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Abstract

Logical theories in reasoning about actions may also
evolve, and knowledge engineers need revision tools to
incorporate new incoming laws about the dynamic en-
vironment. We here fill this gap by providing an algo-
rithmic approach for action theory revision. We give
a well defined semantics that ensures minimal change,
and show correctness of our algorithms w.r.t. the seman-
tic constructions.

Introduction
Like any logical theory, action theories in reasoning about

actions may evolve, and thus need revision methods to ade-

guately accommodate new information about the behavior
of actions. In (Eiter et al. 2005; Herzig, Perrussel, and
Varzinczak 2006; Varzinczak 2008) update and contraction-

The contributions of the present work are as follows:

e What is the semantics of revising an action theory by a
law? How to get minimal change, i.e., how to keep as
much knowledge about other laws as possible?

e How to syntactically revise an action theory so that its
result corresponds to the intended semantics?

Here we answer these questions.

Logical Preliminaries
Our base formalism is multimodal logkc,, (Popkorn 1994).

Action Theories in Multimodal K

Let2A = {a, a9, ...} be the set ohtomic actionf a do-
main. To each actioa there is associated a modal operator

based methods for action theory repair are defined. Here we [a]. 8 = {p,,p,,...} denotes the set gfropositions or

continue this important though quite new thread of investi-
gation and develop a minimal change approachrdaising
a domain description.

The motivation is as follows. Consider an agent designed
to interact with a coffee machine. Among her beliefs, the
agent may know that a coffee is a hot drink, that after buying
she gets a coffee, and that with a token it is possible to buy.

atoms £ = {p,—p : p € P} is the set of literals¢ denotes
a literal and/| the atom in.

We usep, 1, . .. to denoteBoolean formulasg is the set
of all Boolean formulas. A propositional valuatianis a
maximally consistenset of literals. We denote by I+ ¢
the fact thatv satisfiesp. By val(p) we denote the set of
all valuations satisfyingp. FCPLis the classical consequence

We can see the agent's beliefs about the behavior of actions yg|ation.Cn() denotes all logical consequencesof

in this scenario as a transition system (Figure 1).

Figure 1: A transition system depicting the agent’s knowl-
edge about the dynamics of the coffee machlng, c, and
h stand for, respectivelfauy, token coffee andhot.

Well, at some stage the agent may learn that coffee is the

only hot drink available at the machine, or that even without
a token she can still buy, or that all possible executions of
buy should lead to states wherg¢okenis the case. These
are examples akvisionwith new laws about the dynamics
of the environment under consideration. And here we are
interested in exactly these kinds of theory modification.

With IP(¢) we denote the set girime implicant§Quine
1952) ofp. By m we denote a prime implicant, aradm()
is the set of atoms occurring im. Given/ andm, ¢ € «
abbreviates? is a literal ofr’.

We used, ¥, ... to denote complex formulas (possibly
with modal operators). (a) is the dual operator ofa]
(<a>43 —def _‘[a] ﬁglf))-

A K,,-modelis a tuple.Z = (W,R) whereW is a set of
valuations, andR maps action constantsto accessibility

relationsR, C W x W. Given.Z, ):flp (pis true at world
w of model.Z) if w IF p; |:;”[a]d§ if lz;/{di for everyw’ s.t.

(w,w") € Ry; truth conditions for the other connectives are
as usual. ByM we will denote a set o,,-models.

A is a model ofp (noted%/”@) if and only if %”45 for all

w € W. . is a model of a set of formulas (noted#’lZ)
if and only if lé”di for every® € ¥. @ is aconsequence of



the global axiom& in all K,,-models (noted | &) if and

only if for every., if 'S, then &.
In K,, we can state laws describing the behavior of ac-
tions. Here we distinguish three types of them.

Static Laws A static lawis a formulapy € F that char-
acterizes the possible states of the world. An example is
coffee— hot if the agent holds a coffee, then she holds a
hot drink. The set of static laws of a domain is denote&by

Effect Laws An effect law for ahas the formp — [a]v),
with ¢, € §. Effect laws relate an action to its effects,
which can be conditional. The consequents the effect
that always obtains whea is executed in a state where
the antecedenp holds. An example isoken — [buyhot

whenever the agent has a token, after buying, she has a ho

drink. If ¢ is inconsistent we have a special kind of ef-
fect law that we call arinexecutability law For example,
—token — [buy L says thatuy cannot be executed if the
agent has no token. The set of effect laws is denotefl.by

Executability Laws An executability law for &has the form
» — (a)T, with ¢ € §. It stipulates the context in which
a is guaranteed to be executable. Hp (a)T reads &'s
execution is possible”.) For instandeken— (buy) T says

that buying can be executed whenever the agent has a token

The set of executability laws of a domain is denotedthy

Givena, &, (resp.X,) will denote the set of only those
effect (resp. executability) laws aboaut

Action Theories7 = S U £ U X is anaction theory

tTheorem 1 ((Parikh 1999)) FCPL

M b

b
(t, —c, -h) (t,—c,-h) (=t,oc,h)
Figure 2: Supra-model for the coffee machine scenario.

Forp € 3, px is the set of ally’ € § such thaty =, ¢’
andatm(¢’) C atm!(yp). For instancep,; V p, ¢ p;*, as
Py ':CPL p; V py butatm(p; Vv py) £ atmi(p,). Clearly,

atm(/\ p*) = atml(/\ p*). Moreover, whenevel=,, ¢ <
¢', thenatm!(y) = atm!(¢’) and alsopx = ¢'x.

® N 0%,
atm(px) C atm(¢’) for everyy’ s.t.k=, ¢ < ¢’

Thus for everyy € § there is a unique least set of ele-
mentary atoms such that may equivalently be expressed
using only atoms from that set. Hen€&n(y) = Cn(px).

Given a valuatiorv, V' C vis asubvaluation ForW a set
of valuations, a subvaluatiori satisfiesp € § moduloW
(notedV' Ii;, ) if and only if v I ¢ for all v € W such that
V' C v. A subvaluatiorv essentially satisfieg moduloW

s and

'(vlbvl ¢) ifand only if v, ¢ and{[{| : £ € v} C atm{(yp).

Definition 3 Let p € § and W be a set of valuations. A
subvaluation v is grime subvaluatiof ¢ (modulo W) if

and only if vlbv! o and there is noVC vs.t. v l\bv! ©.

To make the presentation more clear to the reader, we here A prime subvaluation of a formula is one of the weak-

assume that the agent’s theory contains all frame axioms.

However, all we shall say here can be defined within a for-
malism with a solution to the frame and ramification prob-
lems like (Herzig, Perrussel, and Varzinczak 2006) do. The
action theory of our example will thus be:

.

Figure 1 above showsl&,-model for the theory.
Sometimes it will be useful to consider models whose
possible worlds arall the possible states allowed BYy

Definition 1 .# = (W, R) is abig frameof 7'if and only if:
e W=val(S); and
/ A A
o Ra={(w,w'):V.p—a €&, if £ pthen = v}
Big frames of7 are not always models @f.

Definition 2 ./ is asupra-modebf 7 iff E”Tand//l is a
big frame of7.

—coffee— [buycoffee -token— [buy] L,

coffee— hot, token— (buy) T,
coffee— [buyjcoffeehot — [buyhot }

Figure 2 depicts a supra-model of our exaniple

Prime Valuations
An atomp is essentiako ¢ if and only if p € atm(¢’) for
all ¢’ such thaq:ch‘P — ¢'. Forinstancep;, is essential to

—p; A(—p; VP,). atml(y) will denote the essential atoms of
o. (If ¢ is a tautology or a contradiction, thatm!(y) = (.)

est states of truth in whicky is true. (Notice the similar-
ity with the syntactical notion of prime implicant (Quine
1952).) We denote all prime subvaluationsmoduloW

by basép, W).

Theorem 2 Letp € § and W be a set of valuations. Then
forallw € W,w IF g ifand only ifw I- \/\ cpaseo wy Avey C-

Closeness Between Models

When revising a model, we perform a change in its struc-

ture. Because there can be several ways of modifying a

model (not all minimal), we need a notion of distance be-

tween models to identify those closest to the original one.
As we are going to see in more depth in the sequel, chang-

ing a model amounts to modifying its possible worlds or

its accessibility relation. Hence, the distance betweemn tw

K,,-models will depend upon the distance between their sets

of worlds and accessibility relations. These here will be

based on theymmetric differencbetween sets, defined as

XY =(X\Y)U(Y\X).

Definition 4 Let.# = (W,R). .#' = (W,R/) isat least as

closeto# as.#" = (W',R"), noted.#" < 5 .#", iff

e either W-W C W-W'

e or W-W =W-Wand R-R C R-R’

This is an extension of Burger and Heidema’'s rela-

tion (Burger and Heidema 2002) to our modal case. Note

that other distance notions are also possible, like e.g. the
cardinality of symmetric differences or Hamming distance.



Semantics of Revision

Contrary to contraction, where we want the negation of a law
to besatisfiable in revision we want a new law to balid.
Thus we must eliminate all cases satisfying its negation.
The idea in our semantics is as follows: we initially have a
set of models\ in which a given formulad is (potentially)
not valid, i.e.,@ is (possibly) not true in every model ji.
In the result we want to have only modelsd®f Adding @-
models taM is of no help. Moreover, adding models makes
us lose laws: the resulting theory would be more liberal.
One solution amounts to deleting frawt those models
that are not»-models. Of course removing only some of

them does not solve the problem, we must delete every such

a model. By doing that, all resulting models will be mod-
els of @. (This corresponds ttheory expansionwhen the
resulting theory is satisfiable.) However, Aff contains no
model of®, we will end up with). Consequence: the result-
ing theory is inconsistent. (This is the main revision prob-
lem.) In this case the solution is soibstituteeach model#
in M by its nearest modifications#j that makesp true.
This lets us to keep as close as possible to the original mod-
els that we had.

Before defining revision of sets of models, we present
what modifications of (individual) models are.

Revising a Model by a Static Law

Suppose that our coffee deliverer agent discovers that the
only hot drink that is served on the machine is coffee. In this
case, we might want to revise her beliefs with the new static
law coffee— hot

Considering the model in Figure 2, we see thabffeen
hotis satisfiable. As we do not want this, the first step is to
removeall worlds in which—coffeeA hotis true. The second
step is to guarantee all the remaining worlds satisfy the new
law. This issue has been largely addressed in the literature
belief revision and update (Gardenfors 1988; Winslettg 98
Katsuno and Mendelzon 1992; Herzig and Rifi 1999). Here
we can achieve that with a semantics similar to that of clas-
sical revision operators: basically one can change thefset o
possible valuations, by removing or adding worlds.

In our example, removing the possible worlgs—c, h}
and {—-t, —c,h} would do the job (there is no need to add
new valuations since the new static law is satisfied in at leas
one world of the original model).

The delicate point in removing worlds is that it may re-
sult in the loss of some executability laws: in the examble, i
there were only one arrow leaving some wailénd point-
ing to {—t, —c, h}, then removing the latter from the model
would make the action under concern no longer executable
in w. Here we claim that this is intuitive: if the state of the
world to which we could move is no longer possible, then
we do not have a transition to that state anymore. Hence, if
that transition was the only one we had, itis natural to lase i

One could also ask what to do with the accessibility rela-
tion if new worlds must be added (revision case). We claim
that it is reckless to blindly add new elementsRo In-
stead, we shall postpone correction of executability lafvs,
needed. This approach is debatable, but with the informatio
we have at hand, it is the safest way of changing static laws.

Definition 5 Let.# = (W,R). .#' = (W,R) € . iff
W = (W) val(=¢)) Uval() and R C R.

Clearly )://[/go forall .#' € .. The minimal models of
the revision of# by ¢ are those closest te7 w.r.t. <_4:
Definition 6 rev(.7, p) = Jmin{.#}, =}

In the example of Figure 2ev(.# , coffee«~ hot) is the
singleton{.#"}, with .#’ as shown in Figure 3.

b
(‘vt, —C, “|"D (t, -C, “h)
Figure 3: Revising model/ in Figure 2 withcoffee— hot

Revising a Model by an Effect Law

Let’s suppose now that our agent eventually discovers that
after buying coffee she does not keep her token. This means
that her theory should now be revised by the new effect law
token— [buyj—token Looking at model# in Figure 2, this
amounts to guaranteeing thakem (buy)tokenis satisfiable

in none of its worlds. To do that, we have to look at all the
worlds satisfying this formula (if any) and

e either makeaokenfalse in each of these worlds,
e or make(buy)tokenfalse in all of them.

If we chose the first option, we will essentially flip the
truth value of literaltokenin the respective worlds, which
changes the set of valuations of the model. If we chose
the latter, we will basically removbuy-arrows leading to
tokenworlds, which amounts to changing the accessibility
relation.

In our example, worldss; = {token coffeehot}, wy =
{token —coffeehot} andws = {token —coffee —hot} sat-
isfy the formulatokena (buy)token Flippingtokenin all of
them to—tokenwould do the job, but this would also have
as consequence the introduction of a new static tatwken
would now be valid, i.e., the agent never has a token! Do we
want this?

We claim that changing action laws should not have as
side effect a change in the static laws. These have a spe-
cial status (Shanahan 1997), and should change only if re-
quired. Hence each world satisfyitakenA (buy)tokenhas
to be changed so thabuytokenbecomes untrue in it. In
the example, we thus should remdve , w, ), (w2, w) and
(w3, wq) fromR.

Definition 7 Let.# = (W,R). .#' = (W,R) € .4} _ 5, iff:
e W=W,RC R,):/”l@ — [a]y, and
o If (w,w’') € R\R, thenlzfl@

The minimal models resulting from revision of a model
./ by a new effect law are those closest# w.r.t. < _;:
Definition 8 rev(.#, ¢ — [a]y)) = Umin{.Z}_,,, 2.«}.

Taking.# as in Figure 2rev(.# ,token— [buy|—token)
will be the singleton{.#"} depicted in Figure 4.



M
t, ¢, =h) (t, —c,-h) (=t,=c,h)
Figure 4: Revising.# in Figure 2 with token —
[buy]—token

Revising a Model by an Executability Law

In our examplews = {—token coffeehot} is the only
relevant target world here: the two othetokenworlds
violate the effectcoffee of buy, while the threetoken
worlds would make us violate the frame axioftoken —
[buy]—token

Definition 10 Let.# = (W,R). .#' = (W ,R) € .4 _ , + iff:

—><a

o« W=W,RCR, " (aT, and

o If (w,w') € R\R,thenw' € rt(w,p — [a| L, #, M)
The minimal models resulting from revising a mod#l

Let us now suppose that at some stage it has been decided tayy g new executability law are those closestow.r.t. <_:

grant free coffee to everybody. Faced with this information
we have to revise the agent’s laws to reflect the facttibgt
can also be executed iftokencontexts:-token— (buy) T

is a new executability law.

Considering model# in Figure 2, we observe that
—token A [buy L is satisfiable. Hence we must throw
—tokenA [buy] L away to ensure the new law becomes true.

To remove-tokenA [buy] L we have to look at all worlds
satisfying it and modify# so that they no longer satisfy that
formula. Given worldsu, = {—token —coffee —hot} and
ws; = {—token —coffeehot}, we have two options: change
the interpretation ofokenin both or add new arrows leav-
ing these worlds. A question that arises is ‘what choice is
more drastic: change a world or an arrow'? Again, here
we claim that changing the world’s content (the valuation)

is more drastic, as the existence of such a world is foreseen
by some static law and is hence assumed to be as it is, un-

less we have enough information supporting the contrary, in
which case we explicitly change the static laws (see above).
Thus we shall add a nelwuy-arrow from each ofv, andws.

Having agreed on that, the issue now is: which worlds
should the new arrows point to? In order to comply with
minimal change, the new arrows shall point to worlds that
are relevant targets of each of theokenrworlds in question.

Definition 9 Let.# = (W,R), w,w’ € W, andM be a set
of models s.t.# € M. Thenw' is arelevant target world
of ww.rt. ¢ — (a)T for . in M iff £ ¢ and

o Ifthereis.z’ = (W,R) € M such that B(w) # (:
—forall ¢ € w \ w, there isy)’ € § s.t. thereis V €
basd’,W) s.t. V C w/, £ € V, and %[ [a]yy’ for
every.#; € M
— forall £ € wnNuw, either there is)’ € § s.t. there is
V' € basdéy’, W) s.t. Vv C v/, ¢ €V, and %‘ [a]w’ for
all .#; € M; orthereis.#; € M s.t. b{l [a]—¢
e If R (w) =0 forevery.#’ = (W,R) € M:
— forall £ € w' \ w, there is#; = (W;,R;) € M s.t.
there isu,v € W; s.t. (u,v) € R;andl € v\ u
—forall ¢ € wnuw', thereis.#;, = (W;,R;) € M s.t.
there isu,v € W; s.t. (u,v) € Rizand? € un o,
or for all . #; = (W;,R;) € M, if (u,v) € Ry, then
—L¢v\u
By rt(w, p — (a)T,.#, M) we denote the set of all rele-
vant target worlds ofv w.r.t. o — (@) T for .Z in M.

Definition 11 rev(.#/,p — (&) T) = Jmin {7} o+, =.#}.

In our running examplerev(.# , —token — (buy)T) is
the singleton{.#’}, where.#' is as shown in Figure 5.

b
(t, —c, -h) (t,—c,-h) (=t,=c,h)

Figure 5: The result of revising mode# in Figure 2 by the
new executability law-token— (buy) T.

Revising Sets of Models

Up until now we have seen what the revision of single mod-
els means. Now we are ready for a unified definition of re-
vision of a set of modela1 by a new law®:

Definition 12 Let M be a set of models anbla law. Then

My = (M\{ i ayu | reva,®)
AMEM

Definition 12 comprises botbxpansiorandrevision in the
former, addition of the new law gives a satisfiable theory;
in the latter a deeper change is required to get rid of the
inconsistency.

Syntactic Operators for Revision

We now turn our attention to the syntactical counterpart of
revision. Our endeavor here is to perform minimal change
also at the syntactical level. BYj, we denote the result of
revising an action theory with a new law®.

Revising a Theory by a Static Law

Looking at the semantics of revision by Boolean formulas,
we see that revising an action theory by a new static law
may conflict with the executability laws: some of them may
be lost and thus have to be changed as well. The approach
here is to preserve as many executability laws as we can in
the old possible states. To do that, we look at each possi-
ble valuation that is common to the n&wand the old one.
Every time an executability used to hold in that state and
no inexecutability holds there now, we make the action exe-
cutable in such a context. For those contexts not allowed by



the oldS, we makeainexecutable (cf. the semantics). Algo-
rithm 1 deals with that§ x~ ¢ denotes the classical revision
of S by ¢ built upon some well established method from
the literature (Winslett 1988; Katsuno and Mendelzon 1992;
Herzig and Rifi 1999)).

Algorithm 1 Revision by a Static Law
input: 7, ¢
output: T,
Si=8xp, i =E, X" =0
forall = € IP(S’) do
for all A C atm(w) do
SOA: = /\p catm(w) pl /\pZEatm(rr) pz

pi €A ¢A
if 8" Fep (T Aa) — L then
if S [;éPL 7r/\<pA) — 1 then
if Tl (mApa) = (@T andS", &', X i, ~(m A
©A) then
X ={(piNTApa) —

@T:p; —

&l L}

(@T € Aa}
else
E=E"U{(m ANpa) —
T, =8'ugux’

Revising a Theory by an Effect Law

When revising a theory by a new effect law— [a]v), we
want to eliminate all possible executionsadeading to—)-
states. To achieve that, we look at @Hcontexts and every
time a transition to some-context is not always the case,
ie,7 Fé v — (a)—), we can safely forcga]y for that
context. On the other hand, if in such a context there is al-
ways an execution afto —, then we should strengthen the
executability laws to make room for the new effect in that
context we want to add. Algorithm 2 below does the job.

Algorithm 2 Revision by an Effect Law
input: 7, (p — [a]y
Output Lp—*[a]
T:=T
forall = € IP(S A ¢) do
for all A C atm(r) do
(PA: = /\pleatm(n—) pz A /\pleatm(w) pz

it S Fp ( 71'/\ <pA) — Lthen
forall 7’ € IP(S A —) do

it 77 |z (m A pa) — (@)’ then
7= (T\NX2) U{(pi Al A en)) — < ar:
pi — ()T € X3}
?”Z =T U{(m A pa) — [a)}
it 7' [ (7 A @a) — [a] L then
7" /=T'U{(<p,'/\7r/\<pA) —{(@T:¢;, — (T €T}
Totay’ =

Revising a Theory by an Executability Law

the execution o shall be weakened. Moreover, to comply
with minimal change, we must ensure that in all models of
the resulting theory there will be at mastetransition bya
from those worlds in whiclf precludedy’s execution.

Let(E¢ 1)1, .., (E£), denote minimum subsets (W.I.t.
set inclusion) of, such thatS, (£51); = » — [a]L.
(According to (Herzig and Varzinczak 2067), one can en-
sure at least one such a set always exists.) dpet=
Uy <jcn, (E€1)i. The effect laws i€, will serve as guide-
lines to get rid offa] L in eachy-world allowed by7: they
are the laws to be weakened to allow faj T in p-contexts.

Our algorithm works as follows. To force — (a)T to
be true in all models of the resulting theory, we visit ev-
ery possiblep-context allowed by it and make the follow-
ing operations to ensur@) T is the case for that context:
Given ap-context, if 7 does not always preclude from
being executed in it, we can safely for@® T without mod-
ifying other laws. On the other hand, afis always inexe-
cutable in that context, then we should weaken the laws in
&y . The first thing we must do is to preserve all old ef-
fects in all otherp-worlds. To achieve that we specialize the
above laws to each possible valuation (maximal conjunction
of literals) satisfyingp but the actual one. Then, in the cur-
rentp-valuation, we must ensure that actemmay have any
effect, i.e., from thigp-world we can reach any other pos-
sible world. We achieve that by weakening tensequent
of the laws in£; to the exclusive disjunction of all possi-
ble contexts inZ. Finally, to get minimal change, we must
ensure that all literals in thig-valuation that are not forced
to change are preserved. We do this by stating a conditional
frame axiom of the fornf{yy, A ¢) — [a]¢, whereyy, is the
above-mentioneg-valuation.

Algorithm 3 gives the pseudo-code for that.

Correctness of the Algorithms

Suppose we have two atorps andp,, and one actiora.
Let7; = {—p,,p; — [@py, (@) T}. The only model of7y

is . in Figure 6. Revising such a model py v p, gives

us the models#/, 1 < i < 3, in Figure 6. Now, revisind;

by p; V p, will give us 71 . = {P; A =P, P — [AlP}-
The only model on'lglvpz is . in Figure 6. This means
that the semantic revision may produce models (v#Z.and
4 in Figure 6) that are not models of the revised theories.

a
%:

M
My My

Figure 6: Model# of 7; and revision of# by p, V p,.

The other way round the algorithms may give theories
whose models do not result from revision of models of the
initial theory: let7; = {(p; V py) — [@L, (@ T}. Its only
model is.# (Figure 6). RevisingZ by p, V p, is as above.
HoweverZays . = {p; V Ps, (P V P,) — [aL} has a

Revision of a theory by a new executability law has as conse- model.Z" = ({{p;, P>}, {P;, P2}, {—P;, P} },0) that is

guence a change in the effect laws: all those laws preventing not in .z}

“P1VP2”



Algorithm 3 Revision by an executability law
input: 7,0 — (T
output: 77 5T
T'.=T
forall m € IP(S A ) do
for all A C atm(w) do
Pas = /\piem p; A /\piem P
pi €A pi &A
if S fep (A pa) — L then
it 7" kg, (7 A @a) — [a] L then

(T'\E'2) U{(pi A(m Agn)) — a1 :
wi — [aj; € E5 U

7" = {(‘pl AT N PA) — [a] @ = EIP(S) (71'/ Apar)
Weamy
o — [a €'}
forall L C £do

L
if S Fepy (T A oa) — N\,cp £ then
forall £ € L do
if Th ¢ — [a]Lor (T ¢— [a~¢and
Tk ¢ — [a0) then
T =T U{(r Npanl)— [t}
T =T U{(r Apa) — (@T}

T <a>T: :T/

w—

All this happens because the possible states are not com-

pletely characterized by the static laws. Fortunatelyceon
trating on supra-models @f, we get the right result.

Theorem 3 If M = {# : ./ is a supra-model of } and
thereis.z’ € M s.t. %/” o, then o, 1€UA , D) C M.

Then, revision of models df by a law in the semantics
produces models of the output of the algorithfijs

Theorem 4 If M = {.# : ./ is a supra-model of } # 0,
then for every#’ € M, E” T5.
Also, models of7}; result from revision of models &fby @:

Theorem 5 If M = {.# : .# is a supra-model of } # 0,
then for every ', if E T}, then.z’ € M.

Sticking to supra-models dfis not a big deal. We can use
the algorithms in (Herzig and Varzinczak 2007) to enslire
is characterized by its supra-models and théat# ().

Conclusion and Perspectives

The problem of action theory change has only recently
received attention in the literature, both in action lan-
guages (Baral and Lobo 1997; Eiter et al. 2005) and
in modal logic (Herzig, Perrussel, and Varzinczak 2006;
Varzinczak 2008).

Here we have studied what revising action theories by a

link between the semantics and the syntax for theories with
supra-models. (Due to page limits, proofs are omitted here.

Our next step on the subject is analyze the behavior
of our operators w.r.t. AGM-like postulates (Alchourron,
Gardenfors, and Makinson 1985) for modal theories and
the relationship between our revision method and contrac-
tion. What is known is that Levi identity (Levi 1977),
Ty = T_4;U{®}, in general does not hold for action lad@s
The reason is that up to now there is no contraction operator
for =& where® is an action law. Indeed this is the general
contraction problem for action theories: contraction dfext
ory 7 by a general formula (like-® above) is still an open
problem in the area. The definition of a general method will
certainly mostly benefit from the semantic modifications we
studied here (addition/removal of arrows and worlds).

Given the relationship between modal logics and descrip-
tion logics, a revision method for DL TBoxes would also
benefit from the constructions we defined here.
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