a (complete)
two-value model, namely v, that validates p but not q, even
though (q|p) € A (in fact, (q|p) is even in Ag).

3.7 Properties of the Translation

(Gottlob 1994) proposed several desirable properties for
translations between non-monotonic formalisms like ade-
quacy, polynomiality and modularity. In Section 3.4 we al-
ready discussed adequacy in-depth and we have shown, that
our translation is adequate on the level of beliefs for all se-
mantics and for any extended literal knowledge base.

A translation satisfies polynomiality if the translation is
calculable with reasonable bounds. It is easy to see, that our
translation is polynomial in the length of the translated con-
ditional knowledge base.

For modularity we follow the formulation of (Strass 2013)
for a translation from ADFs to a target formalism, even
though modularity was originally defined for translations be-
tween circumscription and default logic (Imielinski 1987).
In other words modular means that “local” changes in the
translated conditional knowledge base results in “local”
changes in the translation. A minimal notion of modularity
would be that if we have to syntactically disjoint conditional
knowledge bases A; and Ao, then changes in A; will result
only in changes to C; for some s € Lit~(At(A;)). Clearly

the translation presented in this paper is modular.

The biggest downside of this translation is the fact, that it
is not language-preserving since we use a language exten-
sion in this translation to construct the ADFs.

Finally, it is clear, that this translation is syntax-based, in
the sense that the translation D;(A) can be derived purely
on the basis of the logical form of the knowledge base A.

4 Design Choices

In this section we motivate some important design choices
underlying our translation D;, especially the extension of

the language to include the negation , the direction of sup-
porting links resulting from conditionals (¢|t)) in the trans-
lated conditional knowledge base and the restriction to literal
conditional knowledge bases.

4.1 The necessity of -

The critical reader might wonder, given that ADFs allow for
the negation — to be used in formulating acceptance con-

ditions for nodes, if a second negation is really needed?

Indeed, a first proposal for a translation avoiding " would be
the following:

Definition 8. Given a literal conditional knowledge base A,
we let Dy(A) = (At(A), L, C) where: Cy = Ny pyen ¥ if
there is some (1|¢) € A. and Cy = ¢ otherwise.

Such a translation would be inadequate since conditionals
with negative antecedents are not taken into account. Thus,

80

for example, g € 2mod(D2({(p|—q)}) since (p|—q) is not
taken into account in C,. We could propose making the fol-
lowing adjustment to avoid this:

Definition 9. Given a literal conditional knowledge base A,
we let D3(A) = (At(A), L, C) where: Cy, = |\ (1 gyen ¥ N

Nep|=gyea ~% if there is some (Y[|¢) € A or some
(Y|—¢) € A and Cy = ¢ otherwise.

However, since 2mod(D3({(¢q|p), (q¢|-p)}) = {qp},
this also results in an inadequate translation, since
((¢/-p))(@p) = 0 and thus x4 (gp) = 1. A third option
would be to take:

Definition 10. Given a literal conditional knowledge base
A, we let Dy(A) = (At(A),L,C) where: Cy =
Nwioyea ¥ ¥V Nj-gyea ¢ if there is some (Y|¢) € A
or some (Y| @) € A and Cy = ¢ otherwise.

Notice that 2mod(D4({(¢|p), (s|=p)}) contains pgs.
Since ((q|p))(pgs) = 0, this means Dy is not an adequate
translation. There are, of course, some other variations pos-
sible, which do, however, lead to similar inadequacies. We
hope to have convinced the reader of the fact that any trans-
lation which is based purely on the syntax of conditional
knowledge bases does require a second negation.’

4.2 Antecedents as Partial Sufficient Conditions

One guiding idea behind our translation D; is that, relative
to a conditional knowledge base A, a node ¢ € Lit~ can be

believed only if for every conditional (p|L¢1) € A, T is
believed. In other words, the links go from the consequent
M7 to the antecedent ¢. One might wonder if adequacy is
preserved when we let the links between nodes run from an-
tecedent to consequent. Such an alternative translation could
be the following:

Definition 11. Given a literal conditional knowledge base
A, we define: Ds(A) = ({¢,¢ | ¢ € At(A)}, L, C) where
Cy =0 N \/(me)eArwjfor any ¢ € Lit~.

This translation is not adequate, however:

Example 11. Let A = {(p|q),(—p|s)}. Then Ds(A) =
({pvﬁvqaavsvg}aLac) with: Cp = _‘ﬁ/\ q, C;E = pAs,
Cy = —xforanyx € {q,q, s,s}. We depicted the corre-
sponding graph in Figure 4.

Consider v(q) = v(s) = v(p) = T and v(q) = v(3) =
v(p) = L. Then v is a two-valued model of D3(A) (indeed,
observe that v(Cp) = v(=p A q) = L since v(p) = T).
However, notice that k4 (pqs) = 1 since ((plq))(pgs) = 0.
Thus, two-valued models of Ds(A) might not correspond to

3Since ADFs under two-valued model semantics are equi-
expressive with propositional logic (Strass 2014), it is not hard
to come up with a translation that is adequate. For example, it is
straightforward to show the adequacy (under two-valued seman-
tics) of the following translation. Let D, (A) = (Atoms(A), L, C)

with:
V A Voo

Cy = wA
K% (w)=0and wl= KL (w)>0and wl= KL (w)>0and wl=—
Z(w) Eo Z(w) =o Z(w) =-¢

—wV

for any ¢ € At(A). But such a translation is dependent on the
semantics of system Z and therefore is not syntax-based.

Figure 4: Graph representing the links between nodes of
D5(A) in Example 11.

maximally plausible worlds (even if the negation " is com-
plete in such a model).

4.3 Literal Conditionals

The final design choice made in this paper we motivate is
the fact that we restricted attention to (possibly extended)
literal conditional knowledge base as the object of transla-
tion. The reason is that we choose to represent conditionals
(¢|1)) as links between nodes ¢ and 1) (modulo transforma-
tion to the extend language). Moving to conditionals with
arbitrary propositional formulas as antecedents and conse-
quents would make it impossible to retain such a represen-
tation, since in abstract dialectical argumentation, nodes are
essentially atomic.

5 Related Work

Our aim in this paper is to lay foundations of integra-
tive techniques for argumentative and conditional reasoning.
There are previous works, which have similar aims or are
otherwise related to this endeavour. We will discuss those in
the following.

First, there is huge body of work on structured argumen-
tation (see e. g. (Besnard et al. 2014)). In these approaches,
arguments are constructed on the basis of a knowledge base
possibly consisting of conditionals. An attack relation be-
tween these arguments is constructed based on some syn-
tactic criteria. Acceptable arguments are then identified by
applying argumentation semantics to the resulting argumen-
tation frameworks. Even though these formalisms also al-
low for argumentation-based inferences from a set of condi-
tionals, these approaches will often give rise to inferences
rather different from conditional logics. For example, in
ASPIC* (Modgil and Prakken 2018), the knowledge base
consisting solely of the defeasible rule p = ¢ will war-
rant no inference (in fact the set of arguments based on
this knowledge base will be empty), whereas, for example,
Di({(glp)}) b s 4=(p A —q). This difference is caused by
the fact that in structured argumentation, arguments are typi-
cally constructed in a proof-like manner. This means that de-
feasible rules can only be applied when there is positive ev-
idence for the antecedent. Conditional logics, and our trans-
lation by extension, on the other hand, generate models that
do not falsify any plausible conditional.

There have been some attempts to bridge the gap between
specific structured argumentation formalisms and condi-
tional reasoning. For example, in (Kern-Isberner and Simari
2011) conditional reasoning based on System Z (Goldszmidt
and Pearl 1996) and DelLP (Garcia and Simari 2004) are
combined in a novel way. Roughly, the paper provides a
novel semantics for DeLP by borrowing concepts from Sys-
tem Z that allows using plausibility as a criterion for com-

81

paring the strength of arguments and counterarguments. Our
approach differs both in goal (we investigate the correspon-
dence between argumentation and conditional logics instead
of integrating insights from the latter into the former) and
generality (DeLP is a specific and arguably rather peculiar
argumentation formalism whereas ADFs are some of the
most general formalism around).

Several works investigate postulates for nonmonotonic
reasoning known from conditional logics (Kraus, Lehmann,
and Magidor 1990) for specific structured argumenta-
tion formalisms, such as assumption-based argumentation
(Cyras and Toni 2015; Heyninck and StraBer 2018) and
ASPICT (Li, Oren, and Parsons 2017). These works re-
vealed gaps between nonmonotonic reasoning and argumen-
tation which we try to bridge in this paper.

Besnard et al. (Besnard, Grégoire, and Raddaoui 2013)
develop a structured argumentation approach where general
conditional logic is used as the base knowledge representa-
tion formalism. Their framework is constructed in a similar
fashion as the deductive argumentation approach (Besnard
and Hunter 2008) but they also provide with conditional
contrariety a new conflict relation for arguments, based on
conditional logical terms. Even though insights from condi-
tional logics are used in that paper, this approach stays well
within the paradigm of structured argumentation.

In (Strass 2015) Strass presents a translation from an AS-
PIC-style defeasible logic theory to ADFs. While actually
Strass embeds one argumentative formalism (the ASPIC-
style theory) into another argumentative formalism (ADFs)
and shows how the latter can simulate the former, the pro-
cess of embedding is similar to our approach. However, in-
ferentially the formalism of (Strass 2015) is more akin to
ASPIC™, in the sense that literals cannot be accepted unless
there is some rule deriving them. Arguably, this formalism
is more akin to Dj (see Definition 4.2), as in the ADFs gen-
erated by (Strass 2015), rules result in support of the conse-
quents of rules.

6 Outlook and Conclusion

In this paper we have presented and investigated a transla-
tion from conditional knowledge bases into abstract dialecti-
cal argumentation based on the syntatic similarities between
the two frameworks. We provide an interpretation of plau-
sible conditionals in abstract dialectical argumentation. We
have shown that this interpretation is adequate under all of
the well-known semantics for ADFs and have shown that
the translation is polynomial and modular. Interestingly, the
translation requires an extension of the language, which we
have argued in Section 4 cannot be avoided.

Another limitation of our interpretation is that adequacy
is only shown with respect to the level of beliefs Bel (k%)
(or equivalently the level of the most plausible worlds
(k%)71(0)). In future work, we plan to investigate meth-
ods to obtain conditional inferences from ADFs and com-
pare them with system Z. One proposal to do this is founded
upon the Ramsey-test (Ramsey 2007), which says that a
conditional (¢[1)) is accepted if belief in 1) leads to be-
lief in ¢. Several ways of modelling the hypothetical be-
lief in ¢/ are to be considered, such as revision by ¢ (us-
ing e. g. revision of ADFs as proposed by (Linsbichler and

Woltran 2016)), observations of ¢ (Booth et al. 2012) or in-
terventions with ¢ (Rienstra 2014). Furthermore, we plan to
tackle the combination of the translation presented in this
paper and the one from ADFs into conditional logics an-
alyzed in previous works (Kern-Isberner and Thimm 2018;
Heyninck, Kern-Isberner, and Thimm 2020). We want to an-
swer the question what happens if we apply these translation
one after each other. Finally, we plan to generalize the results
of this paper to other conditional logics besides system Z,
which we have chosen because of the many desirable prop-
erties it satisfies.

Acknowledgements The research reported here was sup-
ported by the Deutsche Forschungsgemeinschaft under grant
KE 1413/11-1.

References

Atkinson, K.; Baroni, P.; Giacomin, M.; Hunter, A.;
Prakken, H.; Reed, C.; Simari, G. R.; Thimm, M.; and Vil-
lata, S. 2017. Toward artificial argumentation. Al Magazine
38(3):25-36.

Besnard, P., and Hunter, A. 2008. Elements of argumenta-
tion, volume 47. MIT press Cambridge.

Besnard, P.; Garcia, A.; Hunter, A.; Modgil, S.; Prakken, H.;
Simari, G.; and Toni, F. 2014. Introduction to structured
argumentation. Argument & Computation 5(1):1-4.

Besnard, P.; Grégoire, E.; and Raddaoui, B. 2013. A con-
ditional logic-based argumentation framework. In Inter-
national Conference on Scalable Uncertainty Management,
44-56. Springer.

Booth, R.; Kaci, S.; Rienstra, T.; and van der Torre, L. 2012.
Conditional acceptance functions. In 4th International Con-
ference on Computational Models of Argument (COMMA
2012),470-4717.

Brewka, G., and Woltran, S. 2010. Abstract dialectical
frameworks. In Twelfth International Conference on the
Principles of Knowledge Representation and Reasoning.

Brewka, G.; Strass, H.; Ellmauthaler, S.; Wallner, J. P.; and
Woltran, S. 2013. Abstract dialectical frameworks revisited.
In Twenty-Third International Joint Conference on Artificial
Intelligence.

Brewka, G.; Ellmauthaler, S.; Strass, H.; Wallner, J. P.; and
Woltran, S. 2017. Abstract dialectical frameworks: An
overview. The IfCoLog Journal of Logics and their Applica-
tions 4(8):2263-2317.

Cyras, K., and Toni, F. 2015. Non-monotonic inference
properties for assumption-based argumentation. In TAFA,
92-111. Springer.

de Finetti, B. 1974. Theory of probability (2 vols.).

Dung, P. M. 1995. On the acceptability of arguments
and its fundamental role in nonmonotonic reasoning, logic

programming and n-person games. Artificial Intelligence
77:321-358.

Garcia, A. J., and Simari, G. R. 2004. Defeasible logic pro-
gramming: An argumentative approach. TPLP 4(1+ 2):95—
138.

Goldszmidt, M., and Pearl, J. 1996. Qualitative probabilities

82

for default reasoning, belief revision, and causal modeling.
Al 84(1-2):57-112.

Gottlob, G. 1994. The power of beliefs or translating default
logic into standard autoepistemic logic. In Foundations of

Knowledge Representation and Reasoning. Springer. 133—
144.

Heyninck, J., and Straer, C. 2018. A comparative study of
assumption-based approaches to reasoning with priorities.
In Second Chinese Conference on Logic and Argumentation.

Heyninck, J.; Kern-Isberner, G.; and Thimm, M. 2020. On
the correspondence between abstract dialectical frameworks
and non-monotonic conditional logics. In 33rd International
FLAIRS Conference.

Imielinski, T. 1987. Results on translating defaults to cir-
cumscription. Artificial Intelligence 32(1):131-146.
Kern-Isberner, G., and Simari, G. R. 2011. A default logical
semantics for defeasible argumentation. In FLAIRS.
Kern-Isberner, G., and Thimm, M. 2018. Towards condi-
tional logic semantics for abstract dialectical frameworks.
In et al., C. I. C., ed., Argumentation-based Proofs of En-
dearment, volume 37 of Tributes. College Publications.
Kern-Isberner, G. 2001. Conditionals in nonmonotonic
reasoning and belief revision: considering conditionals as
agents. Springer-Verlag.

Kraus, S.; Lehmann, D.; and Magidor, M. 1990. Nonmono-
tonic reasoning, preferential models and cumulative logics.
Al 44(1-2):167-207.

Li, Z.; Oren, N.; and Parsons, S. 2017. On the links between
argumentation-based reasoning and nonmonotonic reason-
ing. In TAFA, 67-85. Springer.

Linsbichler, T., and Woltran, S. 2016. Revision of abstract
dialectical frameworks: Preliminary report. In First Interna-
tional Workshop on Argumentation in Logic Programming
and Non-Monotonic Reasoning, Arg-LPNMR 2016.
Makinson, D. 1988. General theory of cumulative inference.
In NMR, 1-18. Springer.

Modgil, S., and Prakken, H. 2018. Abstract rule-based ar-
gumentation.

Nute, D. 1984. Conditional logic. In Handbook of philo-
sophical logic. Springer. 387—439.

Ramsey, F. P. 2007. General propositions and causality.

Rienstra, T. 2014. Argumentation in flux: modelling change
in the theory of argumentation. Ph.D. Dissertation, Univer-
sity of Luxembourg.

Spohn, W. 1988. Ordinal conditional functions: A dynamic
theory of epistemic states. In Causation in decision, belief
change, and statistics. Springer. 105-134.

Strass, H. 2013. Approximating operators and semantics
for abstract dialectical frameworks. Artificial Intelligence
205:39-70.

Strass, H. 2014. On the relative expressiveness of argu-
mentation frameworks, normal logic programs and abstract
dialectical frameworks. In 15th International Workshop on
Non-Monotonic Reasoning, 292.

Strass, H. 2015. Instantiating rule-based defeasible theories

in abstract dialectical frameworks and beyond. Journal of
Logic and Computation 28(3):605-627.

Inductive Reasoning with Difference-making Conditionals

Meliha Sezgin' , Gabriele Kern-Isberner', Hans Rott?
!Department of Computer Science, TU Dortmund University, Germany
?Department of Philosophy, University of Regensburg, Germany
meliha.sezgin @tu-dortmund.de, gabriele.kern-isberner @cs.uni-dortmund.de, hans.rott@ur.de

Abstract

In belief revision theory, conditionals are often interpreted
via the Ramsey test. However, the classical Ramsey Test fails
to take into account a fundamental feature of conditionals as
used in natural language: typically, the antecedent is relevant
to the consequent. Rott has extended the Ramsey Test by
introducing so-called difference-making conditionals that en-
code a notion of relevance. This paper explores difference-
making conditionals in the framework of Spohn’s ranking
functions. We show that they can be expressed by stan-
dard conditionals together with might conditionals. We prove
that this reformulation is fully compatible with the logic of
difference-making conditionals, as introduced by Rott. More-
over, using c-representations, we propose a method for in-
ductive reasoning with sets of difference-making conditionals
and also provide a method for revising ranking functions by
a set of difference-making conditionals.

1 Introduction

On most accounts of conditionals, a conditional of the form
‘If A then B’ is true or accepted if (but not only if) B is
true or accepted and A does not undermine B’s truth or ac-
ceptance. On the suppositional account, for instance, if you
believe B and the supposition that A is true does not re-
move B, you may (and must!) accept ‘If A, then B’. On
this account, there is no need that A furthers B or supports
B or is evidence or a reason for B. This does not square
well with the way we use conditionals in natural language.
Skovgaard-Olsen et al. (2019) have conducted an empiri-
cal study and concluded that the positive relevance reading
(reason-relation reading) of indicative conditionals is a con-
ventional aspect of their meaning which cannot be cancelled
‘without contradiction’. This, of course, is helpful only if
the notion of contradiction is clear, but we aim to flesh out
the positive relevance reading in an intuitive and yet precise
way. The difference-making conditionals studied in this pa-
per aim at capturing the relevance reading that is conveyed
semantically or pragmatically by the utterance of condition-
als in natural language. (Unfortunately, use of the term ‘rel-
evance conditionals’ has been preempted by a completely
different use in linguistics). Let us begin by giving an exam-
ple that illustrates what we mean by the term ‘relevance’:

Example 1. An agent wanted to escape the hustle and bustle
of the city and decided to move into an old farm house in

83

the countryside. Unfortunately, the weather quickly changed
and it became cold (c). Due to the low temperatures one of
the rather old pipes in the house broke (b) and the agent had
to call a plumber (p) to get the damage fixed.

In this example, it is clear that the cold temperatures are
the reason for the broken pipe. Yet, this is not well re-
flected if we use a standard conditional ‘If it is cold then
the pipe will break’. We would rather say that the pipe
broke because it was cold. The notion of relevance featuring
here is encoded in the Relevant Ramsey Test which governs
difference-making conditionals first introduced under a dif-
ferent name by Rott (1986) and then studied in Rott (2019).
Except for a very recent paper by Raidl (2020), the logic
of difference-making conditionals has been explored only in
a purely qualitative framework. We characterize difference-
making conditionals in the framework of Spohn’s (1988)
ranking functions and provide a simple and elegant seman-
tics which we can use to define an inductive representation,
that is, to build up an epistemic state from a (conditional)
knowledge base, as well as a revision method for difference-
making conditionals. Our main contributions in this paper
are the following:

* We transfer Rott’s notion of difference-making condition-
als to the framework of ordinal conditional functions and
reformulate the relevant Ramsey Test in this framework.

* We define an inductive representation for a set of
difference-making conditionals in the framework of rank-
ing functions.

* We set up a method for revising a ranking function by a set
of difference-making conditionals, and we elaborate this
general method for revising by a single difference-making
conditional in the ranking functions framework, based on
the c-revisions introduced by Kern-Isberner (2001).

* We compare the notion of evidence or support captured
by difference-making conditionals to the one offered in
related approaches like the ‘evidential conditionals’ of
Crupi and ITacona (2019a) or Spohn’s (2012) notion of
‘reason’.

The rest of this paper is organized as follows: In section
2, we define the formal preliminaries and notations used
throughout the paper. Section 3 summarizes concepts and
results from Rott’s (2019) work on difference-making con-

ditionals. Then, in section 4, we define a ranking seman-
tics for difference-making conditionals via an OCF-version
of the Relevant Ramsey Test and prove the basic principles
using a reformulation of a difference-making conditional
as a pair of more standard conditionals. In section 5, we
construct an inductive representation for sets of difference-
making conditionals using c-representations. Section 6 in-
troduces a method for revising by difference-making con-
ditionals based on c-revisions in the framework of ranking
functions. In section 7, we discuss alternative approaches to
incorporating relevance in conditionals. The concluding sec-
tion 8 sums up our findings.

2 Formal Preliminaries

Let £ be a finitely generated propositional language over
an alphabet > with atoms a,b,c,... and with formulas
A, B,C,.... For conciseness of notation, we will omit the
logical and-connector, writing AB instead of A A B, and
overlining formulas will indicate negation, i.e., A means
—A. The set of all propositional interpretations over X is de-
noted by (25.. As the signature will be fixed throughout the
paper, we will usually omit the subscript and simply write 2.
w F A means that the propositional formula A € £ holds in
the possible world w € €; then w is called a model of A, and
the set of all models of A is denoted by Mod(A). For propo-
sitions A, B € £, A F B holds iff Mod(A) C Mod(B),
as usual. By slight abuse of notation, we will use w both for
the model and the corresponding conjunction of all positive
or negated atoms. This will allow us to ease notation a lot.
Since w F A means the same for both readings of w, no con-
fusion will arise. The set of classical consequences of a set
of formulas A C Lis Cn(A) = {B | A |= B}. The de-
ductively closed set of formulas which has exactly a subset
W C Q as a model is called the formal theory of VW and
defined as Th(W) ={A € L |w = Aforallw € W}.

We extend L to a conditional language (£|L£) by introduc-
ing a conditional operator (|-), so that (£|£) = {(B|A) |
A,B € L}. (L|L) is a flat conditional language, no nest-
ing of conditionals is allowed. A is called the antecedent
of (BJA), and B is its consequent. (B|A) expresses ‘If A,
then (plausibly) B’. In the following, conditionals (B|A) €
(L|L) are referred to as standard conditionals or, if there is
no danger of confusion, simply conditionals.

We further extend our framework of conditionals to a lan-
guage with might conditionals { £| L) by introducing a might
conditional operator (|-} (the angle brackets are supposed
to remind the reader of a split diamond operator). For a
might conditional (D|C), we call C the antecedent and D
the consequent. As for standard conditionals, (£|£) is a flat
conditional language, and {(D|C') expresses ‘If C, then D
might be the case’. In a way, the might conditional { D|C')
is the negation of the standard conditional (D|C) (Lewis
1973). The former is accepted iff the latter isn’t.

A (conditional) knowledge base is a finite set of condi-
tionals A = {(B1|A1),...,(BnlAn)} U {{Bni1]lAni1),

.»(Bm|Am)}. To give an appropriate semantics to (stan-
dard resp. might) conditionals and knowledge bases, we
need richer semantic structures like epistemic states in the

84

sense of Halpern (2003), most commonly represented as
probability distributions, possibility distributions (Dubois
and Prade 2006) or ordinal conditional functions (Spohn
1988, 2012). A knowledge base is consistent if and only if
there is (a representation of) an epistemic state that accepts
the knowledge base, i.e., all conditionals in A.

Ordinal conditional functions (OCFs, also called ranking
functions) k : — N U {oo}, with k71(0) # 0, assign
to each world w an implausibility rank x(w). OCFs were
first introduced by Spohn (1988). The higher x(w), the less
plausible w is, and the normalization constraint requires that
there are worlds having maximal plausibility. Then one puts
k(A) := min{k(w) | w E A} and () = oo. Due to
k~1(0) # (), at least one of x(A) and x(A) must be 0. A
proposition A is believed if k(A) > 0, and the belief set of
a ranking function « is defined as Bel(k) = Th(x~1{0}).

Definition 1. A (standard) conditional (B|A) is accepted
in an epistemic state represented by an OCF &, written as
k = (B|A), iff (AB) < k(AB) or k(A) = .

That is, the verification of (B|A) is more plausible than
its falsification or the premise of the conditional is always
false.

Definition 2. A might conditionals (D|C') is accepted in
an epistemic state represented by an OCF k, written as
k | (D|C), if and only if & [(D|C) or x(C) = oo,
i.e., K(CD) < k(CD) or k(C) = .

Note that accepting a might conditional is not equivalent
to the acceptance of the conditional with negated consequent
(x E (D]|C)) but weaker since it allows for indifference
between C'D and CD. In this case both (D|C) and (D|C)
fail to be accepted.

3 The Ramsey Test, the Relevant Ramsey
Test and difference-making conditionals

In the following, let ¥ be an epistemic state of any general
format, and let Bel be an operator on belief states that as-
signs to W the set of beliefs held in W. Let * be a revision
operator on epistemic states, and let (B|A) be a conditional.
The Ramsey Test (so-called after a footnote in Ramsey 1931)
was made popular by Stalnaker (1968). According to it, ‘If
A then B’ is accepted in a belief state just in case B is an
element of the belief set Bel (¥ x A) that results from a revi-
sion of the belief state U by the sentence A. Formally:

(RT) ¥ = (B|A) iff B € Bel(V * A).

If belief states are identified with ranking functions, the
Ramsey Test reads as follows: k = (B|A) iff B € Bel(x *
A); this, taken together with Definition 1 implies a constraint
on kxA. The condition B € Bel(¥xA) can be reformulated
using some basic properties of ranking functions:

B € Bel(k x A) = Th((k + A)~1{0})
< VYw € min(Mod(k x A)) it holds that w = B
(k* A)(B) < (k* A)(B)
(kxA)(B)>0 < rk+xAEB.

4
-~

We can also define a Ramsey Test for might conditionals:
U = (B|A)iff B € Bel(W * A), that is, iff U % (B|A). Or
more specifically, in terms of ranking functions: x = (B|A)
iff B ¢ Bel(k x A), that is, iff x [~ (B|A), which follows
from Definition 2. The condition B ¢ Bel (¥ * A) can again
be reformulated using some properties of ranking functions:

B ¢ Bel(r * A) = Th((rk * A)~1{0})
< Jw € min(Mod(k x A)) such that w |= B

& (kxA)(B)=0 <& rk*xAFB.

Given assumptions on belief revision in the tradition of
Alchourrén, Gérdenfors and Makinson (1985), Ramsey Test
conditionals are known to satisfy, among other things, the
following principles of And, Right Weakening, Cautious
Monotonicity, Cut and Or:

(And) If (B|A) and (C|A), then (BC|A).
(RW) If (B|A) and C € Cn(B), then (C|A).
(CM) If (B|A) and (C|A), then (C|AB).
(Cut) If (B|A) and (C|AB), then (C|A).
(Or) If(C]A) and (C|B), then (C|A V B).

All of these principles are to be read as quantified over all
belief states U: ‘(B|A)’ is short for ‘¥ |= (B|A)’. Roughly,
a principle of the form ‘If A, then (B|A)’ is valid iff for
every belief state U, if the conditionals mentioned in A are
all accepted in W, then (B|A) is accepted in U, too.

The Ramsey Test falls squarely within the paradigm of
the suppositional account mentioned above. Assume that an
agent happens to believe B. Assume further that her beliefs
are consistent with A (or that she actually already believes
that A). Then, given a widely endorsed condition of belief
preservation, the Ramsey Test rules that the agent is com-
mitted to accepting the conditional (B|A). There need not
be any relation of relevance or support between A and B. In
particular, if you happen to believe A and B, this is sufficient
to require acceptance of (B|A).

How can the Ramsey Test be adapted to capture the idea
that the antecedent should be relevant to the consequent?
One straightforward way is to interpret conditionals as be-
ing contrastive: The antecedent should make a difference to
the consequent. In order to implement this idea without in-
troducing a dependence on the actual belief status of the an-
tecedent, Rott (2019) suggests the following Relevant Ram-
sey Test:

(RRT) U |= A> B iff B € Bel(¥ + A) and
B & Bel(V x A).

We call conditionals that are governed by (RRT) difference-
making conditionals, and we have changed the notation here
from (B|A) to A>> B in order to mark our transition from
standard would conditionals to difference-making condi-
tionals. A>> B can be read as ‘If A, then (relevantly) B.
Here the consequent is accepted if we revise the belief state
by the antecedent, but the consequent fails to be accepted
if we revise by the negation of the antecedent. Rott’s idea
was to liken conditionals to the natural-language connectives
‘because’ and ‘since’ that are widely taken to express the
contrast that a cause or a reason is making to its effect. Thus

85

Rott took > to be an intrinsically contrastive connective. It
is important to note, however, that unlike ‘B because A’ and
‘Since A, B’, which can only be accepted if A is believed to
be true, the acceptance of A > B neither entails nor is en-
tailed by a particular belief status of A. (RRT) provides a
clear and simple doxastic semantics for relevance-encoding
conditionals with antecedents and consequents that may be
arbitrary compounds of propositional sentences.

Since (RRT) is more complex than (RT), it is hardly
surprising that difference-making conditionals don’t satisfy
some of the usual principles for standard conditionals such
as CM, Cut and Or. Rott discusses some examples showing
how CM, Cut and OR can fail with difference-making con-
ditionals. The most striking fact, however, is that difference-
making conditionals do not even validate Right Weakening
which has long seemed entirely innocuous to conditional
logicians. Rott even called the invalidity of RW the hall-
mark of difference-making conditionals and indeed of the
relevance relation. Another notable property of difference-
making conditionals is that B € Cn(A) does not imply that
A> B is accepted. If B is accepted “anyway” (like for in-
stance a logical truth B is), then A cannot be relevant to B,
even if it implies B.

That many of the familiar principles for standard condi-
tionals become invalid for difference-making conditionals
does not mean that there is no logic to the latter. Here are
the basic principles of difference-making conditional oper-
ators that Rott (2019) shows to be complete with respect to
the basic AGM postulates for belief revision (actually Rott
uses a slight weakening of the basic AGM postulates that
allows that revisions by non-contradictions may result in in-
consistent belief sets):

>0) I>1.

(>3)) If A> BC,then A>Bor A>C.

(>2a) A>Ciff (A>ACand A> AV O).
>2b) A> AC iff (notA> AVC and A>> A).
>34) L>AVCiff(L>Aand A> AV C).
>5) AV B> 1iff(A> 1 and B> 1).

(>6) If Cn(A) = Cn(B) and Cn(C) = Cn(D),

then: A>C'iff B> D.

All of these principles are to be read as quantified over all
belief states ¥: ‘A >>C" is short for ‘U |= A>C” and ‘not
A > (" is short for ‘U [~ A > C’. Roughly, a principle
of the form ‘If A, then I'” is valid iff for every belief state
W, if the (possibly negated) conditionals mentioned in A are
all accepted in W, then the (possibly negated) conditionals
mentioned in I are accepted in U, too.

It follows from principles (>>0) — (>>6) that (And) is also
valid for difference-making conditionals. (>>1) is dual to
the well-known principle of Disjunctive Rationality; it is
called Conjunctive Rationality in Rott (2020). Like its dual,
Conjunctive Rationality is a non-Horn condition. Another
non-Horn condition is the right-to-left direction of (>>2b).
The presence of non-Horn conditions means that reason-
ing with difference-making conditionals is not trivial. In or-
der to determine what may be inferred from a knowledge
base containing difference-making conditionals, we cannot

simply use the axioms as closure operators. This is anal-
ogous to the problem of rational consequence relations in
the sense of Lehmann and Magidor (1992) that have made
it necessary to invent special inference methods like ratio-
nal closure/system Z and c-representations. In the follow-
ing, we will use the method of c-representations to deal with
difference-making conditionals. A major part of our task
ahead may be described as doing for c-representations what
Booth and Paris (1998) achieved for rational closure.

4 Ranking semantics for difference-making
conditionals

In this section, we define a semantics for difference-making
conditionals in the framework of Spohn’s ranking functions.
We make use of standard conditionals and might condition-
als in order to express that the antecedent of the conditional
is relevant to the consequent. We justify our definition of
difference-making conditionals by showing that the Rele-
vant Ramsey Test holds and we show that the Basic prin-
ciples are satisfied.

Definition 3 (Relevant Ramsey Test for OCFs). Let be an
OCE, A > B be a difference-making conditional and * a
revision operator for OCFs. We define the Relevant Ramsey
Test for OCFs as follows:

(RRT*Y) k= A>B iff B € Bel(k* A) and
B & Bel(k * A).

Using some basic properties of ranking functions, we can
reformulate (RRT) :

kiEA>B iff kx AEBandk+x A B, (1)
From (1), we obtain for A with (A), k(A) < oo:
ke A B iff & = {(B|A),(BIA)} @

iff both of the following two conditions hold:
k(AB) < k(AB) and 3)
#(AB) < k(AB). @)

Difference-making conditionals defined by (RRT*) can be
expressed by pairs of conditionals. The first conditional
(B|A) corresponds to the first part of the (RRT*), B €
Bel(k * A), using basically the standard Ramsey Test. The
clause for (RRT") implies the clause for the standard Ram-
sey Test. The second conditional { B|A) corresponds to the
second part of the (RRT"), namely B ¢ Bel(x * A). We
now continue with Example 1 in order to elucidate our re-
formulation in (2).

Example 2 (Continue Example 1). The agent’s pipe broke
because the temperatures were too low, and therefore she
had to call a plumber to have the pipe fixed. These connec-
tions can be expressed using difference-making condition-
als ¢ > b and b > p. Applying (2), we can reformulate
A% = {c>bb>p} = {(blo),(blc), (plb), (PIb)}. The
standard conditionals express that if it is cold, then the pipe
will break, and if the pipe breaks, then the agent will call a
plumber. But the reason relation would get neglected if we

86

only used standard conditionals. The might conditionals ex-
press that if it is not cold, then the pipe might not break, and
if the pipe does not break, we might not call the plumber.
Here the might conditionals formulated in natural language
perhaps sound a bit odd, but together with the standard con-
ditionals they express the reason relations introduced by the
difference-making conditionals.

Next, we turn to the basic principles for difference-
making conditionals. Note that when checking the princi-
ples of Rott, instead of a general epistemic state ¥, we use a
ranking function k.

Theorem 1. Let be a ranking function and let k |= A> B
be as defined in (2). Then - > - satisfies the basic principles
of difference-making conditionals.

Proof. (>>0): We show thatk = 1> | ie.,xx Ll = 1 and
K * Tﬁ. These are true by the success and consistency
conditions for revisions, respectively.

(>1): Let k = A >