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Abstract
In this little homage to Andreas Herzig (Andi), I revisit a re-

search topic I had the privilege of working on with him, namely
modal-based approaches to reasoning about actions. Taking Andi’s
modal logics of action as a point of departure, I show how action
domain descriptions can benefit from a deal of work done in the
defeasible-reasoning literature to account for both exception toler-
ance and a commonly accepted notion of rationality in reasoning.
The resulting logical framework is a more robust and resilient ac-
tion formalism for reasoning about dynamic domains.

1 Introduction
Andreas Herzig (Andi) has been one of the pioneers endorsing modal
logic [8] in general and dynamic logic [11] in particular as viable alterna-
tives to first-order based formalisms, such as the situation calculus [18],
for reasoning about actions, planning, and beyond. Modal logic has a
syntax and a semantics that are both simpler and neater compared to
those of first-order languages, and it lends itself naturally to the for-
malisation of many aspects of human knowledge and reasoning without
excessive clumsiness. Additionally, modal logic is generally a decidable
formalism, with many off-the-shelf algorithms and tools made available
by the community over the past decades. These are features that have
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always been of paramount importance to Andi for the practical use of
logic and that have guided most of his work.

An Andi-style logic for reasoning about actions is a logical language
with the following main features: (i) its syntax is a useful and elegant
fragment of some modal system; (ii) it is expressive enough to allow for
the specification of the different types of laws or rules associated with
dynamic scenarios, including effect laws, executability and inexecutabil-
ity laws, besides integrity constraints; (iii) it can be endowed with an
intuitive and effective solution to the frame and ramification problems,
and (iv) it can be equipped with a decision procedure for performing
the various reasoning services associated with action domains.

A somewhat tacit tradition in the reasoning about actions litera-
ture has often been that the above-mentioned laws in general, but in-
tegrity constraints in particular, are hard constraints and, as a result,
do not admit exceptions. Such is the case for Andi-style action domain
descriptions, as modal sentences with which the various laws are for-
malised behave classically. Nevertheless, as widely investigated by the
non-monotonic reasoning community, rules are prone to have exceptions,
and systems capable of handling them are more robust and resilient.

The goal of this paper is to show how Andi-style action domain de-
scriptions can be made more refined, tolerant to exceptions, and also
more venturesome when it comes to reasoning. Building on recent work
on defeasible reasoning for logics that are more expressive than proposi-
tional logic, in particular modal logic, we revisit Andi-style multi-modal
logics of action by enriching them with defeasibility features, in partic-
ular with what is commonly called rationality at the entailment level.
The resulting framework is a more robust and resilient action formalism.

The plan of the paper is as follows: Section 2 recalls the terminology
and notation we use in the upcoming sections. In Section 3, we show how
Andi-style action descriptions can be endowed with defeasible laws, of
which a rational semantics borrowed from the defeasible description logic
case [2] is given in Section 4. In Section 5, we equip our framework with
a notion of entailment which has been acknowledged as suitable in other
logics, namely the rational closure of a defeasible domain description.
Section 6 concludes the paper with a discussion on further features of
the framework here proposed and possible extensions thereof.



Defeasible Andi-Style Multi-Modal Logic of Actions

2 Preliminaries and notation

We assume a multi-modal language generated from a non-empty and
finite set of propositional atoms P, with the special constants ⊤ and ⊥,
and a finite set of (atomic) action names A. We use p, q, . . . as meta-
variables for atoms, and a, b, . . . to denote actions. Complex sentences
are denoted by α, β, . . ., and are recursively defined by the grammar:
α ::= ⊤ | ⊥ | p | ¬α | (α ∧ α) | (α ∨ α) | (α → α) | 3aα | 2aα. With L
we denote the set of all sentences of the underlying modal language.
When writing down sentences of L, we follow the usual convention and
omit parentheses whenever they are not essential for disambiguation.

The semantics of L is the standard Kripkean one. A Kripke model
is a structure M = ⟨W, R, V⟩, where W ̸= ∅ is a (possibly infinitely)
countable set of worlds, Rdef=⟨Ra | a ∈ A⟩, where each Ra ⊆ W×W, a ∈ A,
is an accessibility relation, and V : W −→ {0, 1}P is a function mapping
worlds into propositional valuations. Whenever it eases presentation, we
shall represent valuations as sequences of 0s and 1s.

Sentences of L are true or false relative to a world in a Kripke model.
For every w in M : M , w ⊩ ⊤; M , w ̸⊩ ⊥; M , w ⊩ p if V(w)(p) = 1;
M , w ⊩ ¬α if M , w ̸⊩ α; M , w ⊩ α ∧ β if M , w ⊩ α and M , w ⊩ β;
M , w ⊩ 3aα if M , w′ ⊩ α for some w′ s.t. (w, w′) ∈ Ra, and M , w ⊩
2aα if M , w′ ⊩ α for all w′ s.t. (w, w′) ∈ Ra. Truth conditions for the
other connectives are as usual. Given M = ⟨W, R, V⟩ and α ∈ L, with
JαKM def= {w ∈ W | M , w ⊩ α} we denote the α-models in M .

3 Defeasible action domain descriptions

When specifying an action domain description, one usually writes down
a set of ‘rule’-like statements in the underlying logical language. These
are commonly called laws and their purpose is to capture the behaviour
of the actions as well as the structure of the domain under consideration.

Integrity constraints (ICs), also called static laws, are meant to en-
sure the structure of the world remains coherent as actions are executed.
In a propositional modal setting as the one we assume here, they amount
to propositional sentences, often in the form of a material implication,
understood as global axioms. An example of IC is walking → alive.
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As it turns out, just like rules may fail or have exceptions, so do ICs,
in particular if they do not encode some (rigid) laws of physics: a turkey
whose head has just been chopped off but is still moving around, even
if for a short while, ought not to be seen as alive anymore.

A defeasible integrity constraint (DIC) is a statement of the form α |∼
β, where α and β are propositional sentences, and is read as “usually, if α,
then β.” An example of a DIC is walking |∼ alive, stating that usually, a
walking turkey is alive. With a DIC α |∼ β, the intention is to capture
the fact that a constraint expressed as a material implication of the
form α → β usually holds, but may still fail in exceptional circumstances.
In our example, walking |∼ alive can accommodate the above exception.

Effect laws are statements capturing the most relevant aspects of an
action’s behaviour. In our setting, they are specified as a (‘rule’-like)
sentence of the form α → 2aβ, with α, β propositional. For example,
loaded → 2shoot¬alive links the precondition (the gun is loaded) to the
effect (the turkey is dead) of the action in question (to shoot).

Actions may fail to produce their expected outcome: situations in
which, e.g., the gun is presumably loaded but the bullet is stuck in its
barrel and, as a result, the turkey keeps on being alive after shooting,
violate the corresponding effect law. A defeasible effect law (DEL) is
a rule-like statement of the form α |∼ 2aβ, with α and β propositional
sentences and a ∈ A, and is read as “usually, if α, then after every
execution of action a, β holds.” As an example, we have loaded |∼
2shoot¬alive. Intuitively, such a statement captures the expected effect
of shooting in normal situations (the turkey’s death) while allowing for
(less normal) outcomes as the one we referred to above.

A special type of effect law is one about an action’s ‘non-effects’, i.e.,
about the facts not impacted by a specific action. They are called frame
axioms and are needed when reasoning under an open-world assumption.
In a propositional multi-modal language, they have the form ℓ → 2aℓ,
where ℓ is a literal, i.e., ℓ = p or ℓ = ¬p, for some p ∈ P. An example of
a frame axiom is alive → 2waitalive. Not surprisingly, some frame axioms
may also fail: if the turkey is too old and about to die of natural causes,
we are not guaranteed to find it alive after waiting. A defeasible frame
axiom (DFA) is a statement of the form ℓ |∼ 2aℓ, where ℓ is a literal
and a ∈ A, and is read as “usually, the execution of action a does not
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change the status of ℓ.” For example, we could have alive |∼ 2waitalive,
specifying that usually, we do not find a dead turkey after just waiting.

Executability and inexecutability laws make explicit, respectively,
the known preconditions for an action to be executed and the circum-
stances preventing its execution. In a propositional multi-modal setting,
executability laws take the form α → 3a⊤, whereas inexecutability
laws are of the form α → 2a⊥. Examples of each are, respectively,
loaded → 3shoot⊤ and ¬loaded → 2shoot⊥. (Note that, in a modal lan-
guage, inexecutability laws can also be seen as a special case of effect
laws in which the effect is ⊥.)

Similarly to the previous types of laws we have seen, executability
and inexecutability laws may fail. Indeed, in the (abnormal) situation
in which the gun is loaded but the bullet is stuck in the barrel, one
cannot shoot. Furthermore, the unusual situation of the Rust movie
set,1 in which someone was shot and killed with a technically unloaded
gun, remains foreseeable.

A defeasible executability law (DXL) is a statement of the form α |∼
3a⊤, where α is a propositional sentence, and is read as “usually, if α
holds, then a is executable.” For instance, loaded |∼ 3shoot⊤ conveys the
idea that in the normal situations where the gun is loaded, it is possible
to shoot. This is in line with the intuitions and also caters for the less
usual case we motivated above. Similarly, a defeasible inexecutability
law (DIL) is a statement of the form α |∼ 2a⊥, with α a propositional
sentence, and is read as “usually, α prevents a’s execution.” (Just as in
the classical modal case, DILs can be seen as a special kind of DELs
— see above — in which the expected outcome of an action, in a given
situation, is always false.) As an example, ¬loaded |∼ 2shoot⊥ specifies
that, usually, one cannot shoot with an unloaded gun.

Notice that, since defeasible laws have a rule-like flavour, |∼ is not
allowed to be nested in each type of defeasible law we have introduced
above. This assumption is useful in showing a representation result
w.r.t. the set of postulates characterising |∼’s behaviour (cf. Section 4).

A defeasible action domain description, denoted KB (for knowledge
base), is a finite set of defeasible laws of the above-introduced types,
possibly containing classical modal sentences.

1https://en.wikipedia.org/wiki/Rust_(2024_film)

https://en.wikipedia.org/wiki/Rust_(2024_film)
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Example 1. The following is an example of a defeasible action domain
description in the shooting scenario: KB = {walking |∼ alive, ¬loaded |∼
2loadloaded, loaded |∼ 2shoot¬alive, hasGun |∼ 3shoot⊤, ¬hasGun |∼
2shoot⊥, 3wait⊤, alive |∼ 2waitalive, loaded |∼ 2waitloaded}.

Intuitively, one expects defeasible domain descriptions to be more
tolerant to exceptions regarding the behaviour of actions, i.e., to con-
flicting information, which leads to inconsistency when classical reason-
ing is assumed. In the next section, we see how defeasible laws can be
given an intuitive semantics which, later on, will lend itself to a suitable
notion of entailment from a defeasible action domain description.

4 Rational semantics
Defeasibility (or non-monotonicity) tout court is not enough: to be
meaningful and useful, defeasible-reasoning processes need to be per-
formed in a principled way. This amounts to satisfying a set of formal
properties or postulates as they are usually referred to in the literature.
Among these, rationality (and its various guises) is traditionally consid-
ered the baseline for reasoning about the real world. We now show how
this requirement can be captured in the modal preferential semantics of
Britz et al. [3, 4, 5].

Given a set X, the binary relation ≺ ⊆ X × X is a ranked order if
there is a mapping r : X −→ N satisfying the convexity property (for
every i ∈ N, if for some x ∈ X r(x) = i, then, for every j s.t. 0 ≤ j < i,
there is a y ∈ X for which r(y) = j), and s.t. for every x, y ∈ X, x ≺ y if
r(x) < r(y). The idea is that r(x) denotes the ‘rank’ of x in the set X,
the reason ≺ induced by r(·) as above is called a ranked order.

Definition 1. A ranked Kripke model is a tuple R def= ⟨W, R, V, ≺⟩,
where ⟨W, R, V⟩ is a Kripke model and ≺ is a ranked order on W.

It can be shown that, for every ranked Kripke model, the function r(·)
is unique, i.e., given a ranked Kripke model R = ⟨W, R, V, ≺⟩, there is
only one function r : W −→ N satisfying the convexity property above
and such that for every w, u ∈ W, w ≺ u iff r(w) < r(u). (The proof is
analogous to that by Britz et al. [2] in the description logic case.) This
result allows us to talk about the characteristic ranking rR(·) associated
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with a ranked Kripke model R, which will be useful in the semantic
constructions in Section 5.

Intuitively, the lower the rank of a world in a ranked Kripke model R,
the more typical (or normal) the world is in R.

Figure 1 depicts an example of a ranked Kripke model for P =
{alive, hasGun, loaded, walking} and A = {entice, load, shoot, wait}.
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Figure 1: A ranked Kripke model for P = {alive, hasGun, loaded, walking} (with
truth values featuring in this order in valuations) and A = {entice, load, shoot, wait}
(names abbreviated for conciseness). Ranks are shown vertically on the left.

Given a ranked Kripke model R and α ∈ L, the definition of JαKR

is extended in the obvious way. Armed with ranked Kripke models, one
can give a semantics to |∼-statements: R ⊩ α |∼ β if min≺JαKR ⊆ JβKR ,
i.e., the minimal α-worlds w.r.t. ≺ in R are β-worlds.

One of the consequences of our semantics is that for every ranked
Kripke model R = ⟨W, R, V, ≺⟩ and every α ∈ L, α is true in R, i.e.,
JαKR = W iff R ⊩ ¬α |∼ ⊥. Hence, every classical modal sentence α can
be seen as just an abbreviation for the defeasible statement ¬α |∼ ⊥.

We say a ranked Kripke model R satisfies (alias is a model of) an
action domain description KB if R satisfies every statement in KB. As
an example, the ranked Kripke model depicted in Figure 1 satisfies the
action domain description KB in Example 1.
Theorem 1 (Finite-Model Property). The logic of modal |∼-statements
has the finite-model property: every defeasible action domain description
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that has a ranked Kripke model also has a finite ranked Kripke model,
i.e., one in which the set W is finite.

In the literature on non-monotonic reasoning, there is an agreement
that, in order to be considered rational, |∼ ought to satisfy all the proper-
ties shown in Figure 2, which have been put forward by Kraus, Lehmann
and Magidor [16], and usually referred to as the KLM postulates:

(Ref) α |∼ α (LLE) |= α ↔ β, α |∼ γ

β |∼ γ

(And) α |∼ β, α |∼ γ

α |∼ β ∧ γ
(Or) α |∼ γ, β |∼ γ

α ∨ β |∼ γ

(RW) α |∼ β, |= β → γ

α |∼ γ
(CM) α |∼ β, α |∼ γ

α ∧ β |∼ γ

(RM) α |∼ β, α ̸|∼ ¬γ

α ∧ γ |∼ β

Figure 2: KLM rationality properties or postulates.

(For more details on the postulates above, as well as on others, we
refer the reader to the provided references [10, 16, 17].)

The following representation result, which is a reformulation of the
one by Britz et al. for a pointed-model semantics [3, 4] and of which
the proof follows that by Britz et al. in the defeasible description logic
case [2], establishes the ‘soundness’ and ‘completeness’ of the KLM pos-
tulates above w.r.t. the class of ranked Kripke models:

Theorem 2. Every ranked Kripke model R satisfies the KLM prop-
erties, i.e., whenever R satisfies the statements in the antecedent of a
KLM property, it also satisfies the respective consequent. Conversely, if
a set X of |∼-statements is rational, then there is a ranked Kripke model
satisfying all and only the statements in X.

5 Rationality in entailment

From the standpoint of knowledge representation and reasoning, a cen-
tral question is determining which statements are entailed by a defeasible
action domain description. Given the semantic constructions from the
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previous section, the obvious starting point in the study of entailment
in our setting is the following notion:

Definition 2 (Ranked Entailment). A statement α |∼ β is rank en-
tailed by a defeasible action domain description KB, denoted KB |=rk
α |∼ β, if every ranked model of KB satisfies α |∼ β.

Let KB be a defeasible action domain description and let ∆ be a
fixed countably infinite set. With Mod∆(KB)def={R = ⟨W, R, V, ≺⟩ | R ⊩
KB, R is ranked, and W = ∆}, we denote the set of ∆-models of KB.
It turns out that ranked entailment above can be fully characterised by
the ranked Kripke models in Mod∆(KB), as the following modal version
of a result by Britz et al. [2] establishes:

Lemma 1. For every KB and every α, β ∈ L, KB |=rk α |∼ β iff
R ⊩ α |∼ β, for every R ∈ Mod∆(KB).

Nevertheless, as already shown by Britz et al. [3], ranked entailment
is not satisfactory in a non-monotonic setting, the crux of the matter
being it remains a Tarskian notion of entailment and, hence, is mono-
tonic. This is similar to well-known results in the propositional [17] and
description logic [2] cases. The next example captures the essence of the
argument against ranked entailment: it is neither ampliative nor defea-
sible, thereby failing to preserve rational monotonicity (RM) in Figure 2.

Example 2. Let us assume the simple defeasible action domain descrip-
tion KB = {walking → alive, alive |∼ 3entice⊤}, specifying that a walking
turkey is known for sure to be alive, and that a live turkey can usu-
ally be enticed. It can be checked that KB ̸|=rk walking |∼ 3entice⊤, i.e.,
ranked entailment does not allow us to draw the (plausible) conclusion
that walking turkeys can usually (at least provisionally) be enticed. The
only way to ensure this conclusion is by adding it explicitly to KB, get-
ting KB′ = KB ∪ {walking |∼ 3entice⊤}, which gets us into trouble if we
ever learn that (for whatever reason) a walking turkey cannot be enticed:
KB′′ = KB′ ∪ {walking |∼ 2entice⊥} |=rk ¬walking, i.e., turkeys never
walk, which is an unintuitive conclusion in our scenario.

To ensure rationality when reasoning with defeasible action domain
descriptions, we need to move beyond the (monotonic) notion of con-
sequence that Definition 2 embodies. The literature on non-monotonic
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reasoning offers us valuable insights in this direction. The constructions
we present now are inspired by the semantic characterisation of rational
closure by Booth and Paris in the propositional case [1] and are based
mainly on its extension to description logics by Britz et al. [2].

Given a set of ranked Kripke models, one can merge them by ex-
tending a standard operation of the classical modal semantics.

Definition 3 (Ranked Union). Given a countable set of ranked Kripke
models R = {R1, R2, . . .}, with RR def= ⟨WR, RR, VR, ≺R⟩ we denote the
ranked union of R, where:

• WR def=
∐

R∈R W, i.e., the disjoint union of the worlds from R,
where each R ∈ R has the elements w, u, . . . of its W renamed as
wR, uR, . . . so that they are all distinct in WR;

• VR(wR) = V(w) in R, and therefore RR, wR ⊩ p iff R, w ⊩ p;

• (wR , w′
R′) ∈ RR

a iff R = R′ and (w, w′) ∈ Ra in R;

• for every wR ∈ WR, rRR(wR) = rR(w), i.e., renamed worlds keep
their ranks from the respective R (cf. Definition 1 and below it).

The latter condition corresponds to imposing that wR ≺R w′
R′ if and

only if rR(w) < rR′(w′).

Informally, the ranked union of a set of ranked Kripke models is the
result of merging all their ranks of value i into a single rank of value i,
for each i. It can be shown that the ranked union built up from a set of
ranked Kripke models of a knowledge base KB is itself a ranked Kripke
model of KB. (The proof is similar to that of an analogous result in the
description logic case [2, Lemma 8].)

Using the definitions of Mod∆(KB) (see previous page) and of ranked
union, we can construct a canonical ranked Kripke model of KB.

Definition 4 (Big Ranked Kripke Model). Let KB be a defeasible action
domain description. The big ranked Kripke model of KB is the ranked
Kripke model RR such that R = Mod∆(KB).

Definition 5 (Rational Entailment). A statement α |∼ β is rationally
entailed by a defeasible action domain description KB, denoted KB |≈rat
α |∼ β, if RR ⊩ α |∼ β, where RR is the big ranked Kripke model of KB.
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The following result establishes that rational entailment is a suitable
notion of semantic entailment in our setting.

Proposition 1. {α |∼ β | KB |≈rat α |∼ β} is rational, i.e., satisfies all
the properties in Figure 2.

Example 3. Coming back to Example 2, it can be shown that KB |≈rat
walking |∼ 3entice⊤. Furthermore, if KB′ = KB ∪ {walking |∼ 2entice⊥},
then walking |∼ 3entice⊤ is no longer sanctioned, and KB′ ̸|≈rat ¬walking,
which is in line with the intuitions.

Of course, to reason rationally with a defeasible action domain de-
scription, one needs a procedure capable of deciding rational entailment.
It turns out the algorithm for computing the rational closure of a knowl-
edge base by Britz et al. [2] can easily be adapted to the modal lan-
guage we have assumed here, thereby giving us a decision procedure for
checking rational entailment from defeasible action domain descriptions.
(Space considerations prevent us from providing the details here.)

6 Discussion and open questions
The following discussion assumes the reader’s acquaintance with the area
of reasoning about actions and with some of Andi’s work.

6.1 The frame and ramification problems

An obvious question to ask now is how the rational framework thus
defined stands w.r.t. two of the historically most challenging problems
in reasoning about actions. In what follows, we assume the defeasible
action domain description KB from Example 1.

Concerning the frame problem, it can be verified that KB ̸|≈rat
loaded → 2enticeloaded, i.e., in the big ranked model of KB, the (classi-
cal) frame axiom loaded → 2enticeloaded is not true. This means there
are situations resulting from enticing the turkey in which the gun gets
unloaded. This is because worlds satisfying loaded ∧ 3entice¬loaded do
not get removed by the disjoint union operation, obviously.

One would then expect the defeasible version of such a frame axiom,
namely loaded |∼ 2enticeloaded, to always hold. As it turns out, we get
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KB ̸|≈rat loaded |∼ 2enticeloaded, too. This is perhaps less obvious to see
than the classical case above, but the argument is roughly as follows: in
the construction of the big ranked Kripke model of KB above, nothing
prevents us from having a ranked Kripke model R in Mod∆(KB) in
which there is a possible world w s.t. w ∈ min≺JloadedKR and R, w ⊩
3entice¬loaded. Notice this does not happen regarding wait and loaded
since the DFA loaded |∼ 2waitloaded is explicitly stated in KB.

As a result, and, in retrospect, not surprisingly, rationality alone
is not enough to ensure that the relevant frame axioms hold without
stating them explicitly in the knowledge base.

Moving now to the ramification problem, one can see that, given KB
from Example 1, KB ̸|≈rat loaded → 2shoot¬walking. Even the defeasible
ramification, i.e., loaded |∼ 2shoot¬walking, is not warranted by KB. The
reason is as follows: (i) ¬alive |∼ ¬walking does not follow from walking |∼
alive, given |∼’s properties, and (ii) even if ¬alive |∼ ¬walking is explicitly
enforced in KB, not all possible executions of shoot land at a most normal
¬alive-situation, and therefore ¬walking is not always ensured. Hence,
the so-called ‘indirect’ effects must be explicitly stated.

The bottom line is that our rational modal framework needs to be
equipped with a causality-based solution to the frame and ramification
problems. Andi’s work on dependence relations [6, 7], which provides
an elegant solution to both the frame and ramification problems in the
classical case, can naturally be adapted to achieve that in our defeasible
setting. (We shall omit the details due to space considerations.)

6.2 Rationality and regression

Reiter [18] has shown that in scenarios with only deterministic actions
and no ramifications, a simple solution to the frame problem is possible.
Roughly, it amounts to compiling effect laws and explanation closure
axioms [18] into successor-state axioms (SSAs), which give the neces-
sary and sufficient conditions for propositions to hold (or not) after an
action’s execution. Moreover, Reiter has shown that SSAs can be used
to reduce entailment checking in a first-order action formalism to propo-
sitional satisfiability, through a rewriting procedure called regression.

Andi has had the insight of recasting regression in a modal setting [9],
which has proven fruitful beyond reasoning about actions, viz. in epis-
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temic reasoning, thereby strengthening the case of modal logics as a
viable alternative to the situation calculus.

The move to a rational multi-modal logic of actions as the one we
consider here raises the question of how a suitable version of regression
à la Andi in this setting can be defined. In particular, a solution to the
frame problem allowing for rational entailment to be reduced to rational
closure in the propositional case would be a useful result. It turns out
this is not as straightforward as it might seem at first sight. Below, we
point out some of the difficulties brought about by the properties of |∼
and sketch a potential workaround in a more restricted case.

In our shooting scenario, an example of a classical SSA would be
2shoot¬alive ↔ (¬hasGun ∨ loaded ∨ ¬alive). This enables us to replace
every occurrence of 2shoot¬alive in a complex query with ¬hasGun ∨
loaded ∨ ¬alive, thereby decreasing the modal depth of the query of one.
Successive applications of this principle to other modal subsentences,
along with some normalisation rules holding in the deterministic case,
eventually lead to a classical propositional sentence, of which the validity
can be checked by a state-of-the-art SAT solver.

Obviously, for regression to be applicable to a query containing 2aα
as a subsentence, one needs a suitable form of equivalence, either at the
object level (in the form of a biconditional) or at the meta-level. This
amounts to using either classical equivalence or some yet-to-be-defined
form of ‘defeasible equivalence’ allowing for substitution of 2aα by the
corresponding equivalent sentence. The latter case remains, to the best
of our knowledge, an open question in the NMR literature. The former
means we allow only classical sentences in the knowledge base (or assume
a Tarskian-style logical equivalence at the meta-level).

In general, one cannot generate classical SSAs from defeasible laws
without losing their defeasible behaviour, which is the purpose of ex-
tending the modal language with |∼ in the first place. This raises a
few questions, among which are “What are defeasible SSAs?”, “What
are the implications of reasoning in their presence?”, “Does that limit
regression?” These are questions that we shall for now leave open.

Under the assumption that we allow DICs but only classical action
laws, and assuming deterministic actions, without ramifications, one can
compile SSAs as in the classical modal case and apply regression. It is
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still possible for queries to be defeasible modal statements of the form
α |∼ 2a1 · · ·2anβ, which adds to the expressive power of classical action
domain descriptions and their reasoning services. In this case, the defea-
sible query is reducible, via an Andi-style regression, to a propositional
defeasible conditional of the form α |∼ γ, where γ is a propositional sen-
tence and of which the validity can then be checked through the rational
closure algorithm for propositional logic.

6.3 Unwanted implicit laws

Classical as well as non-classical knowledge bases often entail unwanted
or unexpected conclusions. These may be due to logical inconsistency,
but also show up as a result of poor design in the domain specification.
To witness, in a classical modal setting, from hasGun → 3shoot⊤ and
¬loaded → 2shoot⊥ we conclude hasGun → loaded, i.e., it is impossible
to have an unloaded gun. The latter is an instance of an implicit integrity
constraint. Other types of (unwanted as well as wanted) implicit laws
have also been studied by Andi and colleagues [12, 15]. In particular,
a notion of modularity [13, 14] has been put forward as an approach to
making sure knowledge engineers can detect implicit consequences more
easily and also repair the domain description if needed [19].

The shift to defeasible action domain descriptions under rationality
offers a promising answer to the issue of unwanted implicit laws. Indeed,
for the case of integrity constraints, from α |∼ 3a⊤ and β |∼ 2a⊥ it does
not follow that α ∧ β |∼ ⊥ must hold.
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